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Realistic Numerical Analysis of a Bioinspired Layered
Composite with a Crack: Robust Scaling Laws and
Crack Arrest**
By Yukari Hamamoto and Ko Okumura*
Nacre is a prototype of natural strong and tough materials

and has been studied extensively. However, no numerical

models have been developed that faithfully reflect the layered

structure made of alternately stacked soft and hard layers, in

order to study the fracture toughness in the presence of a

macroscopic crack. In this study, we construct a realistic

numerical model by finite element method (FEM) that

explicitly takes the layered structure into account and study

the stress and deformation fields around a crack. Although we

reflect a realistic layered structure, we remarkably find simple

scaling laws for the elastic fields, which predict considerable

reduction of the stress concentration around the crack tips in

exchange for enhancement of the deformation. We also find

that the divergence at the crack tips in the scaling law for the

stress field is cut-off at the scale of layers, which significantly

restrains the maximum stress appearing at the tips. We further

find that a crack tip is necessarily stopped at a soft layer and

this crack arrest guarantees strong effects of the reduction of

the stress concentration and cut-off of the stress singularity. In

addition, these toughening mechanisms lead to the prediction

of the correct order of the fracture energy experimentally

reported in a seminal paper. These mechanisms and the FEM

model developed here will be useful for the development of

artificial tough advanced materials.

Tough and strong materials in nature quite often exhibit

magnificent hierarchical structures. Nacre is probably the

most well studied material as such; it is a shining layered

composite found inside certain sea shells or on the surface of
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pearl. This material is remarkable in that only a small amount

of the soft component between the layers of the hard

component makes the fracture energy a few thousand times

as high as that of the monolithic material made of the hard

component.[1,2] Accordingly various toughening mechanism

of nacre have been proposed,[3–8] and nacre has bioinspired a

number of remarkable materials.[9–13] Here, in particular, we

focus on a simple model of nacre[14] that provides simple

understandings of the type recently revealed for spider

webs,[15–17] (although it does not include recently found

complex structures beyond the layered structure[18,19]). This is

because simple scaling laws were obtained for the model to

predict the correct order of the fracture energy of nacre, on the

basis of analytical solutions for two crack problems.[14,20]

However, in this model the layered structure is coarse-

grained or homogenized: the continuum model is valid on

scales larger than the layer period and thus can predict

nothing on smaller scales. In particular, this model is

insensitive to the position of crack tips, i.e. whether the tips

are located in soft or hard layers. To study such issues, we

need to construct appropriate numerical models that allow us

to seek what happens at scales inaccessible by the coarse-

grained continuum model. One such example is a simplified

two-dimensional spring-bead model.[21] This model has

revealed qualitative features but does not allow quantitative

discussions.

In this study, we construct a more realistic numerical

model of nacre that explicitly includes the layered structure in

the calculation by finite element method (FEM) in the presence

of a crack (c.f. ref.[19]). Although we relax some numerically

severe conditions in the calculation and explicitly include the

layered structure, we find that the scaling laws predicted

in the coarse-grained model hold remarkably well at a

quantitative level. This suggests robustness of the scaling

laws. Furthermore, we find that the scaling laws which hold

near the crack tips are cut-off at the length scale of the layered

structure. In addition, we find that the stress field near the

crack tips significantly changes with the position of the crack

tip in the layers, in such a way that a tip of a line crack should

be arrested at soft layers. Thereby, we establish, in a clear and

robust way at a quantitative level, the following physical

principles for the toughening of nacre: reduction of the stress

concentration (assisted by enhancement of the deformation),

cut-off of the stress singularity, and crack arrest at a soft layer.

Furthermore, the FEM model for nacre proposed in this study
. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2013, 15, No. 6
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will provide a solid starting point for investigating the

toughening mechanisms of nacre and for predicting mechan-

ical properties of newly designed materials that mimic nacre,

at a quantitative level.

1. FEM Model and Simulation Parameters

In this study, we consider a composite composed of thick

and hard layers and thin and soft layers. The thicknesses of

hard and soft layers are denoted dh and ds (dh � ds),

respectively, while the elastic moduli are Eh and Es

(Eh � Es). We are interested in the small e limit where the

parameter e, which plays an important role in this study, is

defined by
Fig. 1. (a) Mesh for the FEM calculation. Near the crack tip smaller mesh sizes are employed. (b) Contour map of
the stress concentration around the crack tip for the nacre model with e¼ e0. (c) Contour map for the monolithic
model.
" ¼ Es

Eh
� dh

ds
: (1)

This parameter is indeed very small:[19,22]

in natural nacre, typically, dh ’ d and ds are

around 0.5 and 0.025 mm, respectively (the

volume of the soft layers are about 5%), while

Es and Eh are of the order of 1 MPa and

100 GPa, respectively, which makes e’ 0.0001.

The FEM analysis was performed for a

two-dimensional system under plane strain

conditions by using a commercial software,

ABAQUS. Thanks to the symmetry, we

actually performed a calculation for the

region whose area is 1/4 of the actual size.

Considering the singular nature of the fields

around the crack tips, the mesh size is

reduced around the tip as shown in

Figure 1a. The total number of the elements

is 257 196 for the 1/4 model.

To mimic nacre, we set the basic para-

meters as L¼ 5000ds and dh¼ 10ds with

ds¼ 10 nm, where the system size is 2L� 2L.

We set the elastic moduli of the hard and soft

layers to typical values, Eh¼ 65 GPa and

Es¼ 1 MPa, respectively. In this case, e¼ e0

with e0¼ 1/6500. The Poisson’s ratios n of the

soft layers and of the hard layers are set to

typical values, 0.19 and 0.5, respectively.

To check the e dependence of the elastic

fields around a crack tip, we changed e by

replacing Es with the other parameters (dh/ds,

Eh and n) fixed: we performed calculations

also for Es¼ 6.5 and 65 MPa, namely, for

e¼ 6.5e0¼ 1/1000 and 65e0¼ 1/100. As a

reference, we also performed calculations

for a monolithic system with a homogeneous

Young modulus (Eh¼Es¼ 65 GPa).

We consider below a line crack of length

2a is running in the x direction at y¼ 0 in a

sample stretched in the y direction. In this

case, the direction of the line crack is
ADVANCED ENGINEERING MATERIALS 2013, 15, No. 6 � 2013 WILEY-VCH Verl
perpendicular to the layers. We here discuss the perpendi-

cular crack in particular because it is the most important mode

of fracture for the shell fish in the shell: cracks created on the

surface are always perpendicular to the layers.

We first consider a crack of size a¼ 506.5ds (Throughout

this paper, the crack position and size are given by those

before the deformation, i.e. before applying the deformation at

the edges). In this case, the crack tip is located at a soft layer.

We first focus on this case because, in the previous paper,[23]

the authors imagined that a tip of a crack perpendicular to

layers is stopped at the soft layer. In such a case, the hard layer

next to the tip has no macroscopic cracks so that they expected

that the stress concentration at the tip tends to be suppressed,

which leads to the toughness.
ag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 523
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Fig. 2. (a) Comparison of the deformations at the crack surfaces. As predicted by the scaling law, the deformation
is augmented, as e becomes smaller. (b) Collapse of the deformation data by rescaling on the basis of the scaling
law. (c) The same plot on log scales. (d) Comparison of the stress fields near the crack tip. As predicted by the
scaling law, the stress is reduced, as e becomes smaller. (e) Collapse of the stress data by rescaling on the basis of
the scaling law. (f) The same plot on log scales.
2. Results

2.1. Global Stress Distribution and Crack
Shape

In Figure 1b and c, the contour maps of the

stress distribution around a crack tip together

with the crack shapes are given for the nacre

model (e¼ e0) and, as a reference, for the

monolithic system. In the monolithic system,

the stress is severely localized and concen-

trated around the crack tip while the crack

takes the standard parabolic shape. On the

contrary, in the nacre model the stress is

delocalized and only weakly concentrated,

thanks to large deformation in the soft layers

(the crack takes a zigzag shape), which in turn

reduces the deformation of the hard layers

(and thus leads to a weak stress concentra-

tion). As seen in Figure 1b, when a¼ 506.5ds

the crack tip is located at a soft layer as

mentioned above. In b and c, the same strain

is applied but the magnifications in the y

direction (to make the deformation more

visible) are higher in c than in b: the

deformation in the monolithic case is exag-

gerated five times; Even so, the deformation

field at the crack surface is larger in the nacre

case.

2.2. Deformation and Stress Near a Crack Tip

In Figure 2a and d, the deformation field on

the crack surface and the stress field (at

y¼ 0þ) are given as a function of the distance r

from the right tip of the crack for three values
of e and for the monolithic model. The deformation field is

given for the left-hand side of the right crack tip (r< 0) while

the stress field is given for the right-hand side (r> 0): the right

tip is placed at the origin of the r-axis, which is parallel to the

x-axis. Here and hereafter, the deformation and the stress are

renormalized by the values at the edge (remote values u0 and

Ehu0/L, respectively) so that the results are independent of

applied strain at the edge (as long as the linear elasticity is

valid). As seen in these plots, we see that the curves for the

both fields are step-wise (zigzag). Note that in the FEM the

stress is constant in each element while the deformation is

assigned at each nodal points. In addition, from the plots, we

find that the deformation field is enhanced as e becomes

smaller, while the stress field is reduced as e becomes smaller.

In principle, these behaviors agree with the prediction in

the previous studies.[14,20] However, in the previous studies,

the elastic fields are coarse-grained or homogenized so that

deformation and stress fields as a function of r are given as

smooth curves, in contrast with the step-wise (zigzag) curves

in the realistic case as demonstrated in Figure 2a and d. In

exchange for the unrealistic description on the scale of layer

period d, the coarse-grained model allows analytical solutions
524 http://www.aem-journal.com � 2013 WILEY-VCH Verlag GmbH & C
for crack problems[14,20] because the dominant deformation

filed uy was shown to be governed by an anisotropic Laplace

equation (not the biharmonic equation). As a result, the

dominant components of deformation and stress (the y and

yy components, respectively) are given as a function of the

distance r from the right crack tip:

uy

u0
¼ c1

ffiffiffiffiffiffiffiffiffiffiffi
rj j

"1=2L

r
(2)

sy

s0
¼ c2

ffiffiffiffiffiffiffiffiffiffiffi
"1=2L

r

r
(3)

Here, u0 is the size of a fixed deformation at the top and

bottom edges and s0 is the corresponding stress (s0 ¼ Ehu0=L).

Under the plane strain conditions, the dimensionless numer-

ical coefficient c1 and c2 are given as 2c�1=4
3 =

ffiffiffi
p
p

and c1=4
3 =

ffiffiffi
p
p

,

respectively, where c3 ¼ ð1� nÞ=2. Strictly speaking, in the

original model, Poisson’s ratios for the soft and hard elements

are assumed to be the same. In the present FEM calculation, on

the contrary, the Poisson’s ratios are 0.19 and 0.5, respectively.

Accordingly the factors c1 and c2 are 1.41 and 0.450 for the soft
o. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2013, 15, No. 6
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elements, while they are 1.596 and 0.399, respectively for the

hard elements. Considering the volume fraction of the soft and

hard layers, we employ below rough estimates, c1¼ 1.6 and

c2¼ 0.4, for comparison between the theory and the FEM

calculation.

We note here that Eqs. (2) and (3) are independent of the

crack size (but dependent on L). A similar fact is well-known

even for the isotropic case when the size of a crack running in

the x-direction is much larger than the sample size in the

y-direction; in such a case the elastic fields are governed by the

latter (smaller) size. In this anisotropic case, however, the

stress and strain distributions around the crack tip are

independent of the crack size even if the crack size is

comparable to the sample size (this is because the last

condition in Eq. (5) can be satisfied even if a� L when e� 1).

This was first shown in ref.[20] but has not been properly

appreciated.

From these scaling laws, the correct order of the fracture

energy is predicted in ref.[14]. This was done by assuming the

maximum stress sM that appears at the crack tip is given by

Eq. (3) at r¼ d:[14]

sM

s0
’

ffiffiffiffiffiffiffiffiffiffiffi
"1=2L

d

r
(4)

Namely, they conjectured that Eq. (3) should be cut-off at

the length scale d because below this scale the homogenized

view breaks down. This relation is given only at the level of

scaling laws: dimensionless numerical coefficients of the order

of unity are simply set to one for simplicity. At this level, for

example, Young’s and shear modulus are not distinguished

and Poisson’s ratio is suppressed.

Eqs. (2–4) become exact only in the limit specified as

ds � dh � d� r� L; a and "1=2L� a (5)

and

Es � Eh such that " ¼ Es

Eh
� dh

ds
� 1 (6)

In addition, the sample size in the x-direction, Lx, is

assumed to satisfy the condition a�Lx. The requirements in

Eqs. (5) and (6) are rather tough for numerical calculations and

thus we relaxed some of these conditions in the calculations.

To be precise, we discuss here how the requirements are

alleviated in the FEM calculation. The conditions ds � dh � d

are reasonably well-satisfied and the conditions d� L; a are

well-satisfied, since dh¼ 10ds (and thus d¼ 11ds), a� 500ds (see

below) and L¼ 5000 ds (the condition a�Lx is reasonably well

satisfied because Lx¼ L¼ 5000ds). While we below compare

the three cases in which e are "0 ¼ 1=6500; 6:5"0 ¼ 1=1000, and

65"0 ¼ 1=100, the condition "1=2L� a � 500ds is well satisfied

for e¼ e0 or 6.5 e0. However, this condition is only marginally

satisfied (or even moderately violated) for e¼ 65 e0 (although

the condition "� 1 is well-satisfied for the three cases)

because e1/2 L is 5000ds/10¼ 500ds (that is comparable to a) for

e¼ 65 e0. In addition, we should care about the condition
ADVANCED ENGINEERING MATERIALS 2013, 15, No. 6 � 2013 WILEY-VCH Verl
dh � r� a: the scaling regime in a plot as a function of r/ds

(Figure 2) is expected only when 10� r=ds � 500 even if the

other conditions are perfectly satisfied. In addition, the scaling

regime in plots as a function of rj j=ð"1=2LÞ (Figure 2) can be

expected only when rj j � ð"1=2LÞ in the continuum limit, i.e. if

the curve is continuous.

In summary, we have to care about the conditions

dh � r� a while we should note that the condition

"1=2L� a is only marginally satisfied for e¼ 65 e0; the scaling

regimes in graphs whose horizontal axis is r/ds can be rather

narrow and can be expected only for e¼ e0 and 6.5 e0. In

addition, a graph is well explained by the theory only when it

suggests a continuum curve when averaged.

2.3. Robustness of the Scating Laws

The scaling laws in Eqs. (2) and (3) state that the stress

concentration around the crack tip is reduced by a small

factor e1/4 compared with a monolithic counterpart (hard

homogeneous material with elastic modulus Eh) and that

the deformation is enhanced around the tip by a large

factor e�1/4. This agree with the results of the numerical

calculations at least on a qualitative level, as seen in

Figure 2a and d.

2.3.1. Robust Scaling for the Deformation

To see an agreement on a quantitative level, we need to

compare the zigzag curves with the smooth curves predicted

by the continuum theory. For this purpose, we define average

points on the zigzag curves, first for the deformation field: we

place the average points at jrj ¼ nd with n integer whose

heights are calculated as the weighted average of uy/u0 in the

range from jrj ¼ ðn� 1Þd to jrj ¼ ðnþ 1Þd. These points are

shown by the three different symbols for e¼ e0, 6.5 e0, and 65 e0.

In Figure 2b, we rescale the jrj and uy axes by e1/2 L and u0

according to the predicted scaling law in Eq. (2). As a result, all

the average points are collapsed on to a single master curve.

This collapse is remarkably well especially if we remind that

the conditions for the scaling law in Eqs. (5) and (6) are relaxed

so that, at least theoretically, the scaling regimes can be rather

narrow and can be expected only for e¼ e0 or 6.5 e0. This

collapse clearly confirms the scaling law in the present

numerical model in a robust way. In Figure 2c, the collapse is

shown on the log scales. This confirms that the slope is the

predicted value 1/2. In addition, the curve starts to deviate

from the slope 1/2 when it approaches r¼ e1/2 L. This is fully

consistent with the prediction: this scaling law is valid only

under the condition r� "1=2L. The reference line of slope 1/2

in Figure 2c is y¼ 5.25x1/2 and the line of the same slope

that fits the average points in Figure 2c is y¼ 1.7x1/2 (the latter

line is not shown in the figure). This confirms that the

numerical coefficient in Eq. (2) is of the order of one, as

predicted.

Considering that one of our main scopes of this paper

is to show the robustness of the previously proposed scaling

laws and we relaxed the sever conditions for the scaling

laws, probably we should be satisfied only if the numerical
ag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 525
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Fig. 3. (a) The maximum stress at a crack tip as a function of the inverse of the layer
period d (or cut-off scale) in renormalized log scales. (b) Comparison of the deformation
and stress fields as a function of x whose origin is set to the center of cracks, when a crack
tip is located at a soft layer and when it is located in the middle of a hard layer. (c) The
same comparison as a function of distance r from the crack tips. (d) Stress at the crack tip
as a function of crack size. Vertical lines suggest the soft-hard interfaces.
coefficients corresponding to c1 and c2 in front of the

scaling laws are confirmed to be of the order of one. However,

here we notice that the coefficient 1.7 obtained from Figure 2c

is significantly close to the previous prediction c1¼ 1.6.

Considering the limitations of the FEM calculations this is

rather remarkable and may suggest the robustness of the

scaling law.

2.3.2. Robust Scaling for the Stress

We next consider a similar averaging for the stress field:

we placed average points on the zigzag curves such that

the points are placed at jrj ¼ ðnþ 1=2Þd whose heights

are calculated as the weighted average of sy=s0 in the

range from jrj ¼ ðn� 1=2Þd to jrj ¼ ðnþ 1=2Þd. The slight

difference in the definitions of the average points for

deformation and stress comes from technical convenience

(remind that the stress is practically constant in each element

while the deformation is assigned at boundaries between the

elements). In Figure 2e and f, the predicted scaling law in

Eq. (3) for r� "1=2L is clearly confirmed in this numerical

model (the reference line of slope �1/2 in Figure 2f is

y¼ 0.24x�1/2 and the line of the same slope that fits the

average points in Figure 2f is y¼ 0.55x�1/2 (not shown in the

figure).

Here, if we again dare to discuss the numerical coefficients

for the scaling laws, we notice that the latter value of the

coefficient 0.55 is reasonably close to the previous prediction

c2¼ 0.4. The agreement is not so good as in the case of the

deformation field. This may be because the stress distribution

is singular so that the continuum description is more difficult.

Considering this, the agreement for the stress field is

still surprising. This again suggests the robustness of the

scaling law.

2.3.3. Scaling Law for the Cutoff Stress

As seen in Figure 2d, the tip stress is finite. As mentioned

above, this is expected from the original idea in ref.[23,14] In

addition, the authors of ref.[23,14] conjectured that this

maximum stress should be governed by the scaling law

in eq. (4). This conjecture is well confirmed in Figure 3a

where the maximum stress at r¼ ds/2 is plotted as a function

of the inverse of the layer thickness d in the renormalized

scales defined by Eq. (4) (the slight deviation of the third

point from the reference line may be because the condition

"1=2L� a required for the scaling law is well satisfied for the

first two points but barely satisfied for the third). The

reference line of slope 1/2 in Figure 3a is y¼ 1.12x1/2, which

confirms that the numerical coefficient in Eq. (4) is of the

order of one (for this coefficient no theoretical prediction

exists; even theoretically, it is only known to be of the order

of one). In fact, Eq. (4) is also confirmed in Figure 2f by the

fact that all the three leftmost points of the three curves

where r¼ ds/2 are almost exactly on the reference line with

the slope �1/2. This is because this fact directly establishes

the relation sM=s0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"1=2L=ds

p
while

ffiffiffiffi
ds

p
and

ffiffiffi
d
p

are

practically of the same order. Similarly, in Figure 2c, all
526 http://www.aem-journal.com � 2013 WILEY-VCH Verlag GmbH & C
the three rightmost points of the three curves where rj j ¼ ds

are on the reference line with slope 1/2. This suggests a

natural prediction from Eq. (2) with the cutoff: the minimum

nonzero deformation is determined by the scaling law

uy=u0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dj j=ð"1=2LÞ

p
. This and Eq. (4) state that the scaling
o. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2013, 15, No. 6
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laws in Eqs. (2) and (3) are cut-off at the length scale d of the

layered structure.

2.4. Importance of the Crack-Tip Position

2.4.1. Stress and Deformation Near a Crack Tip

Motivated by the original idea in ref.[14,23], up to now we

only discuss the case in which the crack tip is located at a soft

layer. In contrast, in Figure 3b we compared the deformation

and stress fields near the right crack tip when the tip is in the

soft layer (a¼ 506.5ds) and when it is in the hard layer

(a¼ 500.5ds), for e¼ e0 as a function of x whose origin is located

at the crack center. When we replot the graph as a function of

the distance r from the crack tip as in Figure 3c (r¼ 0

corresponds to the right crack tip), we see that the fields for the

two crack sizes are similar on the average. However, there are

significant differences in the two cases. When the tip is in a

hard layer, the deformation in the range from jrj ¼ 0 to

jrj ¼ dh=2 is severely restricted until it jumps at the first soft

layer, and the crack-tip stress (at r¼ ds/2) is significantly

increased.

2.4.2. Mechanism of the Crack Arrest

In Figure 3d, the stress near the tip (at r¼ ds/2) is plotted as

a function of the position of the crack tip. The tip stress tends

to increase when the tip moves into a hard layer till the stress is

significantly reduced when the tip meets the next soft layer. In

other words, the reduction of the stress concentration and the

cut-off of the weakly concentrated stress are less effective

when a crack tip is located in a hard layer (we confirmed that

the scaling law in Eq. (4) is well satisfied even for a¼ 500.5ds,

i.e. when the tip is in a hard layer). This increase of the tip

stress as the tip proceeds in a hard layer which is terminated at

the soft layer with a significant drop of the stress means that

once the crack tip enters a hard layer the tip cannot stop until it

meets the soft layer. Namely, the crack tip can stop only in soft

layers. This is a clear and explicit demonstration of crack-

arrest mechanism that has been discussed for a long time in

various contexts.

In addition, in Figure 3d we see that the tip stress as a

function of the crack tip position is nearly periodic: the tip

stress seems virtually constant irrespective of the crack length.

This agrees with the prediction of the scaling law, but

confirmed for the first time numerically.

Looking back Figure 1b, we see that, thanks to the large

deformation of the soft layers near the tip, the stress is almost

completely relaxed with in a few period (d) almost irrespective

of the crack length. As a result, the stress distribution around

the tip becomes virtually independent of the crack length.

The mechanism of arrest of the crack at a soft layer makes

plausible to set a failure condition when crack tips are stopped

at a soft layer. In fact, in ref.[14,23], they determined the fracture

energy by matching the maximum stress in Eq. (4), which is

valid when the tip is arrested at a soft layer as seen above, with

the strength of the hard layers, i.e. the failure stress in the

Griffith model for Griffith flaws of size a0: sf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehgh=a0

p
.

Here, gh is the fracture energy per unit area of the hard
ADVANCED ENGINEERING MATERIALS 2013, 15, No. 6 � 2013 WILEY-VCH Verl
material.[24] From this matching condition, we obtain the

failure stress sF ’ ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ehgh=L

p
for the composite with the

enhancement factor ls ’ "�1=4
ffiffiffiffiffiffiffiffiffi
d=a0

p
(� 1). This failure stress,

together with the the Griffith energy balance ðs2
F=EhÞL ’ Gc

where Gc is the fracture energy for the composite, leads to

the fracture energy Gc ’ lgh with the enhancement factor

l ’ "�1=2ðd=a0Þ (� 1) and the order of Gc thus obtained

matches with the order of an experimentally reported value in

the pioneering paper.[2]

3. Conclusions

In this study, we constructed a FEM model for nacre by

explicitly taking the layered structure into account. In a

previous study, by a bold homogenization, this model reduces

to a simple analytical model, which predicts scaling laws for

the stress and deformation around a crack tip. In the present

study, the numerical simulation is associated with a number

of length scales, while only in the limit in which the length

scales are well separated with each other the scaling laws are

shown to be valid. Although we explicitly include the layered

structure and relaxed some of such conditions for calcula-

tional convenience, we surprisingly find the same scaling laws

for the elastic fields in a clear manner, which establishes the

robustness of the scaling laws: the previously predicted

scaling law can hold well even when the required conditions

are only marginally satisfied. We further found that the

scaling laws for the singularity of the stress field near the crack

tip is cut-off at the scale of the layer period. In addition, we

found that when the crack tip moves into a hard layer the tip

stress increases, which forces the arrest of the crack tip at a soft

layer. Accordingly, simple physical principles have been

established at a quantitative level: nacre is strong and tough

because (1) the stress concentration at crack tips is reduced,

which is aided by the enhanced deformation near the tips, in

such a way that the stress distribution around the tip becomes

virtually independent of the crack length. (2) the tip

singularity is cut-off at the length of the layer period, and

(3) these two effects are made efficient by virtue of the arrest of

a crack tip at a soft layer. These mechanisms will be useful as

guiding principles for developing reinforced materials.

Moreover, the present FEM model will provide a solid basis,

at a quantitative level, for studying the toughness of nacre and

for developing a new mechanically superior material that

mimics nacre.
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71, 066106.

[9] T. Kato, J. Adv. Mater. 2000, 12, 1543.

[10] M. Sarikaya, C. Tamerler, A. Jen, K. Schulten, F. Baneyx,

Nat. Mater. 2003, 2, 577.

[11] E. Munch, M. Launey, D. Alsem, E. Saiz, A. Tomsia,

R. Ritchie, Science 2008, 322, 1516.

[12] L. Bonderer, A. Studart, L. Gauckler, Science 2008, 319,

1069.

[13] L. Corte, L. Leibler, Macromolecules 2007, 40, 5606.

[14] K. Okumura, P.-G. de Gennes, Eur. Phys. J. E 2001, 4, 121.
528 http://www.aem-journal.com � 2013 WILEY-VCH Verlag GmbH & C
[15] Y. Aoyanagi, K. Okumura, Phys. Rev. Lett. 2010, 104,

038102.

[16] P. Ball, Nat. Mater. 2010, 9, 190.

[17] S. Cranford, A. Tarakanova, N. Pugno, M. Buehler,

Nature 2012, 482, 72.

[18] X. Li, W. Chang, Y. Chao, R. Wang, M. Chang, Nano Lett.

2004, 4, 613.

[19] F. Barthelat, C. Li, C. Comi, H. Espinosa, J. Mater. Res.

2006, 21, 1977.

[20] Y. Hamamoto, K. Okumura, Phys. Rev. E 2008, 78,

026118.

[21] Y. Aoyanagi, K. Okumura, Phys. Rev. E 2009, 79,

066108.

[22] T. Sumitomo, H. Kakisawa, Y. Owaki, Y. Kagawa, J.

Mater. Res. 2008, 23, 1466.

[23] P.-G. de Gennes, K. Okumura, Comp. Ren. Acad. Sci. IV

2000, 1, 257.

[24] B. Lawn, Fracture of Brittle Solids, 2nd edition,

Cambridge Univ. Press, Cambridge 1998.
o. KGaA, Weinheim ADVANCED ENGINEERING MATERIALS 2013, 15, No. 6


