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Viscous drag friction acting on a fluid drop confined in between two plates
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Dealing with a small amount of liquid has become increasingly important in recent applications in

many fields such as biology, chemistry and medicine. In such a context, viscous drag friction acting on

fluid drops in confined geometries is an indispensable fundamental issue, as the Stokes’ friction law for

a sphere in the bulk is useful in many physical processes. We study here, in a quasi two-dimensional

confined space (i.e., in a Hele-Shaw cell), such viscous drag friction opposing gravitational drive. As

a result, we establish in a clear way scaling laws for the viscous drag friction in different regimes. These

scaling laws replace, in the confined geometry, the well-known Stokes’ friction law. The proposed laws

are unexpectedly simple in spite of the potential subtle effects of liquid thin films existing between the

drop and the cell plates, thanks to the principle of minimal dissipation in viscous hydrodynamics.

PACS numbers: 47.55.D- Drops and bubbles; 89.75.Da Systems obeying scaling laws; 68.15.+e Liquid

thin films; 83.50.Lh Slip boundary effects; 47.57.Bc Foams and emulsions.
Introduction

The dynamics of bubbles and drops, familiar in daily life, are

important not only in the physical sciences1–6 but also in a variety

of practical situations such as emulsification, formation of spray

and foams,7–9 commercial ink-jet printing,10 and lab-on-a-chip

manipulations.11 An important issue is the determination of

scaling laws representing the essential physics12 as in many cases,

such as the lifetime of a bubble in a viscous liquid13 and the

contact dynamics of a drop to another drop14,15 or to a solid

plate.16 Here, we report on clear scaling laws experimentally

obtained for viscous friction acting on a fluid drop in a confined

space. These friction laws replace the well-known Stokes’ law in

situations which have become important recently, e.g., in

microfluidics applications. For this purpose we study, in a quasi

two-dimensional bath of oil in a Hele-Shaw cell, the dynamics of

a rising bubble and of a setting (sinking) aqueous drop due to

gravity.

The rising bubble in a Hele-Shaw cell is theoretically discussed

by Taylor and Saffman in a pioneering paper17 in 1958 (earlier

than Bretherton’s paper18. Related bubble dynamics in tubes is

discussed in ref. 19.). They derived a family of exact solution for

a bubble moving in the Hele-Shaw cell but could not select

a unique solution from it in a rigorous way so that they made an

ad hoc speculation. This degeneracy of solution was discussed by

a perturbation theory and a numerical study by Tanveer,20 which

support the speculation. In addition, there are many theoretical

works on fluid drops in the Hele-Shaw cell geometry (e.g., ref.

21–24). Different from these theoretical attempts, here, as we see
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below, we should pay a special attention to the existence of a thin

liquid film surrounding the bubble.

As for experimental studies, a number of researches on bubble-

rising in a Hele-Shaw cell have been performed25–27 (see, e.g.

ref. 28 and 29 for related bubble dynamics in different contexts).

However, systematic and quantitative studies in a constant

velocity regime are all concerned with the case where the cell is

strongly inclined nearly to a horizontal position and several

discrepancies with the study in ref. 17 have been reported. Here,

we study an ‘‘opposite’’ case of vertical cell. As a result, our

theory and experiment agree well with each other as seen below:

we establish the counterpart of the Stokes’ friction law in a Hele-

Shaw cell geometry for a rising bubble, together with such

counterparts for a setting drop in different regimes. Although

our problem includes potentially intriguing liquid thin films

between the drop and the cell plates, the emergent laws are simple

enough to be useful in practical applications. This is due to the

principle of minimum viscous dissipation in hydrodynamics.
Experimental

Our experiments were performed in a Hele-Shaw cell made of

transparent acrylic plates positioned in parallel at a millimetre

distance D by spacers.30–32 We conducted three series of experi-

ments. In the first series, we fill polydimethylesiloxane (PDMS) in

a vertically positioned Hele-Shaw cell (the cell thickness direction

is horizontal) and inject an air bubble of centimetre size at the

bottom which rises in the cell (Fig. 1a). In the second and third

series, we instead inject a glycerol drop at the top, which sets (or

sinks) in PDMS contained in a Hele-Shaw cell. In the second

series (Fig. 1b) the drop is more viscous than the surrounding oil

while in the third series (Fig. 1c) the drop is less viscous.
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Front view of a rising bubble in PDMS filled in a Hele-Shaw cell

(a). Setting drop of glycerol in the PDMS where the drop is more viscous

than the surrounding oil (b) and where the drop is less viscous (c). The

fluid drops are not circular and characterized by transverse and longi-

tudinal sizes RT and RL as in the figure.
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Note that since PDMS completely wets the plates the contact

line between the drop (bubble or glycerol) and the plate is absent

and a thin liquid film of PDMS exists between the fluid drop and

the plate. The cell is much larger than the fluid drop to avoid

unwanted effects on the flow from the side- and bottom-spacers

of the cell.
Fig. 2 (a) Central position x of the bubble as a function of time t. (b)

Rising velocity V as a function of the cell thickness D. (c) V as a function

of the transverse size RT. (d) Shape of bubbles: the longitudinal size RL is

plotted as a function of RT. Symbols are specified in Table 1.

Table 1 Cell thicknessD and kinematic viscosity n of PDMS in the rising
bubble experiments. The density of PDMS is about 1 g cm�3 (0.965, 0.970
and 0.975 g cm�3 at n ¼ 100, 500–3000 and 5000–10000 cS, respectively)

+ � , - B C >

D/mm 0.4 0.5 0.7 1.0 1.5 2.0 3.0 5.0
n/cS 100 100 500 1000 1000 3000 5000 10000
Results and discussion

Rising bubble

Let us first examine the case of a rising bubble. The rising speed is

constant as in Fig. 2a for a given set of parameters: cell-thickness

D, kinematic viscosity n, and transverse and longitudinal sizes RT

and RL. The dependences of the constant velocity on D and RT

are shown in Fig. 2b and c. The bubble is slightly elongated as in

Fig. 1a and in Fig. 2d. The experimental parameters are given in

Tab. I.

As a prototype of the ensuing discussion, consider first a trivial

case of a spherical bubble of radius R rising with velocity V in

a three-dimensional liquid bath much larger than the bubble

(Fig. 3a). The bubble makes a flow near the bubble in a region of

volume around R3 with a velocity gradient of the order of V/R.

Since the dissipation per unit volume per unit time scales as

viscosity h times the squared velocity gradient,33 the total dissi-

pation scales as h(V/R)2R3. Balancing this energy with the gain in

the gravitational energy per unit time, rgR3V, we obtain a scaling

relation V x rgR2/h, as is well-known. Here, r and g are the

density of the liquid and the gravitational constant, respectively.

Consider next the case in which a bubble is squashed in a Hele-

Shaw cell. A thin film between the plate and the bubble as

illustrated in the side view in Fig. 3b seems important for dissi-

pation. However, air viscosity is so low that it could not drag the

thin liquid film of thickness h efficiently and the strong dissipa-

tion associated with velocity gradient V/h could be avoided:

bubble could slip over the thin film. This assumption is justified

shortly by our experiment in a clear way and is consistent with

the Bretherton’s argument as discussed below. Under this

assumption, the important velocity gradient for dissipation

should not be V/R but V/D becauseD� R. Thus, we balance the

total dissipation per unit time h(V/D)2R2D with the gravitational

energy gain per unit time rgR2DV to obtain a scaling relation
This journal is ª The Royal Society of Chemistry 2011 Soft Matter, 2011, 7, 5648–5653 | 5649
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Fig. 3 (a) A spherical bubble rising in a liquid bath where the dissipation

h(V/R)2 localized in the volume R3 is dominant. (b) A squashed bubble

rising in a Hele-Shaw cell where the dissipation h(V/D)2 localized in the

volume R2D is dominant. (c) Side view of a glycerol drop going down in

PDMS contained in the Hele-Shaw cell: (right) solid-like thin film of

PDMS (thickness h) resulting in the Poiseuille flow inside the drop versus

(left) air-like thin film resulting in the plug flow inside the drop.

Fig. 4 Rescaled log plot of Fig. 2b: Ca and kD are the renormalized

velocity and cell thickness, respectively. All the data points (more than

40) in Fig. 2b–c almost exactly collapse on to the theoretical line with

slope 2 indicated by a straight dashed line. The bottom plot shows the

same plot but without the asymmetry factor RT/RL. Omission of this

factor slightly disgraces the collapse, since the factor is not equal (but

close) to one. These plots actually include the data obtained in the

experiment of a sinking glycerol drop in PDMSwhich surrounds the drop

and is more viscous than the drop (see below). Symbols are specified in

Table 1 and 3.
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V x rgD2/h (1)

where the previous scale R is replaced with a new scale D.

Bretherton employed a similar assumption for a bubble rising

in a tube,18 where the dominant friction force hV/h2 comes from

the dynamic meniscus whose scale is severely restricted to l.

Outside this dynamic meniscus no significant dissipation occurs

as we assumed in the above: the global dissipation in the thin film

is avoided. At the meniscus, we balance the local dissipative force

(per unit volume) hV/h2 with the gradient of the capillary pres-

sure g/(lD) and match the curvatures from the both sides

(1/D x h/l2), where g is the surface tension. Thus, we obtain the

Bretherton’s law h x D(hV/g)2/3. The dissipation h(V/h)2lRh

associated with the force hV/h2 is less dominant than the above

dissipation h(V/D)2R2D in our case because the volume (x lRh)

associated with this dissipation is much smaller than that

(x R2D) with the above dissipation.

Consider finally an extreme case where RL is much larger than

RT to include the asymmetry factor RL/RT into our theory. In

this limiting case, the bubble should completely slip over the thin

film around the central region of the bubble; the dominant

dissipation occurs only in the head and tail regions (of volume

R2
TD) of a bubble, which is similar to the Bretherton’s situation.

In other words, the volume of dissipating region changes from

R2D to R2
TD, while the gravitational energy gain per unit time is

trivially replaced with rgRTRLDV. In this way, we obtain

a scaling relation V x (RL/RT)rgD
2/h, which is expressed in

a dimensionless form

(RT/RL)Ca x (kD)2 (2)

Here, Cah hV/g is the capillary number and k�1 ¼ ffiffiffiffiffiffiffiffiffiffiffi
g=rg

p
is the

capillary length. We replot Fig. 2b with rescaling according to

eqn (2) in Fig. 4; all the scattered data points (more than 40) in

Fig. 2b almost completely collapse onto the predicted line. In

addition, we have confirmed explicitly that the above scaling law

can be derived from a general but non-unique result given in ref.

17 as a special limiting case.
5650 | Soft Matter, 2011, 7, 5648–5653
Setting drops

Nowwe examine the case of setting (sinking) of a heavier glycerol

drop in lighter PDMS; we dilute glycerol with water to change

the viscosity of the drops.

The case of viscous drops. We first consider the case where the

drop viscosity is larger than the surrounding oil. The sinking

velocity is constant for a given parameter set and the constant

velocity depends on D, n, RT and RL as before (Fig. 5a). The

shape is again asymmetric but the degree is stronger than in the

previous case (Fig. 5b and 1b).

We intentionally used a PDMS (outside liquid) of lower

viscosity to demonstrate a novel feature in Fig. 5. The Stokes

friction 6phRV acting on a sphere or drop of radiusR in a flow of

velocity V is dependent not on the viscosity of drop hD but on the

outside viscosity h if hD is much larger than h.34 However, as seen

below, the opposite situation where friction depends not on h but

on hD is expected when a drop is squashed in a Hele-Shaw cell.
This journal is ª The Royal Society of Chemistry 2011
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Fig. 5 (a) Central position x of the glycerol drop as a function of time t.

(b) Shape of glycerol drops: the longitudinal size RL is plotted as

a function of RT. Symbols are specified in Table 2.

Table 2 Cell thickness D and kinematic viscosity of glycerol drops nD in
the experiments of a glycerol drop sinking in a less viscous PDMS. The
density rD of glycerol aqueous solution is 1.25 g cm�3 with an exception:
1.26 for white triangle O. Viscocity of PDMS is negligibly small
(viscosity and density of PDMS are 1 cS and 0.818 g cm�3 with an
exception: they are 10 and 0.935 for black inverse triangle ;)

O : P ; + � , -

D/mm 1.0 1.0 1.0 1.0 1.0 0.5 0.7 1.2 1.5
nD/cS 316 585 623 966 656 683 684 712 718
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To understand this point, we go back to the illustration in

Fig. 3a, but with the direction of V reversed (because the density

of the glycerol is larger than that of PDMS) and with the

viscosity and density of the sphere (or drop) being significantly

higher. The system may avoid making any flow inside the sphere

to avoid unnecessary strong dissipation just as in the previous

case of the thin film of PDMS. Then the total dissipation per unit

time is again given by h(V/R)2R3 with only the outside fluid

viscosity appearing. The gravitational energy gain per unit time

rgR3V is simply replaced with DrgR3V where Dr is the difference

of density of the two fluids. Balancing these two energies, we

obtain a relation V x DrgR2/h, which is independent of the

viscosity inside of the drop, as in the Stokes law.

However, when this highly viscous drop is squashed in the

Hele-Shaw cell, the situation changes significantly. As before, the

thin PDMS film existing between the drop and cell plate tends to

avoid strong dissipation associated with a velocity gradient V/h;

namely, this thin film acts like a solid sheet to help produce

a velocity gradient V/D inside the drop; whether the thin film

tends to act like a solid sheet developing a Poiseuille flow inside
This journal is ª The Royal Society of Chemistry 2011
the drop or like an air sheet developing a plug flow inside the

drop (see Fig. 3c) can be judged by comparing the viscous

dissipation per unit time per unit area of the film: the dissipation

in the former case of solid scales as hD(V/D)2D and that in the

latter case of air as h(V/h)2h, with hD being the viscosity of the

drop, and these two estimates give a criterion for the solid-like

regime to become less dissipative:

h � (h/hD)D. (3)

We assume that this condition is satisfied, which is justified

shortly by our experimental data. This assumption of solid-like

behavior is also supported by the Bretherton’s law mentioned

above: by employing this law, this assumption becomes equal to

Ca2/3 � h/hD which is well satisfied in the parameter range of our

experiment. Note that the local dissipation inside the dynamic

meniscus is again negligible compared with more global dissi-

pation associated with the velocity gradientV/D developed inside

the drop.

Under this assumption of solid-like behavior, the total dissi-

pation per time is counted as hD(V/D)2RTRLD, which is balanced

by the gravitational gain per time DrgRTRLDV. Here, we should

stress the volume of dissipating region is not R2
T but RTRL in this

case even if RT [ RL; this is because dissipation occurs inside

the drop. In this way we obtain a scaling relation:

V x DrgD2/hD (4)

As expected, now the velocity is governed by the inside

viscosity hD, which is the novel feature announced above. In

addition, we have confirmed that the scaling law given in eqn (4)

can be derived by taking an appropriate limit given in the formal

result in ref. 17.

To check that the viscosity inside the drop truly determine the

dynamics, we first compare velocities for a fixed cell thickness.

Although RT and RL are not fixed for the data, if the prediction

in eqn (4) is correct, we expect that V is inversely proportional to

a rescaled drop viscosity hD/Dr, which is confirmed in Fig. 6a. To

further confirm the prediction, we plot V as a function of

DrgD2/hD by performing experiments for various D; if eqn (4) is

correct all the data should collapsed onto a straight line, which is

reasonably well confirmed in Fig. 6b. The reason we cannot get

a clear collapse of the level of the bubble case as in Fig. 4 is as

follows. In the present case of high viscous drop, there should be

a dissipation of the order of hD(V/RT)
2 inside the drop. However,

in the current experiment, it is difficult to well separate the scale

D from that of RT because it is not feasible to make the drop size

larger in a controlled way. Indeed, if we limit the data in which

this separation is well (D < RT/10), we find a better collapse as

indicated in the inset of Fig. 6b (the data in Fig. 6a are also

selected to satisfy this condition). In this way, we conclude that

the thin but less viscous PDMS film surrounding the more

viscous drop does not contribute the dynamics, which suggests

the condition in eqn (3) is satisfied.

The case of less viscous drops. When the drop viscosity is

smaller than the surrounding oil, drops again sink in the

surrounding oil at constant velocity. However, the shape of the

drop becomes less asymmetric as in Fig. 1c and similar to rising
Soft Matter, 2011, 7, 5648–5653 | 5651
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Fig. 6 (a) Velocity V as a function of a renormalized drop viscosity hD/

Dr, which confirms that high viscosity of the drop determines the

dynamics. (b)V as a function of the squared cell thicknessD2. The inset is

the same plot but only of data with well separation betweenD and RT for

which the approximation becomes better. Symbols are specified inTable 2.
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bubbles. Indeed, when we rescale the plot according to eqn (2)

the data collapse onto the data obtained from the rising bubbles.

This is shown in Fig. 4 as indicated in the caption. On the plots,

the data represented by :, P and O (see Table 3) are obtained

from the experiment of a glycerol drop sinking in a more viscous

PDMS. These marks are plotted at kD x 0.2, 0.45 and 0.45,

respectively, and are recognized easier in Fig. 4b because they are

collapsed too well in Fig. 4a. As understood from this good

collapse of the data, the dynamics of a less viscous drop setting in

a viscous surrounding oil is physically the same with that of rising

bubbles. Only the direction of the movement is different due to

the relation between relative densities: drops are heavier while

bubbles are lighter than the surrounding fluid.
Table 3 Cell thickness D and kinematic viscosity of PDMS n in the
experiment of a glycerol drop sinking in a more viscous PDMS. Viscosity
of glycerol aqueous solution is negligibly small (nD ¼ 15.2 cS and
rD ¼ 1.17 g cm�3)

: P O

D/mm 1.0 2.0 2.0
n/cS 100 100 500

5652 | Soft Matter, 2011, 7, 5648–5653
Conclusion

We have shown that important are the dissipation associated

with a velocity gradient V/D over the cell thickness D in all the

cases studied here. However, the region where this gradient

develops is different depending on the relative importance of the

fluid drop viscosity to that of the surrounding fluid (here, a fluid

drop includes an air bubble). When the surrounding oil is more

viscous this gradient develops in the surrounding liquid around

the head and tails of the drop over a volume about R2
TD. When

the drop is more viscous, however, the gradient develops inside

the whole drop over a volume about RTRLD. These scaling views

reveal that the Stokes friction law scaling as hVR in the bulk is

replaced in a Hele-Shaw cell by hVR2
T/D for a viscous

surrounding fluid (regardless of whether the fluid drop is rising or

setting) and hDVRTRL/D for a viscous fluid drop:

hVR0
hVR2

T=D viscous surrounding fluid

hDVRTRL=D viscous fluid drop

(
(5)

In the latter case, a high viscosity of drop determines the

dynamics, which is unexpected from the well-known Stokes

friction in the bulk. This unexpected feature originates from the

existence of thin film between the drop and cell plates, inside

which dissipation is avoided. The principle we confirmed in this

paper that strong viscous dissipation tends to be avoided (inside

a thin liquid film or inside a viscous drop), together with the

proposed simple friction laws for confined fluid drops should

play significant roles in understanding a variety of viscous

dynamics in both academic and applied problems.
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