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Abstract

We investigate how a spatial pattern on substrates affects nematic-isotropic transitions inside a film deposited on them. The scales of
the surface patterns and the film thickness of our interest are both dozens of nanometers. We considered simplified stripe patterns of
graded homeotropic anchoring which induce uniaxial order with homogeneous director vectors. We discuss a naive approximation the-
ory based on the Landau–de Gennes free energy, which provides simple physical pictures on the phase transitions inside the film. The
reliability of the approximation are quantitatively confirmed by numerical calculations.
� 2008 Elsevier B.V. All rights reserved.

Control over orientation of liquid crystal molecules by
microtextured substrates has received a considerable atten-
tion [1–7]. The standard theoretical framework for this has
been the Frank theory in which a distortion energy due to
the spatial variation of the director vector is considered [8].
On the other hand, phase transitions of liquid crystal film
of a finite thickness (as well as layer-thinning transitions
in smectic films [9,10]) have been studied by the Landau–
de Gennes free energy of the scalar order parameter S

[11–13],

u ¼ u0 þ L$S � $S þ F ðSÞ ð1Þ
where F ðSÞ is the standard Landau free-energy density with
a negative cubic term for discontinuous transitions

F ðSÞ ¼ AðT � T �ÞS2 � BS3 þ CS4 ð2Þ
In [11,12], the authors studied a liquid crystal film depos-
ited on (non-textured) homeotropic substrate surfaces
within this framework. Here, we examine phase transitions
of liquid crystal film (of a finite thickness) on microtextured
substrate surfaces using not the Frank energy but the scaler
Landau–de Gennes energy in Eq. (1).

A more general energy for the tensorial order parameter
Q unifies the Frank energy and the above scaler energy u in
the sense that both energies are recovered by the Landau–
de Gennes expansion of it [8]. This generalized energy was
studied by an extensive numerical analysis for a semi-infi-
nite system (i.e., not a thin film with a finite thickness stud-
ied here) subject to inhomogeneous anchoring condition at
the substrate [14,15]. In this context, what we carry out
here is to assume uniaxiality and homogeneity of the direc-
tor in the tensorial Q model, which reduces the generalized
energy to the energy in Eq. (1), and to apply the reduced
theory to a film of a finite thickness. The simplification of
the tensorial Q theory to the scaler S theory allows us to
obtain naive analytical results, whose appropriateness is
confirmed by numerical study.

The texture on substrates considered below is specified
by a wavy homeotropic anchoring at the substrate surface.
The nematic order parameter Sðx; y; zÞ inside a film of
thickness D (in the z direction) placed on the xy plane is
set to

Sðx; y; 0Þ ¼ s0ðxÞ � uþ D sin kx ð3Þ
at the film bottom ðz ¼ 0Þ while the film surface at z ¼ D is
kept free. Here, D and k ¼ 2p=k are the amplitude and the
wave length of the chemical modulation at the substrate

0009-2614/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.cplett.2008.01.064

* Corresponding author. Fax: +81 3 5978 5321.
E-mail address: okumura@phys.ocha.ac.jp (K. Okumura).

www.elsevier.com/locate/cplett

Available online at www.sciencedirect.com

Chemical Physics Letters 453 (2008) 274–278



Author's personal copy

surface (i.e., the film bottom) while Dþ u is less than unity.
The average of director is assumed to point in the z direc-
tion inside the film.

Under this boundary condition, S is independent of y

and the thermal equilibrium is determined by minimizing
a functional of Sðx; zÞ

U½S� ¼ AT c

Z k

0

dx
Z D

0

dz/ ð4Þ

where / is given by

/ðSÞ ¼ n2ðS2
x þ S2

z Þ þ aS2 � bS3 þ cS4 ð5Þ
with dimensionless coefficients

a ¼ ðT � T �Þ=T c ð6Þ
b ¼ B=AT c ð7Þ
c ¼ C=AT c ð8Þ

Here, we have introduced the coherence length

n ¼ ðL=AT cÞ1=2 ð9Þ
with using the bulk transition temperature T c ¼ T �þ
B2=ð4ACÞ. Writing

Sðx; zÞ ¼ rðzÞ þ dðx; zÞ ð10Þ
where rðzÞ is the optimized solution for D ¼ 0, we define
D/ by the equation,

/ðSÞ ¼ /ðrÞ þ D/ðr; dÞ ð11Þ
for which D/ ¼ 0 when d is zero.

First consider the case of D ¼ 0, following Ref. [11] (but
with spelling out some analytical results); this is necessary
to make the extension described later to be understandable.
Minimization of Eq. (4) when D ¼ 0 with respect to S (¼ r
in this case) leads to

2n2rzz ¼
d

dz
f ðrÞ ð12Þ

where rzz denotes the second derivative of r with respect to
z, which can be re-expressed as

n2 d

dz
r2

z ¼
d

dz
f ðrÞ ð13Þ

where rz denotes the first derivative of r with respect to z
and

f ðrÞ ¼ ar2 � br3 þ cr4 ð14Þ
Integrating Eq. (13) over z from z ¼ 0 to z ¼ D with using the
free-end condition rz ¼ 0 at the film surface z ¼ D, or, equiv-
alently, the transversality condition (see also Appendix),

dS
dz
¼ 0 at z ¼ D ð15Þ

as in [11], we obtain

n2r2
z ¼ f ðrÞ � f ðrDÞ ð16Þ

where rD � rðz ¼ DÞ.
Eq. (16) implies f ðrDÞ is the minimum (but not necessar-

ily the stationary point) of f ðrÞ in the region 0 < z < D

(i.e., inside the film). When u is close to one (homeotropic
anchoring at the film bottom), since there is no reason that
the molecules at the free film surface are ordered more than
those at the film bottom, we expect that dr=dz is negative
inside the film: rðzÞ is a monotonically decreasing function
of z with

dz
n
¼ � drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fuðrÞ � fuðrDÞ
p ð17Þ

Eq. (17) predicts how the order parameter Sðx; zÞ ¼ rðzÞ
changes near the bottom and the surface of the film. Near
z ¼ 0 we obtain

rðzÞ ¼ u 1� z
un0

� �
ð18Þ

with

n0 ¼
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðuÞ � f ðrDÞ
p ð19Þ

This predicts the initial decay is predominantly governed
by the length scale n. Near z ¼ D, Eq. (17) guarantees
dr=dz ¼ 0.

In the above, rD can be obtained by the minimization of

W ¼ D
n

f ðrDÞ þ 2

Z u

rD

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðrÞ � f ðrDÞ

p
ð20Þ

because differentiating the right-hand side with respect to
rD leads to the equation obtained by integration of Eq.
(17) over z from z ¼ 0 to z ¼ D.

The first term is dominant in the thick film limit ðD� nÞ
while the second term in the thin film limit ðD� nÞ. In the
thin film limit, the minimization of the dominant second
term leads to a trivial solution, rD ¼ u. For a thick film
where D� n; the minimization of W is equivalent to that
of f ðrDÞ. In this thick film limit, the ordering rD at the film
surface is exactly determined by the standard bulk transi-
tion theory; rD discontinuously jumps at a transition tem-
perature, T c ¼ T � þ B2=ð4ACÞ, with a jump DrD ¼ B=2C,
which are found from the conditions, f ðrÞ ¼ f ð0Þ and
df ðrÞ=dr ¼ 0. The rD is given from the condition
df ðrÞ=dr ¼ 0 together with the transition temperature T c

given above

rD ¼
0 T > T c

3B
8C ð1þ

ffiffiffiffi
K
p
Þ T < T c

(
ð21Þ

where K ¼ 1� 32AC
9B2 ðT � T �Þ.

In [11], the author examined a middle thickness region
where two terms in Eq. (20) compete and he found a criti-
cal thickness Dc around 100n (i.e., around 100 nm because
n is typically a few nanometers) where the original discon-
tinuous transition becomes continuous. Below, we are
interested in a bit thinner films of thickness around dozens
of nanometers, but the physical picture in the thick film
limit described above is helpful to understand numerical
results shown below.
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In summary, without modulation in the x-direction at
the bottom z ¼ 0, i.e., when D ¼ 0, ordering rðzÞ inside
the film monotonically decreases towards the film-surface
value rD from the fixed homeotropic value uð> rDÞ at the
bottom. In particular, for a film of micron thickness
ðD� nÞ, the ordering rD at the film surface is determined
by the standard bulk transition theory as in Eq. (21). For
thinner films of our interest (but still D > n), rD is governed
only indirectly by the bulk transition.

Based on the above understanding, we consider the case
of D 6¼ 0; we minimize the energy functional given in Eq.
(4) with respect to dðx; zÞ with regarding rðzÞ as a known
function as above. The minimization with respect to d of
the integration of D/ðr; dÞ over x and z gives, after a can-
cellation due to Eq. (12),

2n2ðdxx þ dzzÞ ¼ Gd ð22Þ

with

G ¼ 2a� 6brþ 12cr2 ð23Þ

where terms of the order higher than d are neglected. We
seek the solution to Eq. (22) of the form, d ¼
D expð�jzÞ sinðkxÞ, which satisfies boundary condition at
the bottom given in Eq. (3), to find

j2 ¼ k2ð1þ aÞ ð24Þ
where

a ¼ k2

n2

G

2ð2pÞ2
ð25Þ

We note here that in the limit k!1 this equation results
in j�1 ¼ 0 so that d ¼ 0 and thus the result for D ¼ 0 is
recovered, as it should. By definition j is independent of
z, while a is z-dependent through r. However, in the cases
of our interest where k is not too larger than n, the a term
can be neglected since, as explicitly given below, the coeffi-
cient a; b, and c are small 	 0:01 (see just before the con-
cluding paragraph, for more detailed arguments on validity
of this approximation). In such cases, the deviation field d
virtually satisfies the Laplace equation,

dxx þ dzz ¼ 0 ð26Þ
and the appropriate solution is given by

dðx; zÞ ¼ D expð�kzÞ sinðkxÞ ð27Þ
With this dðx; zÞ, the x-dependent order parameter inside
the film is given by Eq. (10), under the conditions stipulated
above. Namely, the x-dependence of the order parameter
inside the film (at a given z) is similar to that at the bottom
z ¼ 0 but the amplitude of modulation dðx; zÞ of ordering
around an average value rðzÞ are decreased from that at
the bottom. The decay of the amplitude dðx; zÞ 	 e�2pz=k is
dictated by the length scale k. The average rðzÞ (of the or-
der S over the x direction at a given z) decreases towards
the free-surface value rD, which is, in particular for thick
films, subject to the standard bulk transition theory.

To appreciate and extend our analytical results, we car-
ried out numerical study, where we employed the following
typical values as in [11]: A ¼ 0:045 J/(Kcm3), B ¼ 0:197 J/
cm3, C ¼ 0:307 J/cm3, T � ¼ 318:3 K where the nematic-iso-
tropic transition temperature is given by T c ¼ 319 K. For
these parameters and at temperatures relatively close to
T c (T � T c around a few K), as announced above, the coef-
ficients a; b; and c are around 0.01 and d practically satisfies
the Laplace equation to give the deviation field d in Eq.
(27) if k is not too larger than n, as we confirm below
through numerical results.

In numerical study, we descretize the energy in Eq. (4)
on a two-dimensional N 
 N grid on the x–z plane with
using the fourth-order finite difference scheme and mini-
mize the energy on the grid for the descretized set of S

by using the conjugate gradient method with using analyt-
ical derivatives. We used the periodic boundary condition
in the x direction and the boundary conditions at z = 0
and z = D given in Eqs. (3) and (15), respectively. We
confirmed for parameters we studied below the simulation
size of N = 50 is enough for qualitative discussions by com-
paring the results with larger N: the results are virtually
independent of the mesh size.

First, we examine the cases below the transition temper-
ature at T ¼ 318 K. Fig. 1 shows a case where a film where
k ¼ 10n; D ¼ 10n; D ¼ 0:3; u ¼ 0:7 (n is typically a few
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Fig. 1. (Left) The scalar order parameter S as a function of x and z at T = 318 K ðk ¼ 10n; D ¼ 10n; D ¼ 0:3; u ¼ 0:7Þ. (Right) The scalar order
parameter S as a function of x at different depths of a film. The parameters are the same as in the left.
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nanometer). As predicted (although k is larger than n), the
x-dependent profile inside the film for a given z is well char-
acterized by the periodic function s0ðxÞ imposed at the film
bottom, with decrease in magnitude as z increases towards
the film surface. If the wave length of the texture is
increased to k ¼ 50n with the other parameters fixed, as
seen in Fig. 2, the decay towards the film surface of the
wave amplitude decreases, as predicted (the decay rate is
governed by the ratio D=k) although k is still larger than n.

Next, we discuss the cases above the transition temper-
atures. Although temperature in Fig. 3 is raised well above
the transition temperature to T = 325 K while the other
parameters are the same as in Fig. 1 ðk ¼ 10n; D ¼
10n; D ¼ 0:3; u ¼ 0:7Þ, the order at the film surface in
Fig. 3 does not drop to zero. This is because we cannot
completely neglect the second term in Eq. (20) when
D=n ¼ 10; we checked that we need to raise temperature
up to around 340 K to erase the order at the film surface
for this parameter set. On the contrary, when the film
thickness is increased five times to D ¼ 50n, the film-sur-
face order drops to zero even at 325 K, as shown in
Fig. 4. This is also expected from our approximate theory
because the boundary condition at the film bottom decays
well due to the larger thickness: the decay is characterized
by the length scale k.

We confirmed that our simple approximate theory is
quantitatively good for all the parameters used above. As
seen from Eq. (24), the quality of our approximation is
good when the quantity a in Eq. (25) is less than one.
Rough estimates of a by setting r ¼ 1 (thus this is an over-
estimate) for parameters used in Figs. 1–4 are 0.04, 0.9,
0.06, 0.04, respectively, so that our approximation can be
quantitatively good, which is numerically confirmed: we
compared the approximate expression, Eq. (10) with Eq.
(27), with numerical results and found that numerical dif-
ferences among them are less than 5% even for parameters
used in Fig. 2 for which the overestimated value of a is 0.9.

In conclusion, we demonstrated that graded homeotrop-
ic patterns of dozens-of-nanometer scales at substrate sur-
faces could affect significantly nematic-isotropic transitions
inside a dozens-of-nanometer film deposited on a textured
substrate in a naive framework. We established a simple
approximate expression, Eq. (10) with Eq. (27). From this
expression, the roles of the strip modulation on the sub-
strate surface can be easily understood: the wavy pattern
imposed at the film bottom is basically preserved inside
the film till the film surface but the strength of the pattern
diminishes when the film is thicker than the texture wave
length ðD > kÞ. In addition, when the film is thicker than
the coherence length ðD > nÞ the order at the free film
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Fig. 2. (Left) The scalar order parameter S as a function of x and z at T = 318 K ðk ¼ 50n; D ¼ 10n; D ¼ 0:3; u ¼ 0:7Þ. (Right) The scalar order
parameter S as a function of x at different depths of a film. The parameters are the same as in the left.
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Fig. 3. (Left) The scalar order parameter S as a function of x and z at T = 325 K ðk ¼ 10n; D ¼ 10n; D ¼ 0:3; u ¼ 0:7Þ. (Right) The scalar order
parameter S as a function of x at different depths of a film. The parameters are the same as in the left.
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surface is (indirectly) governed by the standard bulk tran-
sition theory. We also performed numerical calculation to
show that our approximate result is quantitatively good
for a range of parameters of practical interest although
the approximation is precise under limited conditions
(i.e., n < D; D < 1; k ’ n). In addition, we emphasize here
that our present result can be directly applied to a film of
thickness 2D sandwiched by two identical textured sub-
strates with textures of the top and bottom substrates
matched if we regard the depth z ¼ D corresponds to the
middle position of the thickness of the film, because in
the middle of the film the same ‘free surface’ boundary con-
dition is appropriate due to the symmetry. Although our
analysis is based on sinusoidal texture of graded homeo-
tropic anchoring, we expect that the general tendency illus-
trated above could be tested even for experimentally more
feasible textures such as non-wavy but stepwise stripe
patterns.

Acknowledgement

K.O. thanks MEXT, Japan for KAKENHI.

Appendix.

In this section, we describe the reason we required the
boundary condition dS=dz ¼ 0 at z ¼ D in the simplest case
where D ¼ 0 where S ¼ r. We consider to minimize a func-
tional of uðzÞ ¼ rðzÞ (with F ¼ n2u2

z þ f ðuÞ),

J ½u� ¼
Z D

0

dzF ðz; u; uzÞ ð28Þ

where uz ¼ du=dz, under a condition, u ¼ u0 at z ¼ 0, and
another condition that the value of u at z ¼ D is kept free.
We denote the minimized solution u ¼ �u and then, for
u ¼ ue where

ueðzÞ ¼ �uðzÞ þ egðzÞ; ð29Þ
we obtain the condition that dJ ½ue�=de at e ¼ 0 should be
zero, which results, after an integration by parts, in the
form

Z D

0

dzg
oF
ou
� d

dz
oF
ouz

� �
þ oF

ouz
g

� �z¼D

z¼0

¼ 0 ð30Þ

where an over-bar indicates that the quantity is evaluated
at u ¼ �u and uz ¼ �uz. As a matter of fact, from the first
boundary condition, u ¼ u0 at z ¼ 0, Eq. (30) is required
to hold only when the function gðzÞ satisfies gð0Þ ¼ 0,
because we seek the minimized function with u fixed at
z ¼ 0. From the second condition (free boundary for u at
z ¼ D), however, Eq. (30) should hold not only when
gðDÞ ¼ 0 (case 1) but also when gðDÞ is free (case 2). In case
1, Eq. (30) results in the conventional Euler equation,

oF
ou
� d

dz
oF
ouz
¼ 0 ð31Þ

because the second square bracket in Eq. (30) vanishes due
to the condition gð0Þ ¼ gðDÞ ¼ 0; the Euler equation
should always hold for the minimized function, u ¼ �u.
Knowing this fact and considering case 2 where gðDÞ is
nonzero, we arrive at, from Eqs. (30) and (31), the transver-
sality condition, in the simplest form,

oF
ouz
¼ 0 ð32Þ

at z ¼ D when u is the solution of the above minimization
problem. This simple analysis proves that the free bound-
ary condition in a variational problem leads to the condi-
tion in Eq. (32), which corresponds to dS=dz ¼ 0 in our
specific problem. Even when D is nonzero and S becomes
not only z-dependent but also x-dependent, because S as
a function of x is a periodic function, the transversality
condition emerges only in the z direction.
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