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We revisit the standard elastic-plastic fracture theory developed by Hutchinson, Rice, and Rosengren
(HRR) and reproduce, by a simple scaling argument, the stress singularity around the crack tip derived by
HRR. From the singular behavior thus reconfirmed, we propose a general scaling relation which
guarantees an effect similar to the tip-blunting effect: the maximum stress at the crack tip in a structured
material can be reduced by increasing the structure size. This proposed relation is explicitly confirmed
by numerical calculations performed for a coarse-grained lattice model, and leads to general scaling
relations for fracture surface energy and to a possible reinforcement of cellular solids due to the pores.
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1. Introduction

A widespread strategy to fulfill the quest for stronger
materials is to exploit composite structures, from simple
foam to modern carbon nanotube composites,1) sometimes
mimicking natural strong materials2,3) such as nacre4,5) and
bone.6) In the case of cellular solids7) which include wood,
cork, plant parenchyma, stereom of sea cucumber, trabecular
bone, carbon and polymeric foams and porous materials,
theories based on the unit cell structure have been successful
to reveal that fracture mechanical properties can be well
understood as a function of the relative density (i.e., volume
fraction of solid in foam) in particular for hard cellular
solids;7,8) this is confirmed recently even for very soft foams
but with different scaling relations.9) Further progress has
been propelled through more inclusion of detailed structures
into theory such as imperfection and randomness, which
leads to computational modeling based on finite-element
method.10,11) Similar trend prevails in most of modern
theoretical treatments of high performance composites, for
example, nacre,12) bone,13) and carbon nanotube compo-
site.14) This spirit differentiates theories seeking results
specific to a certain material.

However, all of these composites have a feature in
common: at macroscopic level it follows a non-linear stress–
strain relation at least near critical of failure and this
macroscopic continuum view breaks down on a cut-off scale
due to internal inhomogeneous structures. Note that at large
strains most macroscopic stress–strain relations can be
approximated by a non-linear relation (e.g., a nonlinear
elastic model can describe a form of plasticity, known as
‘‘deformation plasticity’’, provided no unloading occurs15)).
In this paper, we examine what we can deduce from this
common feature with the expectation that the results thus
obtained can be universally applicable to various composites
or structured materials.

We focus in particular on the crack-tip stress where local
stress is maximally enhanced: strength of materials is
measured by the failure stress at which materials start to
break when extended; they begin to fail from a small flaw or

crack because the local stress at the crack tip is enhanced
from the remote stress.16) Reduction of such crack tip stress,
by minimizing size of flaws17) or by exploiting a laminar
structure,18) could be a way to reinforce materials. We could
reinforce materials also by embedding spherical voids (or
particles) in materials,19) because a sharp crack is stopped
when it meets such a cavity: it is well-known that the crack
tip is blunted by the void.15) However, in materials with
many voids or in structured materials, including cellular
solids, porous materials, foams and gels, the continuum view
breaks down on the scale of cell size. In such a situation,
precise scaling relations among the crack tip stress, the
failure stress and characteristic size of voids or of an internal
structure are unknown. Here, we derive simple and universal
relations among them in a typical elastic-plastic model20,21)

and confirm the relations in a grid model by numerical
calculations. The results lead to general scaling relations for
fracture energy and to a possible toughening mechanism of
cellular solids due to the voids.

This paper is organized as follows: (1) firstly, we develop
scaling arguments to propose some relations, which moti-
vated the present work, (2) secondly, we construct a lattice
model and show the results of numerical calculations to
check our proposals, and (3) finally, based on the relations
we derive scaling relations for fracture energy to conclude a
possible reinforcement mechanism for cellular solids.

2. Scaling Arguments

Relation between stress � and strain " in most materials at
large strains can be cast into the form,

� ¼ �"1=n ð1Þ

with fixed n: n ¼ 1 corresponds to linear elastic materials
and n > 1 to elastic-plastic materials for nearly yielded
regime. Throughout this article, we ignore numerical
coefficients and tensorial properties of stress and strain but
clarify scaling relations between characteristic sizes of
important physical quantities.

Note that the strain-stress relation in eq. (1) is nothing but
a simple nonlinear elastic model but can describe a form of
plasticity, known as ‘‘deformation plasticity’’, provided no
unloading occurs. Accordingly, we develop the following�E-mail: okumura@phys.ocha.ac.jp
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scaling arguments as if we were dealing with a nonlinear
elastic model: our discussions and conclusions below can be
regarded for a simple nonlinear material but can be useful
also for a certain form of elastic-plastic materials.

Consider an infinite plate of a material governed by
eq. (1) at large strains with a line crack of size a, under a
remote tensile stress �0 applied in the direction perpendic-
ular to the line crack, and examine the energy balance per
unit thickness of the plate at the critical of failure, following
the Griffith’s idea.17,22) The energy (per unit thickness)
required to create the crack of length a scales as �a. Here, �
is the fracture surface energy per unit area, which is often
dominated by a plastic contribution. A characteristic non-
linear elastic energy per unit volume scales as �0". Due to
the existence of the crack, nonlinear elastic energy should be
reduced in total. The amount of reduction scales as the
nonlinear elastic energy, localized in a volume of the order
of a2 (per unit thickness), because the only length scale
available in this problem is the crack length a. When this
energy gain �0"a

2 is balanced with the energy loss �a, we
obtain a generalized Griffith law:

�F � ð�n�=aÞ1=ðnþ1Þ ð2Þ

at the critical of failure. Here, �F is the failure stress, i.e., the
critical value of �0. Equation (2) reduces to the well-known
Griffith’s criteria for the linear-elastic fracture mechanics at
n ¼ 1.

Separately from the above argument, stress distribution
�ðrÞ in this material as a function of distance r from the
crack tip should be described by the following form �ðrÞ ¼
�0ða=rÞ� near the tip with an unknown exponent � because �
recovers to �0 at r � a, considering all the dimensional
quantities available for this expression. Now, we require
that �ðrÞ near the tip be independent of a at the critical of
failure, after replacing �0 by �F given in eq. (2), because
we are interested in the limit, r � a. This requirement
determines the exponent � to be 1=ðnþ 1Þ and leads to the
relation,

�ðrÞ=�0 � ða=rÞ1=ðnþ1Þ ðr � aÞ ð3Þ

This relation, reproduced by a simple scaling argument,
coincides with the HRR singularity.20,21)

This expression diverges at the tip (r � 0), which suggests
a cut off in real materials. Accordingly, in a material with
many voids or with an internal structure whose largest
characteristic size d, the maximum stress �M which appears
at the tip may scale as

�M=�0 ’ ða=dÞ1=ðnþ1Þ ðd � aÞ ð4Þ

because the continuum model breaks down on scales smaller
than d. This predicts how the maximum stress at the crack
tip is enhanced from the remote stress depending on the void
size d: the crack-tip stress gets reduced as the structure size
increases. This effect might remind us the well-known tip-
blunting effect.15)

3. Numerical Simulations

Equation (4) can be directly checked by numerical
calculations. In our simulation, a structure with voids or
with an internal structure is described by a two-dimensional
lattice model (Fig. 1) composed of N � N points, initially

arranged in a two dimensional square lattice, with each point
Xij connected to the four nearest neighbors XðsÞij ,

XðsÞij ¼

Xiþ1 j (s ¼ 1)

Xi jþ1 (s ¼ 2)

Xi�1 j (s ¼ 3)

Xi j�1 (s ¼ 4)

8>>><
>>>:

ð5Þ

with a nonlinear spring of natural length l. The four springs
attached to a point ði; jÞ provide force reflecting eq. (1)
whose � (x or y) component is given by

Fi; j;� ¼
XN
i; j¼1

X4

s¼1

kði; j; sÞðXðsÞi; j � Xi; j � lðsÞÞ1=n� ð6Þ

where

lðsÞ ¼

l; 0ð Þ (s ¼ 1)

0; lð Þ (s ¼ 2)

�l; 0ð Þ (s ¼ 3)

0;�lð Þ (s ¼ 4)

8>>><
>>>:

ð7Þ

The nonlinear spring constant kði; j; sÞ is set to a constant k
everywhere except at the boundary (i.e., i or/and j are either
1 or N).

A similar but different model composed of quasi linear
springs is discussed in23) where the exponent n in eq. (4) is
close to one but weakly dependent on the strain due to
a weak nonlinearity. In our model, compared with this
previous model, due to the absence of coupling between the
x and y components of Xi; j vectors, the inter-distance
between the adjacent points Xi; j in the x direction is always
fixed to d, which might seem to be an oversimplification but
has a strong advantage that the smallest length scale in x

direction, i.e., the cut-off length, is kept fixed; in the
previous model, since the inter-distance (i.e., the cut-off
length) can change in response to external force due to the
coupling, unwanted ambiguity on the definition of the cut-
off length scale was introduced, which makes the analysis
delicate.

To confirm eq. (4) we magnify the mesh size dm from l

to ml so that the new system is composed of N=m� N=m
points where the new system size Lm ¼ mlðN=m� 1Þ ’ Nl

is independent of m for large N. For convenience, we make
the bulk elastoplastic property also independent of m; this
would be accomplished intuitively and is checked explicitly

y

x0

(a) (b)

Fig. 1. The illustration of coarse-grained grid models with different mesh

sizes, with a crack in the middle, to be stretched in the y direction,

governed by eq. (1). Here, the crack size a and the system size L (when N

is large) are the same for both systems, but the mesh size is doubled in

(b). A thick spring in (b) is composed of four thin springs in (a) so that the

total numbers of thin springs in (a) and (b) are the same when N is large

(in order to have the same macroscopic property).
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below if we use the same ingredients to make systems of the
same size L so that we require that a spring in the new
system is constructed as m bundles of m serial connections
of the original spring: the total number of original spring
contained in the network become the same for the two
systems in the large N limit (see Fig. 1).

When a new spring thus composed is stretched by �x (i.e.,
each original spring by �x=m), the total force F applied at
the both ends is summed up to mkð�x=mÞ1=n: the new spring
constant is

km ¼ m1�1=nk ð8Þ

This states that two-dimensional stress defined as � � F=ml
(since a new spring supports an area ml) scales as � ¼
kmð"mlÞ1=n=ml for strain ", which is independent of m, i.e.,
� ¼ �"1=n with � ¼ kl1=ðn�1Þ. This argument confirms that
magnification of mesh size without changing the bulk
elastoplastic property is realized in this scheme. In addition,
if we imagine that the shape of original springs are a cylinder
of the same radius the volume fraction of spring (i.e., solid
fraction in foam) is always the same irrespective of m: this
clearly demonstrates that in cellular solids the bulk response
is unchanged if the relative density is fixed.

From this prescription of mesh magnification, we can
generalize eq. (6) into the form,

�ðmÞi; j;� ¼
1

2

XN
i; j¼1

X4

s¼1

�ði; j; sÞðXðsÞi; j � Xi; j � l
ðsÞÞ1=n� ð9Þ

where �ðmÞi; j;� ¼ FðmÞi; j;�=ml, �ði; j; sÞ ¼ kði; j; sÞl1=ðn�1Þ, X ¼
X=ml, and l

ðsÞ ¼ lðsÞ=l. Here, FðmÞi; j;� is defined by eq. (6)
with lðsÞ; k replaced by mlðsÞ; km, respectively.

A pseudo line crack is introduced into the network by
cutting na bonds in the middle (y ¼ 0), i.e., by setting
kði; j; sÞ to zero at corresponding points ( j ¼ N=2 for s ¼ 2

and j ¼ N=2þ 1 for s ¼ 4 for even N). Here, the crack
length a and the void size d are identified with ðna þ 1Þml
and ml, respectively.

The network with the crack thus introduced is stretched in
the y direction so that the strains at upper and lower ends,
initially located at y ¼ �L=2, are �", and the equilibrium
force distribution is obtained via numerical calculations by
solving a coupled equations of motions,

�
dXij �

dt
¼ FðmÞi; j;� ð10Þ

The dynamics can be relaxed to a unique equilibrium state,
after a sufficient time t. The damping constant � changes
only the dynamical process to reach the equilibrium state:
results obtained below are insensitive to �.

Numerical scheme explained above is performed for
various mesh size dm ¼ ml, crack size a, and remote strain
", at a given exponent n. We confirmed that calculated
force distribution at the relaxed states always shows the
maximum FM at the crack tip as expected. With use of
FM thus obtained, we calculate �M which (normalized by
�0 � �"1=n) are plotted as a function of a=d at n ¼ 1 and
" ¼ 1:5 in Fig. 2, where eq. (4) is confirmed for various a,
and d.

To obtain a precise exponent, we note two conditions
required for comparison of our simulation in a finite system
with eq. (4) derived in an infinite system: one for the system

size, L	 a, and the other for a line crack or for the scaling
behavior, a	 d: for L	 a we fix the system size L ¼ Nl to
a large size 400l (in all calculations, dm and a are less than 5l

and 40l, respectively), and for a	 d we used only first two
left points (m ¼ 1 and 2) for a given a to determine the slope
of the line fitting the data. The three slopes thus obtained by
using the data in Fig. 2 slightly depends on the crack size a

(but the differences are less than 0.5 per cent) and the slope
for a ¼ 20l gives a slope closest to the theoretical value,
�1=2; a ¼ 10l is the best for L	 a while a ¼ 40l is the best
for a	 d: a ¼ 20l is the best in total, which is the reason
why we use the crack size a ¼ 20l below to determine
exponents by simulation.

Exponents � in relation �M=�0 ’ ðd=aÞ�� for various n

in eq. (1) are extracted as the slope of each line in Fig. 3,
where from the above reason the first two left points in
each series in Fig. 3 are used to determine the slope; the
results are summarized in Table I, where the relation � ¼
1=ðnþ 1Þ holds for every pair; this again confirms eq. (4) for
various n.

 0

 0.5

 1

-2 -1.6 -1.2 -0.8 -0.4 0

lo
g(

σ
M

 / 
σ

0
)

log(d / a)

ε = 1.5, a = 10l
ε = 1.5, a = 20l
ε = 1.5, a = 40l

Fig. 2. Confirmation of eq. (4) at n ¼ 1 and " ¼ 1:5 for various a and d:

the maximum stress which appears in the network becomes smaller as the

mesh size gets larger. The solid line shows the slope �1=ðnþ 1Þ ¼ �1=2
expected in the limits, L	 a and a	 d.

 0

 0.5

 1

-2 -1.6 -1.2 -0.8 -0.4 0

lo
g(

σ
M

 / 
σ

0
)

log(d / a)

n = 1
n = 2
n = 3
n = 5

Fig. 3. Relation between �M=�0 and d=a for various n at " ¼ 1:5 and

a ¼ 20l. The solid lines fit the two leftmost points in each series.
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4. Discussion

We obtain important scaling relations from eqs. (2) and
(4), in the latter of which the maximum stress �M at the
critical of failure is identified with yield stress when plastic
deformation occurs at the tip. At this critical of failure
eq. (4) reads as

�F=�Y ’ ðd=aÞ1=ðnþ1Þ ðd � aÞ ð11Þ

Here, �Y is the yield stress, i.e., the maximum or tip stress
�M at the critical of failure, which is unique to a material in
question. From eqs. (2) and (11) we obtain

� � �nþ1
Y d=�n ð12Þ

Physical interpretation of this relation becomes transparent if
we rewrite this by introducing a yield strain "Y defined as
�Y � �"1=nY into the form

� � �Y� ð13Þ

with a displacement �

� � "Yd ð14Þ

Equation (13) implies that the fracture energy scales as the
work per unit area to deform a cell at the crack tip by
displacement � under the yield stress �Y, i.e., the work to
cause ‘‘plastic’’ deformation at the tip; � can be interpreted as
the crack-tip opening distance.15) When the yielded region is
smaller in scale than the structure size d where our Griffith-
type failure criteria is allowed probably due to the Irwin–
Orowan-type extension,24,25) we expect that � is independent
of d as opposed to the formal definition in eq. (14) because
plastic deformation is localized in the scale smaller than d:
criteria of the plastic failure is determined by the process
localized at the yielded region. As a matter of fact, we
confirmed, together with this independence of � on d,
eqs. (4), (12), and (13) directly in experimental studies on
non-crosslinked polyethylene foam,9) which will be dis-
cussed elsewhere.

For cellular solids with different mesh sizes d, (A) the
yield stress �Y can be the same if the volume fraction is fixed
and (B) a fixed volume fraction can be identical to a fixed
bulk elasticity. The statement (A) can be understood as
follows. The yield stress �Y of cellular solids made from the
same material is a function of the volume fraction 	 of solid:
�Y ¼ 	�ðsÞY where �ðsÞY is the yield stress of the solid (	 ¼ 1).
This is because the volume fraction can be identified with
area fraction in cellular solids as demonstrated in ref. 9. This
means that �Y is unchanged even if the cell size d is varied,
if the volume fraction 	 is kept fixed. This can be understood
also by reminding the discussion on the grid model given
around eq. (8); as discussed above, if we construct several
two-dimensional networks, of the same size but of different
mesh sizes d ¼ ml, by using the same number of original
‘‘cylindrical’’ springs of the same radius, the volume fraction
of the networks thus constructed are the same; if we assume
that each original spring tears off at the same critical force

fY, the (two-dimensional) yield stress �Y of the networks in
question are the same because there are m original springs
per one mesh (�Y ¼ mfY=ml); in other words, if the volume
fraction is the same, the yield stress is the same for these
networks. The statement (B) can be understood as follows.
In certain cellular solids the ‘‘elastic modulus’’ is also
determined by 	 (as demonstrated in the linear-elastic case
in ref. 9: � ¼ 	�s where �s is the modulus of the solid).
This is clearly the case of the two-dimensional network
model as discussed in the above: we can make the bulk
elasticity the same if we use the same number of original
springs to make networks of the same size (i.e., if the
volume fraction is the same).

From (A) and (B), we see that (C) �Y is unchanged even if
the cell size d is varied, if the bulk elasticity is kept fixed.
The statement (C) together with eq. (11) suggests that, in
cellular solids, if the volume fraction or the bulk elasticity is
fixed, the stress concentration can be reduced by increasing
the mesh size: strength of cellular solids under the existence
of a macroscopic crack can be enhanced by increasing the
mesh size. However, this statement should be interpreted
with care; the strength of cellular solids made from the same
material can be reduced with increase in the mesh size
in reality if the volume fraction is not fixed, as will be
discussed in a separate experimental study.

Although our result is quite general, derived only from
assumptions of nonlinear stress–strain relation at large
strains and a cut-off scale for the relation, there are some
practical limitations associated with requirements in the
derivation. Firstly, we require the existence of a macroscopic
crack of size a larger than d: eqs. (4) and (11) cannot predict
the inherent strength when macroscopic crack is absent. In
such a case, randomness and imperfection become important
issues but these effects are ‘‘averaged out’’ for the strength
under the existence of a macroscopic crack. Secondly, in
deriving a conclusion on the strength enhancement in
cellular solids, we require that systems with deferent d

should look in the same way on a scale larger than d. This
requirement is fulfilled by keeping the same ratio of
ingredients to make materials of the same bulk size but
with different structure size in many cases, as explicitly
demonstrated in the lattice model. In cellular solids, this
corresponds to fix the volume fraction of solids (i.e., the
relative density) but to change the cell size. This inevitably
allows us to explore the region outside the scope of previous
studies of cellular solids where properties are mainly
understood as a function of the relative density. However,
in practical development of new materials, it would be
sometimes difficult to find a way to change largest structure
size without changing bulk properties.

As indicated before, our grid model lacks the coupling
between the x and y components of Xi; j vectors: our system
is free from shear stress. Considering this point, our
confirmation of eq. (4) by numerical calculation is limited
and for completeness it would be important to confirm
eq. (4) in a more realistic model, for example, in a square-
lattice model but with extra diagonal springs or in a
triangular-lattice model, where shear stress comes into play.
However, we will study this point in a separate paper,
because (1) as mentioned before, this introduces some
ambiguity on the definition of ‘‘mesh size’’ since local mesh

Table I. The exponent � determined from Fig. 3.

n 1 2 3 5

� 0.50 0.33 0.25 0.16

J. Phys. Soc. Jpn., Vol. 78, No. 3 Y. AOYANAGI and K. OKUMURA

034402-4



size around the crack tip is strongly changed from the
original size due to shear, which needs a careful treatment,
and (2) despite of this difficulty we have confirmed already
eq. (4) for n ¼ 1 (linear case) in a numerical model which
does include the effect of shear in ref. 23 so that we can
expect to some extent that our numerical results for
nonlinear cases may be unchanged even if we introduce
the effect of shear deformation.

5. Conclusion

In conclusion, (A) we reproduce the HRR singularity at
the crack tip of elastic-plastic materials in eq. (3) by a
simple argument, (B) propose relations between measures of
fracture strength and cut-off scale in eq. (4) based on eq. (3),
(C) confirm this by numerical calculations, and (D) derive
scaling laws for fracture energy in eqs. (12) and (13) from
eqs. (3) and (4). The proposed relations thus established in
this study implies that under a fixed volume fraction or a
bulk elasticity, increase in void or structure size can lead
to reinforcement of the structured material. Note that the
void or structure size is always restricted from the above,
in practical situations; e.g., the maximum mesh size of a
net for filtering is determined by the size of particles to be
filtered.
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