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Air bubbles created in many viscous liquids rise up to the liquid-air interface and stay there for a while
before exploding and disappearing. The lifetimes of such bubbles are governed by the thinning dynamics of the
hemispherical liquid film separating the bubble from bulk air. Here, the lifetime of bubbles confined by two
separated wetting plates is experimentally studied as the distance apart, viscosity, and bubble size are changed.
Although the film is not hemispherical but takes a nontrivial shape, a relatively simple hydrodynamic model
accounts for the observations.
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A child often gets into mischief making bubbles with a
straw in milk. Likewise, in daily life, in many industrial situ-
ations �e.g., polymer foam� �1�, and even in volcanic erup-
tions, air bubbles can remain at the liquid-air interface before
exploding and disappearing, whether with or without surfac-
tant �soap film �2� or “bare” film �3��. The lifetimes of such
bubbles are controlled by the thinning dynamics of the hemi-
spherical liquid film separating the bubble from bulk air. It is
known that the dynamics is dictated by the liquid boundary
conditions at the interface �3,4�. However, the lifetime of
bubbles confined in two-dimensional space by two plates
separated by a distance D has not been studied; in this con-
fined case the film is not hemispherical but takes a nontrivial
shape. Here we show that the thinning dynamics of a bare
film sandwiched by two wetting plates �Fig. 1� can be de-
scribed by surprisingly simple boundary conditions. We ex-
perimentally obtained the lifetimes of the two-dimensional
bubbles when the liquid viscosity, distance D, and bubble
size were changed and find that the dependence of the life-
time on these variables can be well understood by a simple
hydrodynamic model completed with nontrivially simplified
boundary conditions. We anticipate that our demonstration
will lead to studies on a rich variety of film thinning dynam-
ics of bubbles occurring in different practical situations; for
example, the situation when the two plates repel the liquid
film, as opposed to the present study, or when a liquid bubble
is created in another liquid, will be relevant for such devel-
opments. In addition, our work will ignite a series of studies
of novel bursting dynamics of film encapsulating two-
dimensional bubbles in various situations.

We use a Hele-Shaw cell of centimeter dimensions made
from two transparent acrylic boards of millimeter thickness.
The boards are separated by a distance D, with acrylic spac-
ers of homogeneous thickness. We fill the cell with a poly-
dimethylsiloxane melt and inject a bubble from the bottom of
the cell. The bubble slowly rises in the melt until it settles at
the liquid-air interface, forming a semicircular shape of ra-
dius R.

This quasistatic form could survive for a few minutes at

the surface of a viscous liquid in the Hele-Shaw cell until the
bubble suddenly burst and disappeared. We study the change
of the thickness h in time of the liquid film of such a bubble
by taking magnified snapshots with a video camera �HC-1,
Sony� with a macro lens �MSN-505, Raynox� as shown in
Fig. 1�b� �the quasistatic shape and the dynamics of bursting
will be reported elsewhere�. The combination of the liquid
and the cell material establishes complete wetting with zero
contact angle.

The result of the measurement of h as a function of time t
is summarized in Fig. 2. As stipulated in Table I, we change
the liquid kinematic viscosity � from 500 to 1000 centistokes
�cS� �500 to 1000 times the viscosity of water� and the cell
separation D from 0.5 to 1.0 mm for centimeter-size bubbles
�precise experimental control of R is difficult�, to infer a
universal relation applicable to a wide range of scales. From
the figure, we can conclude that the thinning dynamics de-
pends nontrivially on the three parameters �, D, and R. This
dependence will be clarified below both from a simple theory
and from a detailed analysis of these data based on the
theory.

Here, let us recall some of the basic theoretical consider-
ations pertinent to the present phenomenon. The drainage
from a flat circular disk of fluid film subject to a constant
force sandwiching the disk is discussed, for example, in �6�.
The dynamics are distinguished by the boundary conditions
at the liquid-air interface: �a� in the Poiseuille-flow regime
the velocities at the two liquid surfaces are zero, producing a
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FIG. 1. �Color online� �a� Two-dimensional air bubble sitting at
the liquid-air interface of a Hele-Shaw cell. This quasistatic shape
could be maintained for a few minutes. �b� Magnified view of the
upper wall of the bubble in �a�. The film of a well-defined thickness
h possesses sharp edges at the top and bottom, followed by fringes.
A short movie is available �5�.
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velocity gradient in the direction of the film thickness, and
�b� in the plug-flow regime the velocity is homogeneous in
the direction of the film thickness, suggesting a slip of the
film at the boundary. The former results in a nonexponential
law in time for the drainage and the latter in an exponential
law in time.

These considerations are extended to the case of a liquid
film of a three-dimensional bubble sitting at the surface of a
viscous liquid filling a beaker �3�. In such a case, drainage
from a hemispherical shell of liquid film occurs because of
gravity when the bubble radius R is larger than the capillary
length, implying that the gravity excels the capillary force as
the driving force, where the gravitational drive is hindered
by viscous friction. In this case of a free-standing bare film
�without surfactants�, the plug-flow condition is found
to be appropriate, which leads to an exponential law
h�h0exp�−t /�� with 1 /��gR /� �g is the gravitational con-
stant�. This law is confirmed by experiment in �3�.

Recently, the nonexponential law in the opposite regime
of Poiseuille flow was experimentally confirmed �4� in a
slightly different context, where a hemispherical thin air film
is surprisingly formed between bulks of the same liquid.
When a drop of radius larger than the capillary length is
deposited on a vibrating bath of the same liquid, the drop can
remain at the interface for a while even after the vibration is
stopped, which can be seen as one variation of the “anti-
bubble” �7�. Thinning of the air film can be measured regard-
less of the bath vibration, which leads to the predicted non-
exponential power law for the Poiseuille flow.

In the present two-dimensional case, the situation is rather
different as shown in Fig. 3, where the �r ,� ,z� coordinates
are defined. The first difference is that the film is not like a
hemispherical shell. One would think that the film is
sandwiched by top and bottom interfaces of curvatures
1 / �R+h /2�−2 /D and 1 / �R−h /2�+2 /D �Fig. 3�b�� where R
��h� is the local curvature of the film in the plane parallel to
the cell plates �Fig. 3�a��: since the liquid totally wets the cell
plates with zero contact angle, the contour of the section of
the liquid film would be comprised of two semicircles of
radius D /2. This complex shape would lead to formidable
boundary conditions. However, the fringes at the top and
bottom of the sharp film edges indicate a film of thickness h
abruptly merging to a thin liquid layer of micrometer thick-
ness with zero contact angle �Fig. 3�c��, which is confirmed
in Fig. 3�d�. The non-trivial shape in Fig. 3�c�, established by
the direct observation and similar to the shapes observed
frequently in liquid foams, is dynamically stable, as opposed
to the shape in 3�b�, although the latter is favorable in terms
of surface energy; in Fig. 3�c�, the pressure inside the mi-
crometer film along the acrylic boards and the pressure in-
side the film of thickness h are almost the same as the atmo-
spheric pressure and these pressures are higher than the
pressure around the rounded corner indicated by the slant
arrow in Fig. 3�c�; liquid tends to be attracted to the corner
but the movenment is prohibited because there is no sink for
the attracted liquid.

The second difference is that in the present case the ve-
locity distribution of the flow is more complicated. However,
the dynamics inside the curved slab portion of thickness h
�see Fig. 4�c�� is not too complex where the dominant com-
ponent v of the velocity is the � component, although the
flow near the rounded corners �see Fig. 3�c�� is intricate.
Inside the slab, the prominent velocity component v is a
Poiseuille flow in the z direction because v�z= ±D /2�=0

TABLE I. Experimental parameters corresponding to the label-
ing in Fig. 2, together with the experimentally obtained � and h0

�see below�.

A1 A2 B1 B2 C1 C2

� �cS� 500 500 1000 1000 500 500

D �mm� 0.5 0.5 1 1 1 1

R �mm� 21.1 20.9 21.3 13.1 13.0 10.7

� �s� 52.9 44.4 22.4 15.6 8.20 7.45

h0 �mm� 0.694 0.768 0.537 0.509 0.300 0.254
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FIG. 2. Change of the film thickness h �mm� with time t �s�.
Experimental parameters �, D, and R for the labels employed in this
figure are summarized in Table I.
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FIG. 3. �Color online� �a� Definition of the �r ,� ,z� coordinates
for a bubble. The z axis is perpendicular to this paper. �b� Possible
side view �section� of the film. �c� Actual side view. One of the
rounded corners is indicated by the arrow. �d� Direct view, from the
direction and of the point, which direction and point are indicated
by the white arrow in �a�. Two white dashed lines correspond to the
surfaces of the acrylic boards. Two black arrows indicate the liquid-
air interface �the other interface on the left is out of focus�.
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�Fig. 4�a�� while it is like a plug flow in the r direction
because �v /�n=0 at the upper and lower liquid-air surfaces,
where n denotes the normal direction �Fig. 4�b��.

This suggests that the velocity inside the slab changes
predominantly in the z direction with a length scale D in the
lubricant equation

��2v��,z� = − g sin � , �1�

which gives a velocity V��gD2 /��sin � averaged over the z
direction. Note here that the numerical coefficient of this
relation is exactly 1 /12 within the slab approximation, which
neglects the effect of the rounded corners.

The flow flux inside the slab Q=D�R−h/2
R+h/2dr V

��gD3h /��sin � is practically preserved, i.e.,

D
�h

�t
= −

�Q

R � �
, �2�

which leads to an exponential law

h = h0
exp�− t/��
cos2��/2�

�3�

with the relaxation time �, or a measure of the lifetime of a
bubble, specified by

1

�
=

gD2

12R�
, �4�

where we have used the numerical factor 1 /12 for V
throughout the inside of the slab. This approximation is good
as long as h is not too thin for the corner effect to be non-
negligible.

Here we give some remarks on the comparison with the
three-dimensional theories. �1� If the essential direction over
which the velocity changes is the � direction, whose length
scale is R, we recover the relaxation time 1 /��gR /� of the
three-dimensional plug-flow dynamics. �2� In the three-
dimensional case, the Poiseuille flow results in a nonexpo-
nential law, while here this is not the case, and we obtain an
exponential law in the two-dimensional case due to the extra
length scale D.

To examine the validity of the above arguments, we first
obtain a measure of the lifetime � �and h0� from data in Fig.
2 by fitting them with Eq. �3� with �=0 �in all the measure-
ments, the approximation cos2�� /2�=1 is almost precise�, as
in Table I. When all the data in Fig. 2 are renormalized by h0
and � thus obtained we get Fig. 5: Eq. �3� works quite well.
Note that the data shown in Fig. 2 are only the ones corre-

sponding to long-time regions where the lubrication approxi-
mation invoked above is expected to work well; the approxi-
mation neglects the inertial term in the Navier-Stokes
equation, which is justified at long times when the relation
t��0 holds, where �0 is determined by balancing the inertial
term with the viscous term, i.e., �0�D2 /�, so that �0
�0.001 s for �=1000 cS and 0.01 s for �=500 cS, while we
start the measurements summarized in Fig. 2 a little after the
thinning dynamics sets in.

Now that the validity of Eq. �3� is confirmed, we check
Eq. �4�. For this purpose, we first determine the local curva-
ture R directly from the snapshots. Using the values of R thus
obtained and of � determined by the process of fitting to
produce Fig. 5, we then plotted the relations between 1 /�
and �, those between 1 /� and D, and those between 1 /� and
R, in Figs. 6�a�–6�c�, respectively, with the theoretical curve
based on Eq. �4� drawn as a dotted curve in each figure.

We see that the relation in Eq. �4� agrees well with the
behavior of the relaxation time � obtained by experiments.
This agreement without any fitting parameters suggests that
the corner effects are actually negligible in a wide range of h,
so that the lifetime formula in Eq. �4� with the coefficient
1/12 is useful in practice.

What if the plug-flow condition in the r direction is re-
placed by the Poiseuille condition? Experimentally, such a
situation could be realized, for example, by filling the cell
with glycerin and then with viscous oil �where the glycerin
phase is covered from above with the oil phase� and then by
injecting a glycerin drop from above. In this case, the veloc-
ity changes over the z and r directions with the length scales
D and h, respectively, so that �2 in Eq. �1� scales as 1 /h2

when h�D, which renders the thinning dynamics nonexpo-
nential and independent of D:

h = R� �

t + t0
	1/2

�5�

with 1 /���gR /	. Here, � is the density difference between
the two liquids and 	 is the viscosity of the liquid forming
the film. The law in Eq. �5� is essentially the same as that

(a) Poiseuille flow (b) Plug flow

z

(c) Slab approximation

h

r h

FIG. 4. �Color online� A portion of the liquid film in question
�oblique perspective view� with two possible modes of velocity
distribution of the flow inside it: �a� Poiseuille flow in the z direc-
tion and �b� Plug flow in the r direction. �c� Slab approximation of
this portion.
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FIG. 5. Result of fitting of the data points in Fig. 2 by Eq. �3�
with �=0 to confirm the exponential law and to extract experimen-
tal values of � �and h0� for different �, D, and R.
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confirmed for the thinning dynamics of an air film created
between bulks of the same liquid in �4�, although the situa-
tion seems to be rather different at first sight. Realization of
the experiments suggested here is now under study, together
with another series of experiments of adding surfactants to
the liquid, which is another possibility to change the bound-
ary conditions.

To understand the full physics of the lifetime of the film,
we need to study the bursting of the fluid film �3,4,8�, closely
related to many important aspects of wetting such as dewet-
ting of a polymer film on the substrate �9�, in addition to the
associated instability and nucleation which initiates the
bursting, although they are smaller in time scales, and thus
the thinning dynamics studied here is most important to un-
derstand the lifetime. However, since the thinning dynamics
has turned out to be markedly different depending on the
dimensionality, the study of the bursting, instability, and
nucleation of the present two-dimensional film is worth-
while, which is also now under way.

In conclusion, we examine the thinning dynamics of a
liquid film of a two-dimensional bubble sandwiched by two
plates when the liquid totally wets the plates. We experimen-
tally confirmed that the exponentially decaying dynamics is
governed by the gravitational drive opposed by a viscous
friction from the Poiseuille flow between the two plates: the
theoretical predictions given in Eqs. �3� and �4� are well
confirmed by experiment �at �
1�. Our demonstration will
be developed to studies on a rich variety of thinning dynam-
ics and bursting of liquid film encapsulating two-dimensional
bubbles.
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FIG. 6. Relations between 1 /� and �a� �, �b� D, and �c� R. In all the plots, we use R measured from snapshots and � obtained by
experiments. The dotted curve in each plot corresponds to Eq. �4�, which is drawn without any fitting parameters. The labelings A, B, and
C correspond to �A1, A2�, �B1, B2�, and �C1, C2� in Fig. 2 and Table I.
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