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(1) Kremer-Grest模型とは
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Kremer-Grest (KG) 模型
• G. S. Grest & K. Kremer: PRA 33 (1986) 3628　

高分子セグメント ⇒ ビーズ（排除体積有り）

ボンド 　　　　　⇒ 有限非線形バネ

異なるボンドの交差は起きない。

高分子系で普遍的な性質を良く再現。

ビーズ
（セグメント）

排除体積効果

有限非線形バネ
（ボンド）

現実鎖
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KG 模型のポテンシャル
• 斥力 Lennard-Jones ポテンシャル

任意のセグメント対の間に働く排除体積効果。

• 有限伸張非線形弾性（FENE）ポテンシャル

高分子構造に沿って隣接したセグメント対の間に働くバネの力。

k = 30.0 ε/σ2, R0 = 1.5 σ が標準的。
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dense systems, the motion is almost reduced to cooperative
fluctuations. Partially, this problem is compensated for by
using very large systems at moderate densities. ' This
method has been the most successful and will remain very
important at low and moderate densities. In a quasi-
Brownian dynamics method the Srnoluchowski equation is
solved for the position of the monomers by a MC algo-
rithm. Due to the mainly stochastic nature of the motion,
only moderate densities (p ~ 0.5) have been used. In both
methods the Rouse dynamics is built in due to the stochas-
tic nature of the chain motions. One cannot make a clear
distinction between the inAuence of the small solvent parti-
cles or other long chains on the local dynamics of a poly-
mer. This is important at the moderate densities ~here
these methods work. The third alternative is to use a stand-
ard MD method. " Here Newton's equations of motion are
solved directly for each monomer. Since both momentum
and energy are conserved, one simulates a microcanconical
ensemble. However, in order to sample the entire phase
space for a chain and to get the Rouse dynamics there must
be an exchange of energy and momentum with the sur-
roundings. This can be done by taking the solvent
molecules (monomers or very small chains) explicitly into
account. Typically, one needs as many as 20 times (or
more) solvent particles than monomers of the chain. This
makes the algorithm so inefficient that it has only been used
for small systems. "
It would be very useful to find a simulation method,

which combines the positive aspects of these algorithms
and avoids most of their negative aspects. To be precise we
want to have a method which is (I) almost as effective as
the MC methods for a single chain and reproduces the
Rouse model and (2) should be effective at high densities
and allow us to clearly distinguish the solvent from the in-
terchain interactions. In addition, the a1gorithm should be
general enough that one can incorporate constant-pressure
methods' to calculate moduli for an entangled melt or a po-
lymer glass. To achieve this aim, we propose a MD algo-
rithm where each particle is coupled weakly to a heat bath.
Schneider and Stoll" used a similar method to simulate a
system with a distortive phase transition. They made the
coupling so weak, that they could neglect the inAuence of
the heat bath on the dynamics of the system. %'e want just
the opposite. Since the coupling of the polymer to its sur-
roundings is not weak, the influence of the heat bath on the
dynamics of the chain must be investigated. Thus, we solve
the equations of motion:

between any two monomers. The potential

2n/(R') 't'(& q &&, S(q)~ q

Figure I gives the result for S(q) with v=0.59 for N = 50.
W'e find excellent agreement with the expected behavior.
%'e also show results for a ring of N =50. The ring is not
self-entangled. The behavior of the ring is different from
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gives the additional interaction between nearest neighbors
along the chain. The parameters we used are Rp=1.5a-,
k =30.0~/o. , and temperature kttT= 1.2e. These parame-
ters are different from those used previously in order to
prevent the chains from crossings. %e used a time step'9
t5, t =0.004' or 0.00Sr. Here r = a (m/e)'t'. The equations
were solved using a fifth-order predictor corrector loop. '
Note that ht cannot be mapped directly onto a microscopic
time scale, because a single monomer corresponds to a
number of real bonds, which depends on the actual chemis-
try. The relevant parameters for this are the persistence
length and the longest relaxation times. The range of I we
tested is 0.5~I ~1.5, which confines the ballistic motion
of a monomer between one and four bond lengths. The
chain lengths studied are N =50, 100, and 200 for linear
chains and rings. We also analyze a random-walk (RW),
ideal chain of N = 200, where the potentials only act
between consecutive monomers along the chain. Typically,
we run 8-15 times as long as shown in the plots. For the
dynamic quantities we then average over at least 1000 initial
configurations.
For the ratio of (RG(/t/)) and the mean-square end-to-

end distance (R') we find the expected value 7, as well as
consistency with (RG) ring /(RG) i;„., = 0.56." Because we
only studied a few chain lengths, it is very difficult to ex-
tract a convincing result for v from the N dependence of
our data. Therefore, we calculated the static structure func-
tion S(q)."'3 For

'r'; = —V U; —I r; +W; ( t ) (6) 3.0 p-

where I is the bead friction and W;(t) describes the ran-
dom force of the heat bath acting on each monomer. W;(t)
is a Gaussian white noise with

(W;(t) Wt(t')) = o; 8(t —t')6k TtIt'
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Using the Einstein relation this leads to a diffusion coeffi-
cient Dc= kttT/I N The potential~ 9 's. U, has two parts
U + U'". U is a shifted, purely repulsive Lennard-Jones
potential,
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FIG. 1. S(q) vs q for hnear ( ~ ) and ring (0}polymers of chain
length N-SO and random-walk chain (0) for N-2QO. In the
inset, the data for the linear and ring polymer are replotted as
q ~~"S(q) vs log~oq ~ith ~ -0.59. This plot is much more sensiti~e
and sho~s that the actual value of v differs slightly from the expect-
ed behavior.
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dense systems, the motion is almost reduced to cooperative
fluctuations. Partially, this problem is compensated for by
using very large systems at moderate densities. ' This
method has been the most successful and will remain very
important at low and moderate densities. In a quasi-
Brownian dynamics method the Srnoluchowski equation is
solved for the position of the monomers by a MC algo-
rithm. Due to the mainly stochastic nature of the motion,
only moderate densities (p ~ 0.5) have been used. In both
methods the Rouse dynamics is built in due to the stochas-
tic nature of the chain motions. One cannot make a clear
distinction between the inAuence of the small solvent parti-
cles or other long chains on the local dynamics of a poly-
mer. This is important at the moderate densities ~here
these methods work. The third alternative is to use a stand-
ard MD method. " Here Newton's equations of motion are
solved directly for each monomer. Since both momentum
and energy are conserved, one simulates a microcanconical
ensemble. However, in order to sample the entire phase
space for a chain and to get the Rouse dynamics there must
be an exchange of energy and momentum with the sur-
roundings. This can be done by taking the solvent
molecules (monomers or very small chains) explicitly into
account. Typically, one needs as many as 20 times (or
more) solvent particles than monomers of the chain. This
makes the algorithm so inefficient that it has only been used
for small systems. "
It would be very useful to find a simulation method,

which combines the positive aspects of these algorithms
and avoids most of their negative aspects. To be precise we
want to have a method which is (I) almost as effective as
the MC methods for a single chain and reproduces the
Rouse model and (2) should be effective at high densities
and allow us to clearly distinguish the solvent from the in-
terchain interactions. In addition, the a1gorithm should be
general enough that one can incorporate constant-pressure
methods' to calculate moduli for an entangled melt or a po-
lymer glass. To achieve this aim, we propose a MD algo-
rithm where each particle is coupled weakly to a heat bath.
Schneider and Stoll" used a similar method to simulate a
system with a distortive phase transition. They made the
coupling so weak, that they could neglect the inAuence of
the heat bath on the dynamics of the system. %'e want just
the opposite. Since the coupling of the polymer to its sur-
roundings is not weak, the influence of the heat bath on the
dynamics of the chain must be investigated. Thus, we solve
the equations of motion:

between any two monomers. The potential

2n/(R') 't'(& q &&, S(q)~ q

Figure I gives the result for S(q) with v=0.59 for N = 50.
W'e find excellent agreement with the expected behavior.
%'e also show results for a ring of N =50. The ring is not
self-entangled. The behavior of the ring is different from
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gives the additional interaction between nearest neighbors
along the chain. The parameters we used are Rp=1.5a-,
k =30.0~/o. , and temperature kttT= 1.2e. These parame-
ters are different from those used previously in order to
prevent the chains from crossings. %e used a time step'9
t5, t =0.004' or 0.00Sr. Here r = a (m/e)'t'. The equations
were solved using a fifth-order predictor corrector loop. '
Note that ht cannot be mapped directly onto a microscopic
time scale, because a single monomer corresponds to a
number of real bonds, which depends on the actual chemis-
try. The relevant parameters for this are the persistence
length and the longest relaxation times. The range of I we
tested is 0.5~I ~1.5, which confines the ballistic motion
of a monomer between one and four bond lengths. The
chain lengths studied are N =50, 100, and 200 for linear
chains and rings. We also analyze a random-walk (RW),
ideal chain of N = 200, where the potentials only act
between consecutive monomers along the chain. Typically,
we run 8-15 times as long as shown in the plots. For the
dynamic quantities we then average over at least 1000 initial
configurations.
For the ratio of (RG(/t/)) and the mean-square end-to-

end distance (R') we find the expected value 7, as well as
consistency with (RG) ring /(RG) i;„., = 0.56." Because we
only studied a few chain lengths, it is very difficult to ex-
tract a convincing result for v from the N dependence of
our data. Therefore, we calculated the static structure func-
tion S(q)."'3 For

'r'; = —V U; —I r; +W; ( t ) (6) 3.0 p-

where I is the bead friction and W;(t) describes the ran-
dom force of the heat bath acting on each monomer. W;(t)
is a Gaussian white noise with

(W;(t) Wt(t')) = o; 8(t —t')6k TtIt'
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FIG. 1. S(q) vs q for hnear ( ~ ) and ring (0}polymers of chain
length N-SO and random-walk chain (0) for N-2QO. In the
inset, the data for the linear and ring polymer are replotted as
q ~~"S(q) vs log~oq ~ith ~ -0.59. This plot is much more sensiti~e
and sho~s that the actual value of v differs slightly from the expect-
ed behavior.
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KG 模型のポテンシャル
• 斥力 LJ + FENE (k = 30.0 ε/σ2, R0 = 1.5 σ)

平衡距離：0.97 σ

r/σ

U/
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21/6 σ
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(2) 1本鎖の線状 KG 模型の
シミュレーションと簡単な解析
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入力スクリプトの復習
• LAMMPSの入力スクリプトの基本構成（マニュアルより）

(A) 初期条件

単位系、次元、境界条件、粒子の型、など。

(B) 粒子の定義

粒子の位置・速度、分子のトポロジー情報など。

➡ 基本的に、テキストファイルから読み込む方針

(C) 系のパラメター設定

力場の係数、シミュレーション変数、出力設定、など

(D) シミュレーション・ラン

(A) ~ (C) の設定に従い、シミュレーションを実行
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###
# Section (A)
units lj
dimension 3
boundary p p p
atom_style bond

###
# Section (B)
read_data data.polymer05
pair_style lj/cut 1.122462048309373
pair_coeff 1 1 1.0 1.0 1.122462048309373

bond_style fene
special_bonds fene
bond_coeff 1 30.0 1.5 1.0 1.0

velocity all create 1.0 12345 dist gaussian

入力スクリプトの復習

LAMMPS G-K model of a single polymer

5 atoms
4 bonds
1 atom types
1 bond types

-10.00000  10.00000 xlo xhi
-10.00000  10.00000 ylo yhi
-10.00000  10.00000 zlo zhi

Atoms

    1    1    1  -2.5   0.0   0.0
    2    1    1  -1.5   0.0   0.0
    3    1    1  -0.5   0.0   0.0
    4    1    1   0.5   0.0   0.0
    5    1    1   1.5   0.0   0.0

Masses

    1   1.00000

Bonds

    1    1    1    2
    2    1    2    3
    3    1    3    4
    4    1    4    5

ε,   σ,                rc

Ksp,  R0,  ε,    σ
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dense systems, the motion is almost reduced to cooperative
fluctuations. Partially, this problem is compensated for by
using very large systems at moderate densities. ' This
method has been the most successful and will remain very
important at low and moderate densities. In a quasi-
Brownian dynamics method the Srnoluchowski equation is
solved for the position of the monomers by a MC algo-
rithm. Due to the mainly stochastic nature of the motion,
only moderate densities (p ~ 0.5) have been used. In both
methods the Rouse dynamics is built in due to the stochas-
tic nature of the chain motions. One cannot make a clear
distinction between the inAuence of the small solvent parti-
cles or other long chains on the local dynamics of a poly-
mer. This is important at the moderate densities ~here
these methods work. The third alternative is to use a stand-
ard MD method. " Here Newton's equations of motion are
solved directly for each monomer. Since both momentum
and energy are conserved, one simulates a microcanconical
ensemble. However, in order to sample the entire phase
space for a chain and to get the Rouse dynamics there must
be an exchange of energy and momentum with the sur-
roundings. This can be done by taking the solvent
molecules (monomers or very small chains) explicitly into
account. Typically, one needs as many as 20 times (or
more) solvent particles than monomers of the chain. This
makes the algorithm so inefficient that it has only been used
for small systems. "
It would be very useful to find a simulation method,

which combines the positive aspects of these algorithms
and avoids most of their negative aspects. To be precise we
want to have a method which is (I) almost as effective as
the MC methods for a single chain and reproduces the
Rouse model and (2) should be effective at high densities
and allow us to clearly distinguish the solvent from the in-
terchain interactions. In addition, the a1gorithm should be
general enough that one can incorporate constant-pressure
methods' to calculate moduli for an entangled melt or a po-
lymer glass. To achieve this aim, we propose a MD algo-
rithm where each particle is coupled weakly to a heat bath.
Schneider and Stoll" used a similar method to simulate a
system with a distortive phase transition. They made the
coupling so weak, that they could neglect the inAuence of
the heat bath on the dynamics of the system. %'e want just
the opposite. Since the coupling of the polymer to its sur-
roundings is not weak, the influence of the heat bath on the
dynamics of the chain must be investigated. Thus, we solve
the equations of motion:

between any two monomers. The potential

2n/(R') 't'(& q &&, S(q)~ q

Figure I gives the result for S(q) with v=0.59 for N = 50.
W'e find excellent agreement with the expected behavior.
%'e also show results for a ring of N =50. The ring is not
self-entangled. The behavior of the ring is different from
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gives the additional interaction between nearest neighbors
along the chain. The parameters we used are Rp=1.5a-,
k =30.0~/o. , and temperature kttT= 1.2e. These parame-
ters are different from those used previously in order to
prevent the chains from crossings. %e used a time step'9
t5, t =0.004' or 0.00Sr. Here r = a (m/e)'t'. The equations
were solved using a fifth-order predictor corrector loop. '
Note that ht cannot be mapped directly onto a microscopic
time scale, because a single monomer corresponds to a
number of real bonds, which depends on the actual chemis-
try. The relevant parameters for this are the persistence
length and the longest relaxation times. The range of I we
tested is 0.5~I ~1.5, which confines the ballistic motion
of a monomer between one and four bond lengths. The
chain lengths studied are N =50, 100, and 200 for linear
chains and rings. We also analyze a random-walk (RW),
ideal chain of N = 200, where the potentials only act
between consecutive monomers along the chain. Typically,
we run 8-15 times as long as shown in the plots. For the
dynamic quantities we then average over at least 1000 initial
configurations.
For the ratio of (RG(/t/)) and the mean-square end-to-

end distance (R') we find the expected value 7, as well as
consistency with (RG) ring /(RG) i;„., = 0.56." Because we
only studied a few chain lengths, it is very difficult to ex-
tract a convincing result for v from the N dependence of
our data. Therefore, we calculated the static structure func-
tion S(q)."'3 For

'r'; = —V U; —I r; +W; ( t ) (6) 3.0 p-

where I is the bead friction and W;(t) describes the ran-
dom force of the heat bath acting on each monomer. W;(t)
is a Gaussian white noise with

(W;(t) Wt(t')) = o; 8(t —t')6k TtIt'
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U + U'". U is a shifted, purely repulsive Lennard-Jones
potential,
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FIG. 1. S(q) vs q for hnear ( ~ ) and ring (0}polymers of chain
length N-SO and random-walk chain (0) for N-2QO. In the
inset, the data for the linear and ring polymer are replotted as
q ~~"S(q) vs log~oq ~ith ~ -0.59. This plot is much more sensiti~e
and sho~s that the actual value of v differs slightly from the expect-
ed behavior.

入力スクリプトの復習

（左から順に）Tstart, Tend, Γ-1, seed

dumpの間隔

###
# Section (C)
timestep 0.01
run_style verlet
neighbor 0.4 bin
neigh_modify every 1 delay 1
fix 1 all nve
fix 2 all langevin 1.0 1.0 2.0 13579

###
# Section (D)
run 50000
dump 1 all custom 50 dump.polymer id xu yu zu
dump_modify 1 sort id
run 50000
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【練習1】
1)N = 5 ~ 40 までのデータファイル（data.polymer##）を
読み、シミュレーションを行う。dump ファイルから鎖の慣
性半径 or 末端間距離を計算し、N 依存性を調べる。
余裕のある方は、自分でデータファイルを作成。

dumpファイルの処理の仕方の例 ：ana.f90

2)N = 200 のデータファイルを使って、　　　　　　　　　
シミュレーションを実行し、リスタート　　　　　　　　　　
ファイルを作成する。
リスタートファイルの作り方の例：

➡ restart 1000 restart.polymer

  open(20, file='dump.polymer')
  loop = 0
  do
    read(20, *, end=10000)
    loop = loop + 1
    read(20, *) time
    read(20, *)
    read(20, *) natoms
    read(20, *)
    read(20, *) xlo, xhi
    read(20, *) ylo, yhi
    read(20, *) zlo, zhi
    read(20, *)
    do i=1, natoms
      read(20, *) itmp, xtmp, ytmp, ztmp
      x(itmp) = xtmp
      y(itmp) = ytmp
      z(itmp) = ztmp
    enddo
  enddo
10000 CONTINUE
  close(20)
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【練習2】
1)作成したリスタートファイル（N = 200）を読み込み、シミュ
レーションが再開できることを確認。
リスタートファイルの読み方の例：

➡ read_restart RESTART_FILE.＊　# (A), (B) の情報が読まれる

2)再開の際、LJ ポテンシャルのカットオフ長を 3.0（引力あり）
に変更し、シミュレーションを行い、dump を作成。

restart_read の後に pair_coeff コマンドのパラメターを書き換える。

Dump ファイルから各時間での Re or Rg を計算し、時間変化をみる。　

Dump ファイルを xyz 形式で出力してみる：

➡ dump 2 all xyz 50 dump.polymer.xyz　# 位置情報のみ出力

3)VMD で動きを観る：Coil状態 → globule状態への転移
12



【練習2】の入力スクリプト
• in00.N200：rc = 21/6 の通常の KG 模型。

• in01.N200：pair_coeff コマンドで rc = 3.0 へ書き換え。
{pair, bond}_coeff での値は、適宜書き換えることが可能。

➡ pair_coeff 1 1 1.0 1.0 1.12
run 100
pair_coeff 1 1 1.0 1.0 2.24　
run 100　

read_restart で前回のシミュレーションで用いた条件（Section (A), 

(B)）は自動的に読み込まれる。よって、bond_coeff に関しては、書か
なくても良いが、書いた方がわかりやすい。

➡ 但し、中には restart ファイルに書き込まれないものもあるので、
各コマンドのマニュアル（特に、Restriction項）を確認。
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【練習2】の結果
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(3) 応用例；
散逸粒子動力学（DPD）法

15



• R. D. Groot & T. J. Warren: J. Chem. Phys. 107 (1997) 
11.　

• 運動量保存 ⇒ 流体力学相互作用あり。
高分子系のメソスケール・シミュレーション；相分離ダイナミクス、　
モルフォロジー形成などなど

★ボンドの交差が禁止されてないことに注意。

散逸粒子動力学（DPD）法

tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
sion between homopolymer melts.

II. THE DPD SIMULATION METHOD

A set of interacting particles is considered, whose time
evolution is governed by Newton’s equations of motion
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For simplicity the masses of the particles are put at 1, so that
the force acting on a particle equals its acceleration. The
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line of centres and is given by
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u i j(t)ukl(t8)&5(d ikd j l1d ild jk)d(t2t8). These forces also
act along the line of centres and conserve linear and angular
momentum. There is an independent random function for
each pair of particles.

Español and Warren15 showed that one of the two weight
functions appearing in Eq. ~4! can be chosen arbitrarily and
that this choice fixes the other weight function. There is also
a relation between the amplitudes and kBT . In summary
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~i.e., wR(r) is the same function as in the conservative
force!. Unlike Hoogerbrugge and Koelman11 we choose not
to include normalization factors in these functions.

In previous studies11,15 a simple, Euler-type algorithm
was used to advance the set of positions and velocities. For
an arbitrary timestep it is found by integrating the equations
of motion over a short interval of time Dt over which neither
the positions nor velocities of particles change very much.
This algorithm is
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where z i j is a random number with zero mean and unit vari-
ance, again chosen independently for each pair of interacting
particles and at each timestep. The appearance of Dt21/2 in
this expression will be discussed below.

Rather than using the Euler algorithm as utilized by pre-
vious authors11,15 in the context of DPD, a modified version
of the velocity-Verlet algorithm16 is used here:
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If the force were independent of velocity, the actual velocity-
Verlet algorithm would be recovered for l51/2. Because the
force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
afterwards in the last step. In this more sophisticated algo-
rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
temperature is measured after the last step.

If there were no random or dissipative force, this algo-
rithm would be exact to O(Dt2) at l51/2. Because of the
stochastic nature of the process, the order of the algorithm
becomes unclear; this is discussed more fully by Öttinger,
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tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
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Verlet algorithm would be recovered for l51/2. Because the
force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
afterwards in the last step. In this more sophisticated algo-
rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
temperature is measured after the last step.
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tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
sion between homopolymer melts.

II. THE DPD SIMULATION METHOD

A set of interacting particles is considered, whose time
evolution is governed by Newton’s equations of motion
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For simplicity the masses of the particles are put at 1, so that
the force acting on a particle equals its acceleration. The
force contains three parts, each of which is pairwise additive:
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where the sum runs over all other particles within a certain
cutoff radius rc . As this is the only length-scale in the sys-
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line of centres and is given by
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where wD and wR are r-dependent weight functions vanish-
ing for r.rc51, vi j5vi2vj , and u i j(t) is a randomly fluc-
tuating variable with Gaussian statistics:
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u i j(t)&50 and
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u i j(t)ukl(t8)&5(d ikd j l1d ild jk)d(t2t8). These forces also
act along the line of centres and conserve linear and angular
momentum. There is an independent random function for
each pair of particles.
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functions appearing in Eq. ~4! can be chosen arbitrarily and
that this choice fixes the other weight function. There is also
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~i.e., wR(r) is the same function as in the conservative
force!. Unlike Hoogerbrugge and Koelman11 we choose not
to include normalization factors in these functions.

In previous studies11,15 a simple, Euler-type algorithm
was used to advance the set of positions and velocities. For
an arbitrary timestep it is found by integrating the equations
of motion over a short interval of time Dt over which neither
the positions nor velocities of particles change very much.
This algorithm is
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where z i j is a random number with zero mean and unit vari-
ance, again chosen independently for each pair of interacting
particles and at each timestep. The appearance of Dt21/2 in
this expression will be discussed below.

Rather than using the Euler algorithm as utilized by pre-
vious authors11,15 in the context of DPD, a modified version
of the velocity-Verlet algorithm16 is used here:
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If the force were independent of velocity, the actual velocity-
Verlet algorithm would be recovered for l51/2. Because the
force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
afterwards in the last step. In this more sophisticated algo-
rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
temperature is measured after the last step.

If there were no random or dissipative force, this algo-
rithm would be exact to O(Dt2) at l51/2. Because of the
stochastic nature of the process, the order of the algorithm
becomes unclear; this is discussed more fully by Öttinger,
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tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
sion between homopolymer melts.

II. THE DPD SIMULATION METHOD

A set of interacting particles is considered, whose time
evolution is governed by Newton’s equations of motion
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force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
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rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
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tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
sion between homopolymer melts.
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where z i j is a random number with zero mean and unit vari-
ance, again chosen independently for each pair of interacting
particles and at each timestep. The appearance of Dt21/2 in
this expression will be discussed below.

Rather than using the Euler algorithm as utilized by pre-
vious authors11,15 in the context of DPD, a modified version
of the velocity-Verlet algorithm16 is used here:
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If the force were independent of velocity, the actual velocity-
Verlet algorithm would be recovered for l51/2. Because the
force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
afterwards in the last step. In this more sophisticated algo-
rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
temperature is measured after the last step.

If there were no random or dissipative force, this algo-
rithm would be exact to O(Dt2) at l51/2. Because of the
stochastic nature of the process, the order of the algorithm
becomes unclear; this is discussed more fully by Öttinger,
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tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
sion between homopolymer melts.

II. THE DPD SIMULATION METHOD

A set of interacting particles is considered, whose time
evolution is governed by Newton’s equations of motion

dri
dt 5vi ,

dvi
dt 5fi . ~1!

For simplicity the masses of the particles are put at 1, so that
the force acting on a particle equals its acceleration. The
force contains three parts, each of which is pairwise additive:
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where the sum runs over all other particles within a certain
cutoff radius rc . As this is the only length-scale in the sys-
tem, we use the cutoff radius as our unit of length, rc51.
The conservative force is a soft repulsion acting along the
line of centres and is given by
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where ai j is a maximum repulsion between particle i and
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maining two forces are a dissipative or drag force and a
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^

u i j(t)&50 and
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u i j(t)ukl(t8)&5(d ikd j l1d ild jk)d(t2t8). These forces also
act along the line of centres and conserve linear and angular
momentum. There is an independent random function for
each pair of particles.

Español and Warren15 showed that one of the two weight
functions appearing in Eq. ~4! can be chosen arbitrarily and
that this choice fixes the other weight function. There is also
a relation between the amplitudes and kBT . In summary
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~i.e., wR(r) is the same function as in the conservative
force!. Unlike Hoogerbrugge and Koelman11 we choose not
to include normalization factors in these functions.

In previous studies11,15 a simple, Euler-type algorithm
was used to advance the set of positions and velocities. For
an arbitrary timestep it is found by integrating the equations
of motion over a short interval of time Dt over which neither
the positions nor velocities of particles change very much.
This algorithm is
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where z i j is a random number with zero mean and unit vari-
ance, again chosen independently for each pair of interacting
particles and at each timestep. The appearance of Dt21/2 in
this expression will be discussed below.

Rather than using the Euler algorithm as utilized by pre-
vious authors11,15 in the context of DPD, a modified version
of the velocity-Verlet algorithm16 is used here:
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If the force were independent of velocity, the actual velocity-
Verlet algorithm would be recovered for l51/2. Because the
force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
afterwards in the last step. In this more sophisticated algo-
rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
temperature is measured after the last step.

If there were no random or dissipative force, this algo-
rithm would be exact to O(Dt2) at l51/2. Because of the
stochastic nature of the process, the order of the algorithm
becomes unclear; this is discussed more fully by Öttinger,
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tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
sion between homopolymer melts.

II. THE DPD SIMULATION METHOD

A set of interacting particles is considered, whose time
evolution is governed by Newton’s equations of motion

dri
dt 5vi ,

dvi
dt 5fi . ~1!

For simplicity the masses of the particles are put at 1, so that
the force acting on a particle equals its acceleration. The
force contains three parts, each of which is pairwise additive:
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where the sum runs over all other particles within a certain
cutoff radius rc . As this is the only length-scale in the sys-
tem, we use the cutoff radius as our unit of length, rc51.
The conservative force is a soft repulsion acting along the
line of centres and is given by

Fi j
C5H ai j~12ri j!r̂i j ~
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where ai j is a maximum repulsion between particle i and
particle j ; and ri j5ri2rj , ri j5uri ju, r̂i j5ri j /uri ju. The re-
maining two forces are a dissipative or drag force and a
random force. They are given by

Fi j
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~

ri j!~ r̂i j–vi j!r̂i j , Fi j
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~

ri j!u i jr̂i j , ~4!

where wD and wR are r-dependent weight functions vanish-
ing for r.rc51, vi j5vi2vj , and u i j(t) is a randomly fluc-
tuating variable with Gaussian statistics:

^

u i j(t)&50 and
^

u i j(t)ukl(t8)&5(d ikd j l1d ild jk)d(t2t8). These forces also
act along the line of centres and conserve linear and angular
momentum. There is an independent random function for
each pair of particles.

Español and Warren15 showed that one of the two weight
functions appearing in Eq. ~4! can be chosen arbitrarily and
that this choice fixes the other weight function. There is also
a relation between the amplitudes and kBT . In summary
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~i.e., wR(r) is the same function as in the conservative
force!. Unlike Hoogerbrugge and Koelman11 we choose not
to include normalization factors in these functions.

In previous studies11,15 a simple, Euler-type algorithm
was used to advance the set of positions and velocities. For
an arbitrary timestep it is found by integrating the equations
of motion over a short interval of time Dt over which neither
the positions nor velocities of particles change very much.
This algorithm is
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Care must be taken with the random force which becomes
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where z i j is a random number with zero mean and unit vari-
ance, again chosen independently for each pair of interacting
particles and at each timestep. The appearance of Dt21/2 in
this expression will be discussed below.

Rather than using the Euler algorithm as utilized by pre-
vious authors11,15 in the context of DPD, a modified version
of the velocity-Verlet algorithm16 is used here:
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If the force were independent of velocity, the actual velocity-
Verlet algorithm would be recovered for l51/2. Because the
force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
afterwards in the last step. In this more sophisticated algo-
rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
temperature is measured after the last step.

If there were no random or dissipative force, this algo-
rithm would be exact to O(Dt2) at l51/2. Because of the
stochastic nature of the process, the order of the algorithm
becomes unclear; this is discussed more fully by Öttinger,

4424 R. D. Groot and P. B Warren: Dissipative particle dynamics

J. Chem. Phys., Vol. 107, No. 11, 15 September 1997 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
131.113.74.27 On: Sat, 14 Dec 2013 11:41:52

+ バネの力（任意性あり）
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DPD の使い方
pair_style dpd 1.0 1.0 13459
communicate single vel yes

pair_coeff 1 1 a11 γ rc 

pair_coeff 1 2 a12 γ rc 

pair_coeff 2 2 a22 γ rc

...
fix 1 all nve
...

（左から順に）Tstart, Tend, seed

pair_style dpd とセット
（DPD では力の計算に速度が必要になるため）

pair_style dpd で計算される相互作用

where Fc is a conservative force, Fd is a dissipative force, and Fr is a random force. Rij is a unit vector in the
direction Ri - Rj, Vij is the vector difference in velocities of the two atoms = Vi - Vj, alpha is a Gaussian random
number with zero mean and unit variance, dt is the timestep size, and w(r) is a weighting factor that varies
between 0 and 1. Rc is the cutoff. Sigma is set equal to sqrt(2 Kb T gamma), where Kb is the Boltzmann constant
and T is the temperature parameter in the pair_style command.

For style dpd/tstat, the force on atom I due to atom J is the same as the above equation, except that the
conservative Fc term is dropped. Also, during the run, T is set each timestep to a ramped value from Tstart to
Tstop.

For style dpd, the pairwise energy associated with style dpd is only due to the conservative force term Fc, and is
shifted to be zero at the cutoff distance Rc. The pairwise virial is calculated using all 3 terms. For style dpd/tstat
there is no pairwise energy, but the last two terms of the formula make a contribution to the virial.

For style dpd, the following coefficients must be defined for each pair of atoms types via the pair_coeff command
as in the examples above, or in the data file or restart files read by the read_data or read_restart commands:

A (force units)• 
gamma (force/velocity units)• 
cutoff (distance units)• 

The last coefficient is optional. If not specified, the global DPD cutoff is used. Note that sigma is set equal to
sqrt(2 T gamma), where T is the temperature set by the pair_style command so it does not need to be specified.

For style dpd/tstat, the coefficiencts defined for each pair of atoms types via the pair_coeff command is the same,
except that A is not included.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

788

tive force FC, a dissipative force FD, and a random force FR.
They showed that the dissipative force and the random force
have to satisfy a certain relation in order that the system has
the statistical mechanics corresponding to the canonical en-
semble with a temperature related to the relative amplitudes
of the random and dissipative interactions.

In the present article the physical interpretation of this
relation is discussed, and algorithms formulated for arbitrary
timesteps. The negative consequences of not satisfying this
relation are elucidated, and the statistical mechanical validity
of the method is checked explicitly as a function of the
timestep size. Once the validity is established, the thermody-
namic basis of the model is investigated. A simple scaling
relation is found, which leads to the interpretation of the
underlying model in terms of the well known Flory-Huggins
theory of polymers. This opens the way to bridge the gap
from atomistic simulations, where solubility parameters can
be calculated, to mesoscopic simulations where mesophases
and network formation can be studied. Finally, as an ex-
ample of a practical application, we examine the surface ten-
sion between homopolymer melts.

II. THE DPD SIMULATION METHOD

A set of interacting particles is considered, whose time
evolution is governed by Newton’s equations of motion

dri
dt 5vi ,

dvi
dt 5fi . ~1!

For simplicity the masses of the particles are put at 1, so that
the force acting on a particle equals its acceleration. The
force contains three parts, each of which is pairwise additive:
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where the sum runs over all other particles within a certain
cutoff radius rc . As this is the only length-scale in the sys-
tem, we use the cutoff radius as our unit of length, rc51.
The conservative force is a soft repulsion acting along the
line of centres and is given by

Fi j
C5H ai j~12ri j!r̂i j ~
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, ~3!

where ai j is a maximum repulsion between particle i and
particle j ; and ri j5ri2rj , ri j5uri ju, r̂i j5ri j /uri ju. The re-
maining two forces are a dissipative or drag force and a
random force. They are given by

Fi j
D52gwD

~

ri j!~ r̂i j–vi j!r̂i j , Fi j
R5swR

~

ri j!u i jr̂i j , ~4!

where wD and wR are r-dependent weight functions vanish-
ing for r.rc51, vi j5vi2vj , and u i j(t) is a randomly fluc-
tuating variable with Gaussian statistics:

^

u i j(t)&50 and
^

u i j(t)ukl(t8)&5(d ikd j l1d ild jk)d(t2t8). These forces also
act along the line of centres and conserve linear and angular
momentum. There is an independent random function for
each pair of particles.

Español and Warren15 showed that one of the two weight
functions appearing in Eq. ~4! can be chosen arbitrarily and
that this choice fixes the other weight function. There is also
a relation between the amplitudes and kBT . In summary
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~i.e., wR(r) is the same function as in the conservative
force!. Unlike Hoogerbrugge and Koelman11 we choose not
to include normalization factors in these functions.

In previous studies11,15 a simple, Euler-type algorithm
was used to advance the set of positions and velocities. For
an arbitrary timestep it is found by integrating the equations
of motion over a short interval of time Dt over which neither
the positions nor velocities of particles change very much.
This algorithm is
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Care must be taken with the random force which becomes
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where z i j is a random number with zero mean and unit vari-
ance, again chosen independently for each pair of interacting
particles and at each timestep. The appearance of Dt21/2 in
this expression will be discussed below.

Rather than using the Euler algorithm as utilized by pre-
vious authors11,15 in the context of DPD, a modified version
of the velocity-Verlet algorithm16 is used here:
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~

t1Dt
!!

,

vi~ t1Dt
!

5vi~ t !1 1
2Dt~fi~ t !1fi~ t1Dt

!!

.

If the force were independent of velocity, the actual velocity-
Verlet algorithm would be recovered for l51/2. Because the
force does depend on velocity, we make a prediction for the
new velocity, which we denote by ṽ, and correct for this
afterwards in the last step. In this more sophisticated algo-
rithm, the force is still updated once per iteration ~after the
second step! thus there is virtually no increase in computa-
tional cost. All physical measurements that depend on coor-
dinate differences are also taken after the second step; the
temperature is measured after the last step.

If there were no random or dissipative force, this algo-
rithm would be exact to O(Dt2) at l51/2. Because of the
stochastic nature of the process, the order of the algorithm
becomes unclear; this is discussed more fully by Öttinger,
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aij の取り方
aiiρ = 75 kBT, aij = aii + c(ρ) χij

密度に依る
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DPD の使い方
• まとめると、pair_style を lj → dpd へと変更するだけであ

り、他はこれまでと全く同様の入力スクリプトで良い。
通常の DPD では、m = rc = kBT = 1 とする。

pair_coeff では、aij, γ, rc を決める。

➡ aij は簡単ではない！
➡ 文献では γ ではなく、σ を与えているものが多いので混同しない
ようにする。 γ が決まれば、σ は自動的に決まる（FDT）。

pair_style dpd の時間発展は、fix nve で。熱浴の役割をもつ項
（FD、FR）があるから、fix langevin 等の熱浴は要らない。

➡ pair_style dpd/tstat コマンドにより、純粋な熱浴として使うこ
ともできる（FC = 0、 FD と FR のみ計算）。
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高分子系での例
• 対称ブロックコポリマー A5B5（f = 0.5, Nch = 4,000）

III. SELF-CONSISTENT FIELD THEORY

As a test of the reliability of the method some simula-
tions have been run for linear diblock copolymers, for which
an abundant literature is present. These polymers are block
copolymers that consist of two chemical repeating units, say
A and B . If the polymers contain N units, then the first f N
units are of type A and the last (12 f )N units are of type B .
The miscibility of A units and B units is generally described
by the Flory–Huggins x-parameter. When x50 or very
small, A and B mix ideally and the polymer behaves as an
ideal polymer melt. When x increases by much, all A groups
tend to gather in A-rich domains, and all B groups want to
form their own domain. However, as A and B are chemically
connected the domains cannot become of macroscopic size
and a labyrinth structure is formed that can be rather com-
plicated.

An overview of the experimental and theoretical insights
up to 1990 was given by Bates and Frederickson.1 The im-
portant parameters driving the structure formation are xN
~where N is the polymer length! and the ratio of the block
sizes f . In self-consistent mean-field theory, spontaneous or-
dering is predicted to start at xN510.5; close to this point
the polymers are Gaussian and the weak segregation limit
applies.2 For xN.12 the Gaussian assumption is no longer
valid, and self-consistent field theory must be employed
instead.25,26 In these theories the symmetry of an ordered
phase is imposed by hand, hence defects and fluctuation ef-
fects are ignored. Furthermore, the theory in practice is de-
veloped for linear diblock copolymers, though a generaliza-
tion to polymers with side-branches is possible in principle.

The more recent advances in the application of self-
consistent field theory, which permit the calculation of
phase-diagrams for diblock copolymers including phases of
any symmetry have been reviewed by Matsen and Schick.27
They refer to work of Matsen and Bates for the most up-to-
date theoretically predicted phase diagram.28 This diagram
agrees well with many experimental observations, and it is
reproduced here in Fig. 2. The parameter f again is the frac-
tion of A-units relative to the size of the polymer. To de-
scribe this diagram let us make an imaginary cross section at
xN540. Here, for f ,11.6% the polymer melt is disordered.
At this point micelles appear, packed in an cubic array of fcc

or hcp symmetry. This phase is so small that its appearance
is not very relevant in practice. If the fraction of A segments
is increased slightly, one enters another quasicrystalline
phase of cubic symmetry at f 512.1%, but now the micelles
are ordered in a body centered cubic structure, bcc. It has the
space-group symmetry Im3 m . At f 516.6% the structure
changes into an array of hexagonally packed cylinders, H1 ,
in which the A segments sit in the center of the cylinders and
the Bs form the continuous phase. At f 531.8% another cu-
bic phase is entered, but now the structure is bicontinuous. It
is known as the gyroid structure and is denoted by QIa3 d ,
and looks like a complicated spongelike structure. Finally, at
f 533.7% the lamellar phase L

a

is entered, which is just a
plane phase of alternating layers of A and B .

If the section around the critical point is enlarged it is
found that the narrow fcc phase starts at a triple-point at
xN517.67 and f 523.5%, and the gyroid phase starts at a
triple-point at xN511.14 and f 545.2%. Below these values
of xN the disordered phase switches directly to the bcc
phase, and the hexagonal phase switches directly to the
lamellar phase, respectively. If one discards these subtleties
at low x-parameters, one can fit all data points for the phase
transition lines given by Matsen and Bates28 very accurately
by a simple function,

f 5
1
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1
2

A
xN210.5

a1bA
xN

. ~10!

Here the number 10.5 is the value of xN at the critical point.
The parameters a and b are summarized in Table. I. The
numbers in Table I can be substituted for the parameters a
and b in Eq. ~10! to find the phase transition lines for ~infi-
nitely long! diblock copolymers according to self-consistent
field theory. In practice fluctuation corrections to the phase
diagram are quite severe. The consequence of finite polymer
length will be described in the Discussion.

IV. DIBLOCK COPOLYMER SIMULATIONS
A. Qualitative exploration

In the representation of diblock copolymers with short
strings of DPD beads the fact is utilized that ~to lowest ap-
proximation! only the product xN is important, so that we
can rescale a long polymer down to a small number of seg-
ments per chain. The polymer length chosen is N510, the
repulsion parameter between equal particles is aAA5aBB
515 and the repulsion parameter between unequal types is
aAB521. These simulations were carried out at density r55.
Using the previously derived result for the relation between
the x-parameter and the excess repulsion18 we have xN
'41, which puts us well outside the weak segregation limit.
In Fig. 3 the configurations of A5B5 and A3B7 polymer sys-

FIG. 2. Mean-field phase diagram for diblock copolymers, after Matsen and
Bates ~Ref. 28!; f is the ratio of the length of the A-block relative to the
whole polymer.

TABLE I. Parameters describing the position of the phase transition lines in
the mean-field diblock copolymer phase diagram, appearing in Eq. ~10!.

D-fcc fcc-bcc bcc-H1 H1-G G-L
a

a 1.0860.03 1.1060.06 0.5560.1 22.560.3 1.560.3
b 0.9560.01 0.9660.01 1.2060.02 2.760.06 2.4160.05

8716 J. Chem. Phys., Vol. 108, No. 20, 22 May 1998 R. D. Groot and T. J. Madden

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
131.113.74.27 On: Sat, 14 Dec 2013 14:24:45

Initial state
@ 50 × τDPD

Equilibrium state
@ 2,000 × τDPD
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【練習3】
• data.A4B4.Nch50 （ρ = 3.0）を読み込み、DPD シミュレ
ーションを行う。A セグメント（atom-type = 1）と B セグ
メント（atom-type = 2）をそれぞれ分けて dump する。

T = 1.0, a11 = a22 = 25, a12 = 45, γ = 6, rc = 1.0 と設定。

A4B4 ポリマーのバネは、bond_style harmonic を設定：

➡ bond_coeff 1 80 0.86　# 数値は、bond-ID, Ksp, req を表す。

同じ atom-ID の粒子をグループ化、それを dump する例：

➡ group Ax type 1　# atom-type = 1 に Ax という group-ID を設定

➡ dump 1 Ax xyz dump.Ax.xyz　# group-ID = Ax の粒子のみ xyz 形式出力

• 先ほどと同様にして、VMD で相分離の様子を観る。
例えば、dump.{A4, B4}.xyz を分けて読み込ませれば色分け可能。
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【練習3】の入力スクリプト
###
# Section (A)
units lj
dimension 3
boundary p p p
atom_style bond

###
# Section (B)
read_data data.A4B4.Nch50
group Ax type 1
group By type 2

pair_style dpd 1.0 1.0 13459
communicate single vel yes
bond_style harmonic

###
# Section (C)
pair_coeff 1 1 25 6.0 1.0
pair_coeff 1 2 45 6.0 1.0
pair_coeff 2 2 25 6.0 1.0
bond_coeff 1 80.0 0.86

neighbor 0.5 bin
neigh_modify delay 1 every 1
velocity all create 1.0 29308 dist gaussian
timestep 0.02
run_style verlet
fix 1 all nve

###
# Section (D)
dump 1 Ax xyz 10 dump.A4.xyz
dump_modify 1 sort id
dump 2 By xyz 10 dump.B4.xyz
dump_modify 2 sort id

thermo 1000
thermo_style custom step cpu temp
restart 5000 restart.A4B4.Nch50
run 5000

Input Data for DPD

400 atoms
350 bonds
2 atom types
1 bond types

...（略）...

Masses

1  1.00000
2  1.00000

Atoms

1 1 1  -0.063 -1.89 1.49 0 0 0
2 1 1   0.058 1.87 0.664 0 -1 0
...（略）...

5 1 2 1.25 -1.66 -0.125 0 0 0
6 1 2 1.63 -0.76 -0.314 0 0 0
...（略）...

Bonds  

1 1 2 1
2 1 3 2
...（略）...

5 1 6 5
...（略）...
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【練習3】の結果

t = 100×τDPDt = 0
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(4) 高分子から離れて；
1成分ガラス系
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1成分ガラス系
• V. V. Hoang & T. Odagaki: Physica B 403 (2008) 3910.　

1成分ガラス（金属ガラス）のモデル系として提案。

ポテンシャルは、係数が若干異なる LJ ポテンシャルと Gauss 型ポテ
ンシャルから成る2重底。
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デフォルトの LJ と少し違う
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LJG ポテンシャルを使うには...①
• LJG ポテンシャル = LJ + Gauss 型

LAMMPS の LJ ：pair_lj_cut.{cpp, h} ⇒

Gauss 型：pair_gauss_cut.{cpp, h}  ⇒

➡ pair_coeff の入力パラメターを適切に設定し、両者を足せばれ
ば、LJG ポテンシャルにできる。

2つの pair_style を組み合わせる方法：pair_style hybrid/overlay

where H determines together with the standard deviation sigma_h the peak height of the Gaussian function, and
r_mh the peak position. Examples of the use of the Gaussian potentials include implicit solvent simulations of salt
ions (Lenart)  and of surfactants (Jusufi) . In these instances the Gaussian potential mimics the hydration barrier
between a pair of particles. The hydration barrier is located at r_mh and has a width of sigma_h. The prefactor
determines the hight of the potential barrier.

The following coefficients must be defined for each pair of atom types via the pair_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

H (energy * distance units)• 
r_mh (distance units)• 
sigma_h (distance units)• 

The global cutoff (r_c)  specified in the pair_style command is used.

Styles with a cuda , gpu, omp, or opt  suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round- off and precision issues.

These accelerated styles are part of the U SER - C U D A , GP U , U SER - O M P  and O P T packages, respectively. They
are only enabled if LA M M P S was built with those packages. See the M aking LA M M P S section for more info.

Y ou can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
" - suffix command- line switch7 _Section_start.html# start_6  when you invoke LA M M P S, or you can use the suffix
command in your input script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Mixing, shift, table, tail correction, restart, rRESPA info:

These pair style do not support mixing. Thus, coefficients for all I,J pairs must be specified explicitly.

The ga us s  style does not support the pair_modify shift option. There is no effect due to the Gaussian well beyond
the cutoff;  hence reasonable cutoffs need to be specified.

The ga us s / cut  style supports the pair_modify shift option for the energy of the Gauss- potential portion of the pair
interaction.

The pair_modify table and tail options are not relevant for this pair style.

This pair style does not support the pair_modify table option, since a tabulation capability does not exist for this
potential.

This pair style writes its information to binary restart files, so pair_style and pair_coeff commands do not need to
be specified in an input script that reads a restart file.

812

Rc is the cutoff.

Style lj/cut/coul/cut adds a Coulombic pairwise interaction given by

where C is an energy-conversion constant, Qi and Qj are the charges on the 2 atoms, and epsilon is the dielectric
constant which can be set by the dielectric command. If one cutoff is specified in the pair_style command, it is
used for both the LJ and Coulombic terms. If two cutoffs are specified, they are used as cutoffs for the LJ and
Coulombic terms respectively.

Style lj/cut/coul/debye adds an additional exp() damping factor to the Coulombic term, given by

where kappa is the Debye length. This potential is another way to mimic the screening effect of a polar solvent.

Style lj/cut/coul/long computes the same Coulombic interactions as style lj/cut/coul/cut except that an additional
damping factor is applied to the Coulombic term so it can be used in conjunction with the kspace_style command
and its ewald or pppm option. The Coulombic cutoff specified for this style means that pairwise interactions
within this distance are computed directly; interactions outside that distance are computed in reciprocal space.

Style lj/cut/coul/long/tip4p implements the TIP4P water model of (Jorgensen), which introduces a massless site
located a short distance away from the oxygen atom along the bisector of the HOH angle. The atomic types of the
oxygen and hydrogen atoms, the bond and angle types for OH and HOH interactions, and the distance to the
massless charge site are specified as pair_style arguments.

IMPORTANT NOTE: For each TIP4P water molecule in your system, the atom IDs for the O and 2 H atoms
must be consecutive, with the O atom first. This is to enable LAMMPS to "find" the 2 H atoms associated with
each O atom. For example, if the atom ID of an O atom in a TIP4P water molecule is 500, then its 2 H atoms must
have IDs 501 and 502.

See the howto section for more information on how to use the TIP4P pair style.

The following coefficients must be defined for each pair of atoms types via the pair_coeff command as in the
examples above, or in the data file or restart files read by the read_data or read_restart commands, or by mixing as
described below:

843

pair_style hybrid/overlay ljg/cut 2.5 gauss/cut 2.5
pair_coeff 1 1 lj/cut 1.0 0.890898718 2.5
pair_coeff 1 1 gauss/cut -0.53173615527166 1.47 0.14142135623731

H,               rmh,            σh

★ 但し、hybrid/overlay の情報は、restart ファイルに書き
込まれないので、毎回入力スクリプトに書く必要がある。
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★方針； pair_coeff 1 1 ε σ H rmin σh rc と1つで記述したい：

1. pair_lj_cut.{h, cpp} を雛形として、コピー pair_ljg_cut.{h, cpp} を用意。

2. 元のポテンシャルの名前がついている箇所を新しい名前に修正。

3. ソースプログラムの global 内部変数を増やす。

➡ ε, σ, H, rmin, σh, rc に対応する変数をソースプログラム中に（無ければ）加える。

4. pair_coeff コマンドの引数 arg の数を増やす（この例では、8 個必要）。

➡ cpp ファイル中で、読み込める arg の数を増やし、変数と arg を対応さ
せる。

5. 力の計算部分を自分用に書き換え、読み込み・書き込み部分も編集。

LJG ポテンシャルを使うには...②

pair_style ljg/cut rc

pair_coeff 1 1 ε σ H rmin σh rc
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2. 元のポテンシャルの名前がついている箇所を新しい名前に修正

pair_ljg_cut.h：

➡ LJCut --> LJGCut
➡ LMP_PAIR_LJ_CUT_H --> LMP_PAIR_LJG_CUT_H
➡ PairStyle(lj/cut, ...) --> PairStyle(ljg/cut, ...)　
pair_ljg_cut.cpp での書き換え：

➡ LJCut --> LJGCut
➡ pair_lj_cut.h --> pair_ljg_cut.h
➡ respa_enable = 1 --> respa_enable = 0

LJG ポテンシャルを使うには...②

ljg/cut が pair_style 名になる。

RESPA 法は使わないとする。
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LJG ポテンシャルを使うには...②
3. ソースプログラムの global 内部変数を増やす。

pair_ljg_cut.h
protected:
  double cut_global;
  double **cut;
  double **epsilon,**sigma;
  double **lj1,**lj2,**lj3,**lj4,**offset;
  double *cut_respa;

 protected:
  double cut_global;
  double **cut;
  double **epsilon,**sigma;
  double **lj1,**lj2,**lj3,**lj4,**offset;
  double *cut_respa;
  double **hgauss,**sigmah,**rmh;
  double **pgauss;

pair_ljg_cut.cpp
    memory->destroy(cut);
    memory->destroy(epsilon);
    memory->destroy(sigma);
    memory->destroy(lj1);
    memory->destroy(lj2);
    memory->destroy(lj3);
    memory->destroy(lj4);
    memory->destroy(offset);

    memory->destroy(cut);
    memory->destroy(epsilon);
    memory->destroy(sigma);
    memory->destroy(lj1);
    memory->destroy(lj2);
    memory->destroy(lj3);
    memory->destroy(lj4);
    memory->destroy(hgauss);
    memory->destroy(sigmah);
    memory->destroy(rmh);
    memory->destroy(pgauss);
    memory->destroy(offset);

  memory->create(cut,n+1,n+1,"pair:cut");
  memory->create(epsilon,n+1,n+1,"pair:epsilon");
  memory->create(sigma,n+1,n+1,"pair:sigma");
  memory->create(lj1,n+1,n+1,"pair:lj1");
  memory->create(lj2,n+1,n+1,"pair:lj2");
  memory->create(lj3,n+1,n+1,"pair:lj3");
  memory->create(lj4,n+1,n+1,"pair:lj4");
  memory->create(offset,n+1,n+1,"pair:offset");

  memory->create(cut,n+1,n+1,"pair:cut");
  memory->create(epsilon,n+1,n+1,"pair:epsilon");
  memory->create(sigma,n+1,n+1,"pair:sigma");
  memory->create(lj1,n+1,n+1,"pair:lj1");
  memory->create(lj2,n+1,n+1,"pair:lj2");
  memory->create(lj3,n+1,n+1,"pair:lj3");
  memory->create(lj4,n+1,n+1,"pair:lj4");
  memory->create(hgauss,n+1,n+1,"pair:hgauss");
  memory->create(sigmah,n+1,n+1,"pair:sigmah");
  memory->create(rmh,n+1,n+1,"pair:rmh");
  memory->create(pgauss,n+1,n+1,"pair:pgauss");
  memory->create(offset,n+1,n+1,"pair:offset");
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LJG ポテンシャルを使うには...②
4. pair_coeff コマンドの引数 arg の数を増やす。

pair_ljg_cut.cpp
void PairLJGCut::coeff(int narg, char **arg)
{
  if (narg < 4 || narg > 5)
    error->all(FLERR,"Incorrect args for pair coefficients");
  if (!allocated) allocate();
  int ilo,ihi,jlo,jhi;
  force->bounds(arg[0],atom->ntypes,ilo,ihi);
  force->bounds(arg[1],atom->ntypes,jlo,jhi);
  double epsilon_one = force->numeric(FLERR,arg[2]);
  double sigma_one = force->numeric(FLERR,arg[3]);
  double cut_one = cut_global;
  if (narg == 5) cut_one = force->numeric(FLERR,arg[4]);
  int count = 0;
  for (int i = ilo; i <= ihi; i++) {
    for (int j = MAX(jlo,i); j <= jhi; j++) {
      epsilon[i][j] = epsilon_one;
      sigma[i][j] = sigma_one;
      cut[i][j] = cut_one;
      setflag[i][j] = 1;
      count++;
    }
  ...
}

void PairLJGCut::coeff(int narg, char **arg)
{
  if (narg < 7 || narg > 8)
    error->all(FLERR,"Incorrect args for pair coefficients");
  if (!allocated) allocate();
  int ilo,ihi,jlo,jhi;
  force->bounds(arg[0],atom->ntypes,ilo,ihi);
  force->bounds(arg[1],atom->ntypes,jlo,jhi);
  double epsilon_one = force->numeric(FLERR,arg[2]);
  double sigma_one = force->numeric(FLERR,arg[3]);
  double hgauss_one = force->numeric(FLERR,arg[4]);
  double rmh_one = force->numeric(FLERR,arg[5]);
  double sigmah_one = force->numeric(FLERR,arg[6]);
  double cut_one = cut_global;
  if (narg == 8) cut_one = force->numeric(FLERR,arg[7]);
  int count = 0;
  for (int i = ilo; i <= ihi; i++) {
    for (int j = MAX(jlo,i); j <= jhi; j++) {
      epsilon[i][j] = epsilon_one;
      sigma[i][j] = sigma_one;
      hgauss[i][j] = hgauss_one;
      sigmah[i][j] = sigmah_one;
      rmh[i][j] = rmh_one;
      cut[i][j] = cut_one;
      setflag[i][j] = 1;
      count++;
    }
  ...
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LJG ポテンシャルを使うには...②
5. 力の計算部分の書き換え（pair_ljg_cut.cpp）

void PairLJGCut::compute(int eflag, int vflag)
  ...
      if (rsq < cutsq[itype][jtype]) {
        /* LJ term */
        r2inv = 1.0/rsq;
        r6inv = r2inv*r2inv*r2inv;
        forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
        fpair = factor_lj*forcelj*r2inv;
        /* Add Gauss term */
        r = sqrt(rsq);
        rexp = (r-rmh[itype][jtype])/sigmah[itype][jtype];
        ugauss = pgauss[itype][jtype]*exp(-0.5*rexp*rexp);
        fpair += factor_lj*rexp/r*ugauss/sigmah[itype][jtype];
        f[i][0] += delx*fpair;
        f[i][1] += dely*fpair;
        f[i][2] += delz*fpair;
        if (newton_pair || j < nlocal) {
          f[j][0] -= delx*fpair;
          f[j][1] -= dely*fpair;
          f[j][2] -= delz*fpair;
        }
        ...
        if (eflag) {
          evdwl = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]) + ugauss -
            offset[itype][jtype];
          evdwl *= factor_lj;
        }
        ...
      }

void PairLJGCut::compute(int eflag, int vflag)
  ...
      if (rsq < cutsq[itype][jtype]) {
        /* LJ term */
        r2inv = 1.0/rsq;
        r6inv = r2inv*r2inv*r2inv;
        forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
        fpair = factor_lj*forcelj*r2inv;
        f[i][0] += delx*fpair;
        f[i][1] += dely*fpair;
        f[i][2] += delz*fpair;
        if (newton_pair || j < nlocal) {
          f[j][0] -= delx*fpair;
          f[j][1] -= dely*fpair;
          f[j][2] -= delz*fpair;
        }
        ...
        if (eflag) {
          evdwl = r6inv*(lj3[itype][jtype]*r6inv-lj4[itype][jtype]) -
            offset[itype][jtype];
          evdwl *= factor_lj;
        }
      ...
      }

＊ void PairLJG::compute(int eflag, int vflag) も同様なので略。
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double PairLJGCut::init_one(int i, int j)
{
  ...
  pgauss[i][j] = hgauss[i][j] / sqrt(MY_2PI) / sigmah[i][j];
  /*----- Default LJ prefactors -----
  lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j],12.0);
  lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
  lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],12.0);
  lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
  */
  /*@@@@@ Modified LJ prefactors for 1-component glass @@@@@*/
  lj1[i][j] = 12.0 * epsilon[i][j] * pow(sigma[i][j],12.0);
  lj2[i][j] = 12.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
  lj3[i][j] = epsilon[i][j] * pow(sigma[i][j],12.0);
  lj4[i][j] = 2.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
  ...
  lj1[j][i] = lj1[i][j];
  lj2[j][i] = lj2[i][j];
  lj3[j][i] = lj3[i][j];
  lj4[j][i] = lj4[i][j];
  hgauss[j][i] = hgauss[i][j];
  sigmah[j][i] = sigmah[i][j];
  rmh[j][i] = rmh[i][j];
  pgauss[j][i] = pgauss[i][j];
  offset[j][i] = offset[i][j];
  cut[j][i] = cut[i][j];
  ...
    /*----- Default LJ -----
    etail_ij = 8.0*MY_PI*all[0]*all[1]*epsilon[i][j] *
      sig6 * (sig6 - 3.0*rc6) / (9.0*rc9);
    ptail_ij = 16.0*MY_PI*all[0]*all[1]*epsilon[i][j] *
      sig6 * (2.0*sig6 - 3.0*rc6) / (9.0*rc9);
    */
    /*@@@@@ Modified LJ @@@@@*/
    etail_ij = 2.0*MY_PI*all[0]*all[1]*epsilon[i][j] *
      sig6 * (sig6 - 6.0*rc6) / (9.0*rc9);
    ptail_ij = 8.0*MY_PI*all[0]*all[1]*epsilon[i][j] *
      sig6 * (sig6 - 3.0*rc6) / (9.0*rc9);
  ...
}

double PairLJGCut::init_one(int i, int j)
{
  ...
  lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j],12.0);
  lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
  lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],12.0);
  lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j],6.0);
  ...
  lj1[j][i] = lj1[i][j];
  lj2[j][i] = lj2[i][j];
  lj3[j][i] = lj3[i][j];
  lj4[j][i] = lj4[i][j];
  offset[j][i] = offset[i][j];
  cut[j][i] = cut[i][j];
  ...
    etail_ij = 8.0*MY_PI*all[0]*all[1]*epsilon[i][j] *
      sig6 * (sig6 - 3.0*rc6) / (9.0*rc9);
    ptail_ij = 16.0*MY_PI*all[0]*all[1]*epsilon[i][j] *
      sig6 * (2.0*sig6 - 3.0*rc6) / (9.0*rc9);
  ...
}
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LJG ポテンシャルを使うには...②
5. 読み込み・書き込み部分（pair_ljg_cut.cpp）

void PairLJGCut::write_restart(FILE *fp)
{
  ...
      if (setflag[i][j]) {
        fwrite(&epsilon[i][j],sizeof(double),1,fp);
        fwrite(&sigma[i][j],sizeof(double),1,fp);
        fwrite(&cut[i][j],sizeof(double),1,fp);
    ...
}

void PairLJGCut::read_restart(FILE *fp)
{
  ...
        if (me == 0) {
          fread(&epsilon[i][j],sizeof(double),1,fp);
          fread(&sigma[i][j],sizeof(double),1,fp);
          fread(&cut[i][j],sizeof(double),1,fp);
        }
        MPI_Bcast(&epsilon[i][j],1,MPI_DOUBLE,0,world);
        MPI_Bcast(&sigma[i][j],1,MPI_DOUBLE,0,world);
        MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
      ...
}

void PairLJGCut::write_restart(FILE *fp)
{
  ...
      if (setflag[i][j]) {
        fwrite(&epsilon[i][j],sizeof(double),1,fp);
        fwrite(&sigma[i][j],sizeof(double),1,fp);
        fwrite(&hgauss[i][j],sizeof(double),1,fp);
        fwrite(&rmh[i][j],sizeof(double),1,fp);
        fwrite(&sigmah[i][j],sizeof(double),1,fp);
        fwrite(&cut[i][j],sizeof(double),1,fp);
    ...
}

void PairLJGCut::read_restart(FILE *fp)
{
  ...
        if (me == 0) {
          fread(&epsilon[i][j],sizeof(double),1,fp);
          fread(&sigma[i][j],sizeof(double),1,fp);
          fread(&hgauss[i][j],sizeof(double),1,fp);
          fread(&rmh[i][j],sizeof(double),1,fp);
          fread(&sigmah[i][j],sizeof(double),1,fp);
          fread(&cut[i][j],sizeof(double),1,fp);
        }
        MPI_Bcast(&epsilon[i][j],1,MPI_DOUBLE,0,world);
        MPI_Bcast(&sigma[i][j],1,MPI_DOUBLE,0,world);
        MPI_Bcast(&hgauss[i][j],1,MPI_DOUBLE,0,world);
        MPI_Bcast(&rmh[i][j],1,MPI_DOUBLE,0,world);
        MPI_Bcast(&sigmah[i][j],1,MPI_DOUBLE,0,world);
        MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
      ...
}
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• make の際、pair_＊ は自動的にコンパイルされるので、用

意した pair_ljg_cut.{cpp, h} を LAMMPS の /src にもって
いき、再コンパイル（make）する。

• 入力スクリプトでのコマンド：

LJG ポテンシャルを使うには...②

pair_style ljg/cut 2.5
pair_coeff 1 1 1.0 1.0 -0.5317... 1.47 0.1414... 2.5

ε    σ         H         rmin          σh        rc

LJG のポテンシャル：

用意した pair_style：
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【練習4】
• 用意した restart.LJG.N256（数密度：0.80）を読み、NVT 

シミュレーション（T = 2.5 の Langevin 熱浴）を行う。 

pair_style ljg/cut を使う。また、動径分布関数を計算する。
restart.LJG.N256：T = 2.5 で平衡化させてあります。

動径分布関数を計算するコマンド例：

➡ compute myRDF all rdf 100
fix 3 all ave/time 100 1 200 c_myRDF file rdf.dat &
mode vector ave running　

• Langevin 熱浴を使って、温度を T = 2.5 から 1.5, 1.0 まで
下げ、各温度で動径分布関数を計算してその温度変化をみる。
温度は fix langevin コマンドのパラメター Tstart, Tend により調整可能。
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【練習4】の入力スクリプト
###
# Section (C)
# Use "ljg/cut"
pair_style ljg/cut 2.5
pair_coeff 1 1 1.0 1.0 -0.53173615527166 1.47 0.14142135623731 2.5
# Use "hybrid"
#pair_style hybrid/overlay lj/cut 2.5 gauss/cut 2.5
#pair_coeff 1 1 lj/cut 1.0 0.890898718 2.5
#pair_coeff 1 1 gauss/cut -0.53173615527166 1.47 0.14142135623731

...
fix 1  all nve
fix 2 all langevin 2.5 1.5 2.0 2943
....
run 10000

###
# Section (C)-(D)
unfix 2
fix 3 all langevin 1.5 1.5 2.0 30810
run 10000

compute myRDF all rdf 100
fix 4 all ave/time 100 1 200 c_myRDF file rdf.dat mode vector ave running
run 10000

10000 step かけて、冷却；T = 2.5 → 1.5

unfix（対応するfix コマンドを消去）してから、

冷却後の T を固定して Langevin 熱浴を。
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【練習4】の結果
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program ana
  implicit none
  integer, parameter :: nmax=200
  real*8  x(nmax), y(nmax), z(nmax)
  real*8  xlo, xhi, ylo, yhi, zlo, zhi, time
  real*8  xtmp, ytmp, ztmp
  integer natoms, itmp, loop, i
  real*8  Re2, Re2tmp, Rg2, Rg2tmp, comx, comy, comz
  Re2 = 0.d0
  Rg2 = 0.d0
  !/////
  ! Read dump file
!!  open(20, file='dump.polymer')
  open(20, file='dump.N200')
  open(21, file='time_Re2_Rg2.dat')
  loop = 0
  do
    read(20, *, end=10000)
    loop = loop + 1
    read(20, *) time
    read(20, *)
    read(20, *) natoms
    read(20, *)
    read(20, *) xlo, xhi
    read(20, *) ylo, yhi
    read(20, *) zlo, zhi
    read(20, *)
    do i=1, natoms
      read(20, *) itmp, xtmp, ytmp, ztmp
      x(itmp) = xtmp
      y(itmp) = ytmp
      z(itmp) = ztmp
    enddo

    !---
    ! Calc. of Re*Re
    Re2tmp = 0.d0
    Re2tmp = Re2tmp + ( x(1) - x(natoms) )*( x(1) - x(natoms) )
    Re2tmp = Re2tmp + ( y(1) - y(natoms) )*( y(1) - y(natoms) )
    Re2tmp = Re2tmp + ( z(1) - z(natoms) )*( z(1) - z(natoms) )
    Re2 = Re2 + Re2tmp
    !---
    ! Calc. of Rg*Rg
    comx = sum( x(1:natoms) )/dble(natoms)
    comy = sum( y(1:natoms) )/dble(natoms)
    comz = sum( z(1:natoms) )/dble(natoms)
    Rg2tmp = 0.d0
    do i=1, natoms
      Rg2tmp = Rg2tmp + ( x(i) - comx )*( x(i) - comx )
      Rg2tmp = Rg2tmp + ( y(i) - comy )*( y(i) - comy )
      Rg2tmp = Rg2tmp + ( z(i) - comz )*( z(i) - comz )
    enddo
    Rg2 = Rg2 + Rg2tmp/dble(natoms)
    !---
    ! Output instantaneous data
    write(21, '(3e12.5)') time, Re2tmp, Rg2tmp/dble(natoms)
  enddo
10000 CONTINUE
  close(20)
  close(21)
  !/////
  ! Average
  Re2 = Re2/dble(loop)
  Rg2 = Rg2/dble(loop)
  !/////
  ! Output average value
  write(*,*) " # of samples, # of atoms, Re2, Rg2"
  write(*,'(2i8,2e12.4)') loop, natoms, Re2, Rg2
end program ana

dump の解析プログラムの例

読込みループ ⇒ 各読込みで計算
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