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Nacre causes the shining beauty of pearl due to its remarkable layered structure, which is also strong. We
reconsider a simplified layered model of nacre proposed previously �Okumura and de Gennes, Eur. Phys. J. E
4, 121 �2001�� and obtain an analytical solution to a fundamental crack problem. The result asserts that the
fracture toughness is enhanced due to a large displacement around the crack tip �even if the crack-tip stress is
not reduced�. The derivation offers ideas for solving a number of boundary problems for partial differential
equations important in many fields.
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Nacre is not only beautiful but also strong. A prominent
feature of this substance is a layered structure at submi-
crometer scale. This structure is the origin of the shining
beauty of pearl, and it is known to possess a remarkable
toughness �1,2� which has been studied over many years
�3–14�.

One important factor governing the strength of a material
is the stress concentration around ubiquitous small cracks in
materials: around a crack tip the stress is enhanced, which
breaks the bonds to initiate failure. One can feel this on the
macroscopic level, just with a piece of paper: the sheet is
actually rather strong if one tries to break it by applying
tensile force with the hands, but it easily breaks if one intro-
duces a cut �i.e., crack� by a sharp knife in the middle in the
direction perpendicular to the tensile direction.

Among many ideas on the toughening mechanism of na-
cre, the possibility of reduction of such stress enhancement
around the tip is suggested �5� by use of a simplified elastic
model mimicking the structure and by consideration of a
semi-infinite crack in the middle of an infinitely long plate of
width 2L �Fig. 1�a��, which allows an analytical solution.
However, the analytical solution to the more basic crack
problem of a small finite line crack in a large plate has not
been available �Fig. 1�b��. In this study, we solve this finite-
crack problem and show that, even if the crack-tip stress is
not reduced, a strong displacement around the crack tip alone
can increase the fracture toughness. The fundamental result
obtained here is useful not only to understand the physics of
strength of composite materials and to develop strong struc-
tured materials in industry, but also to offer ideas to solve the
two-dimensional boundary problem for partial differential
equations such as the Laplace equation important in many
fields.

In the model, hard layers �thickness dh and Young modu-
lus Eh� are glued together by soft layers �thicknesses ds and
Young modulus Es� as in Fig. 1 where the period of the
stripe, d, is defined as d=ds+dh. We introduce small param-
eters �E and �d:

Es = �EEh, ds = �ddh. �1�

We require the following properties, which are important
characteristics of our model:

� � �Ed/ds � �E/�d � 1. �2�

Nacre may be modeled typically by �E�1 /5000 and �d
�1 /100, where ��1 /50.

In our previous paper �5�, we showed that, for a line crack
running in the x direction under the plane strain condition
�thick plate�, as in Figs. 1�a� and 1�b�, the elastic energy per
unit volume of the model can be reduced to

f =
Eh

2�1 − �2�
� �uy

�y
�2

+
E0

4�1 + ��
� �uy

�x
�2

�3�

with the formal relations �y 	
��x and ux	
�uy, if we keep
only the leading-order contributions �	�Eh��xuy�2�. Here, ui
and � are the displacement field and Poisson’s ratio, respec-
tively. The dominant component of stress derived from �ij
=�f /�eij is �yy 	�1/2 while �xx	�3/2 and �xy 	�.

At equilibrium, by minimizing the volume integral over x
and y of Eq. �3� with respect to uy, we obtain the following
reduced Laplace equation for the dominant displacement
field uy:

� �2

�x̂2 +
�2

�y2�uy = 0, �4�

where a reduced x coordinate has been introduced:

x̂ � x/
� with � = ��1 − ��/2. �5�

As announced, we consider a finite line crack of length 2a
in Fig. 1�b�, for which the following boundary conditions are
appropriate in the upper half plane �y�0�:

uy = �u0 at y = L ,

0 for y = 0, x � − a or x � a ,
�

�uy

�y
= 0 for y = 0, − a � x � a . �6�

Note that the original field uy on the whole xy plane has a
discontinuous jump at the crack surface �−a�x�a, y=0�: uy
is positive for y=0+ but negative for y=0−.

To overcome the discontinuous jump at the crack surface,
we consider an auxiliary field on the whole xy plane defined
as
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u � �uy , y � 0,

− uy , y � 0.
� �7�

By introducing this auxiliary field u, which is always posi-
tive and has no discontinuous jump at the crack surface, the
original Cauchy boundary problem �both uy and its deriva-
tive appear in boundary conditions as in Eq. �6�� is changed
into a simpler Dirichlet boundary problem �uy is always
given at the boundary�:

u = �u0 at y = 	 L ,

0 for y = 0, x � − a and x � a .
� �8�

A solution of the Laplace equation on the �x̂ ,y� plane, u,
satisfying Eq. �8�, can be obtained by finding the conformal
mapping from z= x̂+ iy to w= f�z� where Im w meets require-
ments specified by Eq. �8�; we obtain

uy = Im w for y � 0, �9�

because Im w of an analytic function w satisfies the Laplace
equation. This implies, for y�0,

�yy = E Re
dw

dz
with E �

Eh

1 − �2 . �10�

The desired analytic function w= f�z� can be found by intro-
ducing another complex plane 
 in order to consider a quasi-
Schwarz-Christoffel transformation from 
=�+ i� to z= x̂
+ iy where

dz

d

= k


2 − 1

�
 + m��
 − p��
 − q�
, �11�

with positive real numbers m, p, and q.

This transformation is examined in some detail to make
the subsequent arguments understandable. Let us move 

from −
+ i0+ to +
+ i0+ on the real axis of 
 �in the upper
plane� passing through the intermediate points 
=−1,
−m , p ,1 ,q �see Fig. 2�b�� and define the range of the princi-
pal value of the argument arg�Z� of a complex variable Z to
be −��arg�Z���: if Z is on the real axis, with Re�Z� posi-
tive, arg�Z�=0, but, with Re�Z� negative, arg�Z�=� and −�
when Im�Z� is 0+ and −0+, respectively. Note that under this
convention, the relation log�1 /Z�=−logZ is correct, but, in
general, the relation

log�z1z2� = log�z1� + log�z2� �12�

is correct only when

− � � arg�z1�,arg�z1�,arg�z1z2� � � . �13�

Note that “log” stands for the natural logarithmic function. If
the sum arg�z1�+arg�z1� is not in the above range, we have to
add on the right-hand side of Eq. �12� 2�i or −2�i so that the
imaginary part of both sides of Eq. �12� becomes equal. For
example, we obtain

log�− z1� = �i� + log�z1� , − � � arg�z1� � 0,

− i� + log�z1� , 0 � arg�z1� � � .
�

�14�

TABLE I. Arguments of complex variables for 
 on the real axis
with Im 
=0+.


�0 0�
� p p�
�q q�


arg�
� � 0 0 0

arg�
− p� � � 0 0

arg�q−
� 0 0 0 −�

arg�



�
− p��q−
�
�

0 −� 0 �

2 arg �

− p



�

0 2� 0 0

ds dh

x

y

2L

d

O O

2a

(a) (b)

FIG. 1. Layered structure with a semi-infinite �a� and a finite �b�
crack. In �a� and �b�, the origin O of the xy coordinate is placed at
the crack tip and at the middle point of the crack, respectively. DC’
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FIG. 2. Paths from A to G on the z �a� and w �c� planes corre-
sponding to the path from A to G on the 
 plane �b�. Real parts of
the points D, D�, F, F� in �a� and C, C�, F, F� in �c� are 
 and those
of A, C, C�, G in �a� and A, D, D�, G in �c� are −
.
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Let us go back to the above movement on the real axis in
the 
 plane in Fig. 2�b�, from A to G. During this movement,
for an increase in 
, Re�d
� is positive and Im�d
�=0+, i.e.,
arg�d
�=0, so that

arg�dz� = arg�dz� − arg�d
� = arg�dz/d
� �15�

=arg�k� + arg�
 + 1� − ¯ − arg�
 − q� . �16�

The first equality holds because of arg�d
�=0 and the third
follows from Eq. �11�. From Eq. �16�, we see that, for ex-
ample, when we pass 
=q from the left to the right,
arg�
−q� changes from � to 0, with the other terms in the
last line in Eq. �16� unchanged; arg�dz� is constant when 

approaches q from the left, is changed by � at 
=q, and is
constant again when 
 goes away from q: z could move on a
straight line �
�q� and jump to another straight line �

�q� with a rotation by the angle � at 
=q, with z following
the path E�→F→F�→G in Fig. 2�a�. Indeed, we can
choose unknowns �k ,m , p ,q plus an integration constant k��
in such a way that the movement of 
 �with Im 
=0+�, A
→B¯→G in Fig. 2�b� is mapped to the movement A
→¯→G in Fig. 2�a� on the z plane. For this purpose, we
integrate Eq. �11� and determine the unknowns by the fol-
lowing conditions: �I� z has to make specified jumps at pas-
sages C-C�, D-D�, and F-F� �e.g., at the passage F→F�, z
jumps from 
 to 
+ iL� and �II� z should be 	â when 

= 	1 where â�a /
�. From I and II, we find

z =
L

�
log

�q − p�

�
 − p��q − 
�

�17�

with

m = 0, p = tanh
�â

2L
� 1, q = coth

�â

2L
� 1. �18�

Indeed, we can easily confirm that the transformation
given in Eq. �17� satisfies the above required conditions.
From Table I, for example, at the passages C→C� �
=0� and
D→D� �
= p�,

Im z =
L

�
arg� 


�
 − p��q − 
�� �19�

jumps by the amount −L and L, respectively. At 
= 	1, the
right-hand side of Eq. �17� reduces to 	â by noting the
relation

1

q − p
= cosh

�â

2L
sinh

�â

2L
. �20�

Next we find a transformation 
↔w �appropriate for the
desired transformation z↔w�, not in the form of the
Schwarz-Christoffel transformation, by noting that, when 
 is
on the real axis �with Im 
=0+�, Im W=u1 for 
��0 while
Im W=u2 for 
��0, in a transformation 
↔W,

W�
0,u1,u2� = iu2 +
u1 − u2

�
log�
 − �0� . �21�

The boundary condition in Eq. �8� states that, along the
paths A→B→C and D�→E→F in Fig. 2�a�, u=Im w

should be zero while this should be u0 on the paths C�→D
and F�→G. This results in the following condition for the
transformation 
↔w �m=0�, from Fig. 2�b�: on the real axis
of 
 �with Im 
=0+�, Im w=0 for 
�−m and p�
�q while
Im w=u0 for −m�
� p and q�
. This condition is satisfied
for

w = W�0,0,u0� + W�p,0,− u0� + W�q,0,u0� . �22�

Indeed we can check this by Table II.
Equation �22� can be manipulated with the aid of Eq.

�12�:

w =
u0

L
z +

2u0

�
log


 − p



. �23�

Here, z is given by Eq. �17�. As a matter of fact, we can
confirm that w given in Eq. �23� as a function of 
 moves on
the path A to G in Fig. 2�c� as 
 goes along the path A–G in
Fig. 2�b�: we can check that Im w=0 at 
=1+ i0+ and that w
makes necessary jumps at intermediate points �e.g., at the
passage C to C� �
=0�, Im w jumps by the amount iu0�, with
the aid of Table I, by noting the relation

Im w =
u0

�

arg� 


�
 − p��q − 
�� + 2 arg� 
 − p



�� �24�

obtained from Eqs. �19� and �23�. Thus, Eq. �23� guarantees
the movement on the w plane from A to G along straight
lines with rotations by the angle � at C, D, and G �Fig. 2�c��
when 
 moves on the real axis from A to G �Fig. 2�b��, as can
be checked by using a relation similar to Eq. �16�. We stress
here that the transformation in Eq. �23� is not the Schwarz-
Christoffel transformation: the derivative of Eq. �23�,

dw

d

=

�
 − 
+��
 − 
−�

�
 − p��
 − q�

, �25�

with points 
	= p	 i
1− p2 located off the real axis.
Finally, we derive the transformation z↔w. From Eq.

�17�, we obtain


 = ��z� + ��z� �26�

�the reason we have selected the plus sign in front of ��z�
can be seen in Eq. �36� below�, where

2��z� � �p + q� − �q − p�e−�z/L, �27�

��z� � ���z�2 − 1�1/2. �28�

Equation �23� with Eqs. �26�–�28� completely defines the
desired transformation z↔w.

TABLE II. Imaginary part of functions for 
 on the real axis
with Im 
=0+.


�0 0�
� p p�
�q q�


Im W �0,0 ,u0� 0 u0 u0 u0

Im W �p ,0 ,−u0� 0 0 −u0 −u0

Im W �q ,0 ,u0� 0 0 0 u0

Im w 0 u0 0 u0
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From this Eq. �23�, the displacement field and stress field
are analytically obtained through Eqs. �9� and �10�:

uy =
u0

L
y +

2u0

�
arctan� Im�1 −

p

��z� + ��z��
Re�1 −

p

��z� + ��z��� , �29�

�yy = �0
1 + Re� p�p + q − 2��z��
��z����z� − p + ��z���� , �30�

where �0 is a measure of the remote stress,

�0 � Eu0/L . �31�

The crack shape and stress concentration around the crack
tip are examined by putting z= â− r̂+ i0+ in Eq. �29� and z
= â+ r̂+ i0+ in Eq. �30�, where r̂�r /
�, so that r represents
the distance from the crack tip. For small �, we have

��â + �� � 1 +
��p + q − 2�

2L
� , �32�

��â + �� � ���p + q − 2��/L�1/2, �33�

where

p + q − 2 = �q − p�e−�â/L � 0. �34�

Thus, at z= â− r̂+ i0+, we have

1

��z� + ��z�
= 1 − i���p + q − 2�r̂/L�1/2 �35�

and

uy =
2u0

�

p���p + q − 2�r̂/L�1/2

1 − p
= 2�u0
 r̂

�L
�36�

�the wrong sign in Eq. �26� would give the wrong sign for
this expression�. At z= â+ r̂+ i0+, we have

�yy � �0 Re� p�p + q − 2�
��z��1 − p� � = ��0
 L

�r̂
, �37�

where

� �
p
p + q − 2

1 − p
=

e�â/L − 1


e2�â/L − 1
. �38�

We consider the limit L� â, which includes the case L
�a, for which we have ��1. In this limit, for y=0+, the
displacement at x=a−r and the stress at x=a+r are given by

uy = 2�−1/4KL

r

E
, �yy = �1/4KL


r
with KL � �0


L/� .

�39�

The tip displacement is enhanced by a factor �−1/4 while the
tip stress concentration is reduced by a factor �1/4, compared
with a monolithic material of the same size with the same
crack.

We next consider the limit L� â, corresponding to an in-

finite plate as in the Griffith problem, where ��
�â /2L. In
this limit, for y=0+, the displacement at x=a−r and the
stress at x=a+r are given by

uy = �−1/22Ka

r

E
, �yy =

Ka


r
with Ka � �0


a/2. �40�

Tip displacement is enhanced by a larger factor �−1/2 while
the tip-stress singularity is the same as that of the pure ma-
terial of the same size with the same crack �see Eq. �39��.

As a matter of fact, most of the scaling structures in ex-
pressions obtained from the present analytical solution can
be reproducible from simple scaling arguments, which re-
quire a separate presentation �15�, where we show a useful
general formula on the fracture toughness. Here, the fracture
toughness is defined in a standard way �16� as the value of
the energy release rate, G, at the critical of failure where G is
given by G=−d� /da and � is the elastic potential energy
per unit width of the crack front. In the general formula, the
fracture toughness is enhanced by

� = ��u/����d/a0� , �41�

where �u, ��, and a0 are the tip-displacement enhancement
factor, the tip-stress reduction factor, and the typical size of
Griffith flaws in the hard sheets: the tip-displacement en-
hancement ��u�1� and the tip-stress reduction ����1� are
two independent origins of the fracture toughness. In the
above two different limits of L� â and L� â, we obtained
different sets of factors ��u ,���= ��−1/4 ,�1/4� and ��−1/2 ,1�,
respectively �see Eqs. �39� and �40��, so that the physical
origins of the toughening are different: in the limit L� â,
similar to the result in �5�, both enhancement of tip displace-
ment and reduction of tip-stress concentration contribute,
while only a stronger tip-displacement enhancement plays a
role in the limit L� â. However, the enhancement factor of
the fracture toughness � given in Eq. �41� is the same in the
two different limits of L� â and L� â :�=�−1/2�d /a0�. From
this robust universal relation, we could deduce the reason of
ubiquitousness of strong nanostructured soft-hard composites
in nature �15�.

The physical reasons for the above deformation enhance-
ment and reduction of the stress concentration due to the
layered structure can be understood �with the help of the
physical pictures obtained from the scaling arguments� �15�:
for example, in a discrete model where soft and hard layers
are treated as blocks �distinguishing stress and strain in two
different soft and hard phases on a scale smaller than d�,
displacements in soft layers are significant �this is partially
confirmed in simulation �17��, which contributes to the dis-
placement enhancement in the present continuum model ap-
plicable on scales larger than the block sizes. In conclusion,
we have analytically solved the finite-crack problem for a
layered structure mimicking nacre, i.e., a boundary problem
for the Laplace equation on a reduced plane �x̂ ,y�. This was
carried out by replacing a Cauchy problem for a singular
field uy with a Dirichlet problem for a regular auxiliary field
u and by finding an appropriate conformal mapping z↔w
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via another complex plane 
 where a non-Schwarz-
Christoffel transformation was involved. Technically, the
derivation will help in solving certain boundary problems in
many different fields. Physically, the result clarifies two ori-
gins of strength of the special layered structure of macro-
scopic size: �i� a reduced crack-tip stress and �ii� a strong

displacement around the crack tip. In particular, even without
�i�, due to �ii� alone, the fracture toughness can be increased
significantly.
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Japan.
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