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Abstract. We consider the quasi-static energy of a drop on a textured hydrophilic surface, with taking
the contact angle hysteresis (CAH) into account. We demonstrate how energy varies as the contact state
changes from the Cassie state (in which air is trapped at the drop bottom) to the Wenzel state (in which
liquid fills the texture at the drop bottom) assuming that the latter state nucleates from the center of
the drop bottom. When the textured substrate is hydrophilic enough to allow spontaneous penetration of
liquid film of the texture thickness, the present theory asserts that the drop develops into an experimentally
observed state in which a drop looks like an egg fried without flipped over (sunny-side up) with a well-
defined radius of “the egg yolk.” Otherwise, the final contact state of the drop becomes like a Wenzel
state, but with the contact circle smaller than the original Wenzel state due to the CAH. We provide
simple analytical estimations for the yolk radius of the “sunny-side-up” state and for the final radius of
the contact circle of the pseudo-Wenzel state.

PACS. 68.08.Bc Wetting – 68.35.Md Surface thermodynamics, surface energies – 85.40.Hp Lithography,
masks and pattern transfer

1 Introduction

Recently, wetting properties of surfaces artificially tex-
tured at submicron or nano scales have attracted a con-
siderable attention; the possibility to tune textures to at-
tain desired purposes has been actively explored by experi-
ments, simulations, and theories [1–22]. On such textured
surfaces, the contact state of a liquid drop controls the
wetting property. Possible contact states include (a) the
Cassie state (Fig. 1a) where air is trapped between the
bottom of the liquid drop and the solid surface, and (b)
the Wenzel state (Fig. 1b) where liquid at the contact pen-
etrates into the texture; the Wenzel drop is very sticky,
showing high contact angle hysteresis, while the Cassie
drop easily rolls on the surface by small perturbation.

The transition between the Cassie and Wenzel states
is theoretically discussed in our previous papers [23,24].
In the first paper [23] we assumed that the transition took
place homogeneously beneath the contact circle of a drop
and explicitly showed the existence of an energy barrier
between the two states. In the second paper [24] we pro-
posed transitions taking place inhomogeneously by “nu-
cleation” of a small Wenzel patch at the center of the
drop bottom: a “nucleus” of radius x created at the cen-
ter initiates the transition (see Fig. 2a) on a hydropho-
bic substrate. These two scenarios of homogeneous and
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Fig. 1. (a) Cassie drop and (b) Wenzel drop.
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Fig. 2. (a) Mushroom state: x is the radius of the “nucleus”,
and X is the radius of the contact circle. (b) Sunny-side-up
state: x is the radius of penetration, and X is the radius of
contact circle. X in the sunny-side-up state will be called the
yolk radius.

inhomogeneous transitions are examined recently through
direct observation in [25].

Even on a hydrophilic case, this transition can occur
experimentally. As far as we know, however, the main in-
terest in the recent literature has been in the hydrophobic
case. In particular, the transition on hydrophilic substrates
has rarely been discussed theoretically except for a few
works (e.g. a brief discussion in [23]). The main purpose
of this paper is to examine the above nucleation scenario
in the hydrophilic case; as a result we successfully explain
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Fig. 3. A drop on a flat or textured surface: R is the radius
of curvature of the drop, X is the radius of the contact circle.
On the textured surface the angle θ is called apparent contact
angle because the local contact angle can be inhomogeneous.

a recently observed drop state [18,20], termed below as
“sunny-side-up state,” for the first time; furthermore we
provide compact analytical (approximate but precise) ex-
pressions (to characterize this state) to be compared with
experiments. In addition, the present paper addresses the
problem of the contact angle hysteresis, which has been
neglected very often in the recent context of wetting on
textured surfaces except for a few works [24,26,27].

Let us consider a reference state composed of spherical
drop (radius R0) and a flat surface (surface energy γS). If
we put the drop on the surface, the shape of the drop is
like a spherical cap with the contact angle θ and radius
R (Fig. 3). Because the volumes of the above two drops
are the same, the following relationship between R and R0

holds:

R/R0 = 22/3(2 − 3 cos θ + cos3 θ)−1/3. (1)

With use of this R, the surface area of the spherical cap
is given by

SC(θ) = 2πR2(1 − cos θ). (2)

The bottom radius of the drop on the surface in Figure 3
is defined here as

X = R sin θ, (3)

from which the bottom area is given by

SB(θ) = πR2 sin2 θ (= πX2). (4)

With the aid of SC and SB, given above, the surface
energy of the drop is given by [23,24]

E = γSC(θE) − γ cos θESB(θE), (5)

where we have used Young’s equation with θE the equi-
librium contact angle on the flat substrate:

γ cos θE = γS − γSL. (6)

In equation (5), −γ cos θE = γSL − γS corresponds to the
energy of replacement per unit area of the solid (dry) sur-
face (described by the surface energy γS) with the solid-
liquid (wet) surface (γSL).

If we put a drop on a non-flat textured surface, the
energy of a drop changes. We consider a model surface
textured by a forest of cylindrical pillars arranged in a
square lattice with lattice constant L where the radius
and height of the pillars are b and h, respectively, as in
Figure 4. The surface roughness r is given as the ratio of
the actual area to the projected area: r = 1 + 2πbh/L2.

2b

L

Fig. 4. Top view of the texture.

The solid fraction φ of the contact circle at the bottom of
the Cassie drop can be represented by φ = πb2/L2.

In the case of Cassie drop (Fig. 1a), the contact angle
is given by the average of contact angles on the solid and
“air” substrates (the latter angle can be regarded as π so
that its cosine is −1) [28]:

cos θC = φ cos θE − (1 − φ), (7)

and the surface energy becomes [23,24]

EC = γSC(θC) − γ cos θCSB(θC). (8)

Here, as in equation (5), −γ cos θC corresponds to the en-
ergy of replacement per unit area of the solid (dry) tex-
tured surface with the wetting state of Cassie.

Similarly, because the apparent contact angle of the
Wenzel drop (Fig. 1b) is determined as

cos θW = r cos θE , (9)

the surface energy is expressed as [23,24]

EW = γSC(θW ) − γ cos θW SB(θW ). (10)

Here, γ cos θW corresponds to the energy of replacement
per unit area of the solid (dry) textured surface with the
wetting state of Wenzel. Note that, the value of r cos θ
in equation (9) can exceed one. Even in such a case, we
will call this quantity cos θW as in equation (9) for conve-
nience. We emphasize here that equations (8) and (10) can
be regarded as natural extension of equation (5) [23,24].

2 Drop energies of intermediate states

In our previous work [24] we characterized the intermedi-
ate states during the transition from the Cassie to Wenzel
state by two variables x and X (see Fig. 2) and calcu-
lated the steepest-descent path in the energy landscape
shown on the (x,X)-plane in order to determine how the
intermediate states (i.e., x and X) change during the tran-
sition: we demonstrated a scenario that nucleation occurs
during the transition from the Cassie state to the Wen-
zel state with the liquid penetrating into the texture from
the center. In this previous work mainly for hydropho-
bic cases, other than the conventional Wenzel and Cassie
states, novel characteristic states emerged in the theory,
called the pseudo-Wenzel state and the mushroom state.

In the present work mainly for hydrophilic cases, still
another representative state emerges as we see below. We
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call this a “sunny-side-up” state, which was recently ob-
served (see Fig. 7 of Ref. [18]).

The above three non-conventional states are charac-
terized as follows:

– “Mushroom” state (Fig. 2a): the penetration front rep-
resented by x is inside of the (macroscopic) contact
circle (radius X). Here, x is the radius of “nucleus”
(x < X).

– Pseudo-Wenzel state: the penetration front coincides
with the contact circle (radius X). This state is similar
to the Wenzel state (Fig. 1b) but the contact circle
radius X is different from that of the Wenzel state
(x = X).

– “Sunny-side-up” state (Fig. 2b): the penetration front
is outside of the contact circle (x > X). X in this state
is called the yolk radius.

Below we investigate the surface and hysteresis en-
ergy as a function of x and X and show that these non-
conventional states can appear in practice as characteristic
states.

Note that a deposited drop can realize the Cassie state
even on a hydrophilic surface; in such a case, the wetting
state can be changed into the Wenzel state by external
perturbation, say by pushing the drop. For such transi-
tions, an initial barrier of the order of γ(L2 +4Lh) should
be overcome first to establish the smallest Wenzel patch
at the drop bottom. This initial barrier, which can be en-
hanced by the contact angle hysteresis in practice, is much
larger than the thermal energy and can be larger than the
gravitational or vibrational energy of a millimeter drop
when gently put on the surface, which vindicates the ob-
servation of the Cassie state even on the hydrophilic sub-
strate. In the following calculation, we assume that the
drop already conquers this initial barrier to establish a
tiny Wenzel patch or nucleus of radius x, with x being
small but larger than the texture scale.

2.1 Without contact angle hysteresis

In this subsection, we derive the surface energy of a drop
for given x (nucleus size) and X (drop bottom radius),
neglecting contact angle hysteresis (both in hydrophobic
and hydrophilic cases for completeness). We first deter-
mine R and the apparent contact angle θ in Figure 3 on a
non-flat textured surface for a given X. From equation (3),
θ (= θX) is obtained once X is given:

cos θX =

{

(1 − (X/RX)2)1/2, for θX < 90◦,

−(1 − (X/RX)2)1/2, for θX > 90◦,
(11)

where R = RX can be specified by equation (1) with this
θ = θX , i.e., RX is obtained as a solution of the nonlinear
equation,

4(R0/RX)3 = 2±3(1− (X/RX)2)1/2 ∓ (1− (X/RX)2)3/2,
(12)

where the top and bottom signs should be used in “hy-
drophilic” cases (θX < 90◦) and in “hydrophobic” cases
(θX > 90◦), respectively.

In this situation, since R and θ are specified once X
is given, SC and SB determined by R and θ as in equa-
tions (2) and (4) are given as functions of X (while SC

and SB are given once θ is given in equations (5), (8)
and (10)). To emphasize this, we use the notation SC(X)
and SB(X) in the following.

In the case of x < X (i.e., mushroom state in Fig. 2a),
we obtain the surface energy

E(x,X) = γSC(X) + γ(1 − φ)π(X2 − x2)

+ (γSL − γS)φπX2 + (γSL − γS)(r − φ)πx2.
(13)

The first and second terms are the energy associated with
the liquid-air interface γ for the cap of the drop and the
doughnut area at the drop bottom. The third and forth
terms are the energy associated with the replacement of
the dry solid surface γS by the wet solid surface γSL. Us-
ing equation (6), the above energy can be cast into the
following form:

E(x,X)/γ = SC(X)

− {fW cos θW + (1 − fW ) cos θC}SB(X),
(14)

where
fW = x2/X2. (15)

Recall here that cos θW is a quantity defined by equa-
tion (9), which can exceed one. In equation (14), γ times
the quantity in the curly bracket corresponds to the en-
ergy of the replacement per unit area of the solid (dry)
surface with the wetting state comprised of the Wenzel
and the Cassie states.

Equation (14) gives the drop energy as a function of
x and X for a given texture (i.e., for fixed φ and r).
This equation (14) can be regarded as a natural exten-
sion of equations (8) and (10): we recover equation (8)
when fW = 0 while recover equation (10) when fW = 1.

In the case of x ≥ X (i.e., sunny-side-up state in
Fig. 2b), we have

E(x,X) = γSC(X) + (γSL − γS)rSB(X)

+ π(x2 − X2){(γSL − γS)(r − φ) + γ(1 − φ)},
(16)

where the first term corresponds to the surface energy of
the drop cap, the second to that of the solid-liquid con-
tact at the bottom, and the third to that of doughnut
area which concerns both the solid-liquid contact and the
liquid-air contact (the top surface of pillars is assumed
dry because γS (dry state) is always smaller than γ + γSL

(wet state)). Using equation (6) we can again express the
energy as a function of x and X:

E(x,X)/γ = SC(X)

− {fW cos θW + (1 − fW ) cos θC}SB(X),
(17)
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Table 1. Parameters used in our calculation: θE is the contact
angle on a flat surface, b and h are pillar radius and pillar
height, respectively, in the unit where the pillar distance L is
10, i.e., L is fixed in our calculations. If we assume that L is
10 µm, it amounts to that b and h in this table are given in the
unit of micron.

θE b h φ r α

A 45 1.5 3 0.071 1.3 −0.072
B 60 1.5 6 0.071 1.6 −0.18
C 45 1.5 6 0.071 1.6 0.13
D 60 1.5 12 0.071 2.1 0.10

where θC is the average of contact angles on the solid and
“liquid” substrates (the latter angle can be regarded as 0
so that its cosine is 1),

cos θC = φ cos θE + (1 − φ). (18)

In equation (17), γ times the quantity in the curly bracket
corresponds to the energy of the replacement per unit area
of the solid (dry) surface with the wetting state comprised
of the Wenzel state and the wetting film of thickness h.

Equations (14) and (17) can be written in a unified
form, using equations (2) and (4):

E(x,X)/γ = SC(X) − cos θ∗SB(X) − πα∗x2, (19)

where

α∗ = cos θW − cos θ∗, (20)

cos θ∗ =

{

cos θC , x ≤ X,

cos θC , x ≥ X.
(21)

For later convenience, we express this in a dimension-
less form:

ε(x,X) ≡ E(x,X)/E0 =
(

2

1 + cos θX
− cos θ∗

)

X
2 − α∗x2, (22)

with the following definitions:

E0 = πγR2

0
, (23)

X = X/R0, (24)

x = x/R0. (25)

Note that this expression is valid both for “hydrophilic”
and for “hydrophobic” cases, together with equations (11)
and (12).

To draw physical scenarios from the energy expression
in particular in hydrophilic cases (see [24] for hydropho-
bic cases), we first present some numerical behaviors of
equation (19) and later consider some analytical proper-
ties. We used the typical parameter set A-D specified in
Table 1.

These parameters are selected so that they include
two distinct regimes of penetration and non-penetration.
These regimes are distinguished by the sign of the coeffi-
cient of x2 in equation (19) for x ≥ X. If it is positive, the
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Fig. 5. The penetration condition on the (b, h)-plane for L =
10 µm. (a) Contact angle is 45◦, (b) contact angle is 60◦, where
the units of b and h are both micron (or they are in arbitary
units so long as b, h and L are in the same unit and much
smaller than the drop size).

surface energy E becomes smaller as x increases and the
penetrating area becomes larger. The positive condition,
or the penetration condition is given by

cos θE >
1 − φ

r − φ
, (26)

or, equivalently by α > 0 with the definition of a penetra-
tion strength

α = cos θW − cos θC . (27)

Indeed, γα corresponds to the energy of replacement per
unit area of the Wenzel state with the wetting film. If the
Wenzel angle θW is smaller than the average θC of the
contact angles on the solid and “liquid” substrates, pene-
tration of liquid film proceeds into texture on hydrophilic
substrates (this picture is valid so long as cos θW does not
exceed one). In Figure 5, the (b, h)-plane is divided into
two regimes according to equation (26) where the upper
side of the curve corresponds to the penetration regime
(α > 0).

In Figure 6, we present numerical estimations of the
energy in the hydrophilic case in equation (19) on the
(x,X)-plane, with using the parameter set A-D, specified
in Table 1. These are contour plots of three-dimensional
plots, one example of which is shown in Figure 7. In nu-
merical calculations, we first find the root of equation (12)
and then use equation (11) to calculate equation (19).

The 3D landscape in Figure 7 of the corresponding con-
tour plot in Figure 6A predicts a scenario (a) → (b) →
(c) → (d1) → (e1) illustrated in Figure 8. This can be
understood as follows: the solid curve in Figure 6A or
Figure 7 represents the steepest-descent line, which starts
from the Cassie state (Fig. 8a) located at the point PC

(x = 0, X = XC), ending up with the Wenzel state
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the non-penetrating regime (α < 0), while C and D are in the
penetrating regime (α > 0).
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(Fig. 8e1) at PW (x = X = XW ), via PCW (correspond-
ing to Fig. 8c). Note that i) between PC and PCW only x
increases while X is fixed (Fig. 8b) and ii) between PCW

and PW both x and X simultaneously increase and al-
ways coincide with each other (Fig. 8d1). The same story,
(a) → (b) → (c) → (d1) → (e1) in Figure 8, applies also
for Figure 6B.

Similar to Figure 6A and B (α < 0), in Figure 6C
and D (α > 0), the starting point is PC and it moves
down to PCW , following the steepest-descent path. From
PCW , a pseudo-Wenzel drop enlarges the bottom area or
X (Fig. 8d2) with keeping x = X until the drop arrives at
PPW (Fig. 8e2), where X = XPW . Then, differently from
Figure 6A and B, the drop starts to make a “sunny-side
up” (Fig. 8f2) and the penetrating size x expands with
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Fig. 8. Transition from the Cassie state to the Wenzel state in
the non-penetration regime defined by α < 0 (left) or sunny-
side-up state in the penetration regime defined by α > 0
(right). (a) Cassie state, (b) mushroom state, (c) pseudo-
Wenzel state at X = XC , (d1) pseudo-Wenzel state at X

with XC < X < XW , (d2) pseudo-Wenzel state (at X >

XC), (e1) Wenzel state, (f2) sunny-side-up state. When CAH
comes into play, the left scenario is realized both in the non-
penetration regime (α < 0) and in the weak penetration regime
(0 < α < ∆) in which the size of X in the final state (e1) gets
smaller due to the CAH, while the right scenario is realized
in the strong penetration regime (α > ∆) in which the initial
yolk size XPW in (e2) and the final size X∗

PW in (f2) get larger
and smaller, respectively, due to the CAH.

the egg yolk radius X gradually increasing from an initial
value XPW to a maximum value X∗

PW where the initial
and final yolk radii XPW and X∗

PW are different form XW

(in Fig. 6C and D, the literal Wenzel angle is 0◦, where
XW is interpreted as an infinity).

The reason why X is fixed to XC during the transition
from PC to PCW is clear from equation (19): this equa-
tion states that, in the region X > x, the energy is the
minimum when the apparent contact angle is the Cassie
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angle θC , i.e., when X = XC , if we neglect the last term
(α∗x2).

The final radius X∗

PW can be determined also from
equation (19), which asserts that, for x < X, the energy
is the minimum when the apparent contact angle is θC

if we neglect the α∗x2 term: the final yolk size X∗

PW is

given by the radius when the angle is θC , i.e., the average
of the angles θE on the solid and 0 on the “liquid.” Later,
we discuss this final radius X∗

PW together with the initial
radius XPW in more details, because these quantities can
be measured in future experiments.

In summary, in the non-penetration regime (α < 0) as
in Figure 6A and B, the final state of the drop is the Wen-
zel state (Fig. 8e1) while X is fixed to the initial Cassie
value XC until x catches up to this XC and then x expands
with keeping x = X to the final value XW . In the opposite
case of penetrating regime (α > 0) as in Figure 6C and
D, the transition proceeds in a way similar to that in the
non-penetration regime but, after the expansion process of
x with keeping x = X to reach x = X = XPW , the drop
starts to make the “sunny-side up” (Fig. 8f2) and x contin-
ues to expand with the yolk size gradually increasing from
XPW to X∗

PW . The final yolk radius is that when the an-

gle is θC (the present theory is valid so long as the volume
of the penetrating film is negligible to the drop volume).

2.2 Hysteresis energy

Let us imagine that a liquid drop is deposited on a “flat”
surface, and that liquid is added to the drop by a pipet.
At first, the contact line does not move while the contact
angle increases: when the contact angle exceeds a critical
angle θA, the contact line suddenly advances. This pin-
ning occurs even on a “flat” surface which has usually
defects on it. We call the critical value θA the advancing
angle [28]. This implies that when the contact line is adi-
abatically moving at the advancing angle θA the contact
line is dragged by a force fd per unit length determined by
the force balance in the horizontal direction in Figure 9:
fd + γSL + γ cos θA = γS .

Here, a contact angle hysteresis (CAH) is measured by
δ or δθ defined as follows:

δ = | cos θA − cos θE |, (28)

δθ = θA − θE . (29)

With this δ the drag force fd working on a contact line
is expressed as γδ per unit length of the line. This implies
an extra energy fdld = γδA to move a contact line of
length l by a distance d with the swept area A = ld.

We have two important types of hysteresis on textured
surfaces. One is from the friction created when the con-
tact line moves on the side of the cylindrical pillars as
illustrated in Figure 10a. The other is from the friction
occurring when the contact line moves on the bottom sur-
face of the substrate on which the pillars are built as in
Figure 10b.

The surface area of the side of a pillar is written as
2πbh, while the contact line passes through πx2/l2 pillars

γ
S

γ
SL

f
d

γ
θA

Fig. 9. The force balance at the contact line moving adiabat-
ically when the contact angle is equal to the advancing angle.

(a) (b)

Fig. 10. Two representative modes of CAH. (a) The hysteresis
associated with the wall of the pillar. (b) The hysteresis asso-
ciated with the bottom surface of the substrate on which the
pillars are built.

till the radius of the bottom of a drop reaches x. Thus,
the first hysteresis energy from the side area can be esti-
mated as

Ep = (r − 1) πγδx2. (30)

On the contrary, the second hysteresis energy from the
bottom surface, πx2(1 − φ), is given by

Eb = (1 − φ)πγδx2. (31)

There could be a third contribution associated with
the friction occurring when the contact line moves on the
top surface of the pillars, which would contribute if there
were processes in which X increased in the mushroom
state (X > x); since the steepest-descent path without
CAH does not include such processes, this pillar surface
contribution is not considered below.

Consequently, the total energy coming from the surface
and the hysteresis energy is given by EA = E+Ep+Eb, or

EA/γ = SC(X) − cos θ∗SB(X) − π (α∗ − ∆) x2, (32)

with
∆ = (r − φ) δ. (33)

Figure 11 shows the contour plots of the energies with
the hysteresis given in equation (32) on the (x,X)-plane
when the contact angle hysteresis (CAH) δθ is either 5◦

(A1-D1) or 20◦ (A2-D2). The parameter sets A-D used for
Figure 11 are those given in Table 1 as before: A1, A2, B1,
and B2 are in the non-penetration regime (α < 0), while
C1, C2, D1, and D2 are in the penetration regime (α > 0).

As seen in Figure 11A1, A2, B1, and B2, when the
penetration condition, α > 0, is not satisfied, the final
state always becomes the pseudo-Wenzel state, with the
final size XPW different from XW . Even when this condi-
tion is satisfied, the final state could become the pseudo-
Wenzel state if the CAH is large (see Fig. 11C2, D1, and
D2). However when the CAH is small, in the final phase
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Fig. 11. Contour plots of energy given in equation (32) for
parameter sets A, B, C, D, with CAH. CAH of A1-D1 and
A2-D2 are 5 and 20 degrees, respectively. The unit length for
x and X is R0 while that of energy is 4πγR2

0, as in Figure 6.
A and B are in the non-penetration regime (α < 0), while C
and D are in the weak penetration regime (0 < α < ∆) except
C1; C1 is in the strong penetration regime (α > ∆).

of sunny-side up, x keeps increasing with X gradually in-
creasing from the initial yolk radius XPW to the final yolk
radius X∗

PW (see Fig. 11C1): an “egg white” film of height
h advances with a well defined “yolk” (as long as the film
volume is much smaller than the liquid drop). As men-
tioned before, this is consistent with experiments (Fig. 7
in [18]).

When the final state becomes the pseudo-Wenzel state,
the bottom radius (x = X) of the final state becomes

smaller as the CAH increases. Namely the apparent
contact angle becomes larger (e.g., compare Fig. 11A1
with A2).

When the sunny-side-up state “survives” the hystere-
sis (Fig. 11C1), the final yolk radius X∗

PW is the same as
that in cases without hysteresis as seen from equation (32)
because this equation is the same as equation (19) except
that the coefficient α∗ is replaced with α∗ − ∆. Equa-
tion (32) requires the condition for the penetration:

α > ∆ (34)

i.e., the penetration strength should be stronger than the
hysteresis effect ∆ for the penetration. This condition will
be confirmed again in a different context below. See also
the caption of Figure 8 for a summary with illustration.

3 Small contact angle approximation

In this section, we derive useful analytical formulae, e.g.
a formula for the yolk radius in the penetration regime,
when the apparent contact angle θ is relatively small, i.e.,
when the contact circle X is large.

Without making this small θ approximation, we ex-
plicitly have the final yolk size,

X∗

PW = 22/3(2 − 3 cos θC + cos3 θC)−1/3 sin θC , (35)

regardless of the existence of the CAH. If we calculate this
for Figures 6C and D, we have X∗

PW = 2.96 and 2.71, re-
spectively. This suggests that, in Figure 6C in particular,
the yolk size keeps increasing as x increases further; in-
deed, in Figure 11C1, for which X∗

PW is the same as that
in Figure 6C, X∗

PW approaches 2.96 at smaller values of x.
As seen above, in general, the convergence of the yolk

size from the initial value XPW to the final value X∗

PW
can be slow. Thus, it is worthwhile giving an estimate for
the onset value XPW for experimental confirmation of the
current theory. This estimate is tractable when θ is small
as shown from now on.

When θ ≪ 1 or X ≫ R0, we obtain R = (3θ4/16)−1/3

from equation (1), which gives θ = 16/(3X
3

) from equa-
tion (3). This expression allows us an approximate final
yolk size

X∗

PW =

(

16

3θC

)1/3

R0. (36)

This formula gives X∗

PW = 2.97 and 2.71 for the param-
eter sets C and D, respectively; the values are indistin-
guishable from the ones obtained from the exact formula
in equation (35) even though θE (= π/4 or π/3) is not
very small.

In a similar manner we obtain for X
3 ≫ 16/3 (i.e.,

X > R0)

ε(x,X) =
c

X
4
− βX

2 − α
(

x2 − X
2
)

, (37)
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where

β = cos θW − 1, (38)

c = (8/3)2. (39)

This formula can reproduce the energy landscape easily
without the numerical root-finding for X > R0. A similar
approximation is possible also for θ around π/2 and π,
equivalently, for X around R0 and 0.

The steepest-descent direction on the (x,X)-plane in
the region x > X is given by a unit vector

(nx, ny) =
(−εx,−εX)
√

ε2
x + ε2

X

, (40)

where

εx =
∂ε

∂x
= −2αx, (41)

εX =
∂ε

∂X
= 2(α − β)X − 4c

X
5

, (42)

because ∇[z−ε(x,X)] is normal to the surface z = ε(x,X)
in the (x,X, z) coordinate system. The variation ds in
this direction corresponds to variations dx = nxds and
dX = nyds in the x and X directions, respectively. The
gradient of ε along this direction is thus given by

dε

ds
=

∂ε

∂x

dx

ds
+

∂ε

∂X

dX

ds
(43)

= −
√

ε2
x + ε2

X . (44)

In the limit of x → X with x > X, the gradient is ex-
pressed as

G1 = −
√

(2αX)2 +
[

2(α − β)X − 4c/X
5
]2

, (45)

with α defined in equation (27).
The gradient of ε along the line x = X is given by

G2 = (∂ε/∂x′)X
′

=0
, where the (x′,X

′

) coordinate system

is the one obtained by the rotation of the (x,X) coordinate
system around the origin by 45 degrees; the right-hand
side is the partial derivative with respect to x′ with ε as a

function of x′ and X
′

evaluated at X
′

= 0, i.e., at x = X.
This quantity can be calculated as

G2 = − 1√
2

(

4c

X
5

+ 2βX

)

< 0. (46)

The initial yolk radius can be defined as a point on
the (x,X)-plane on the steepest-descent path where the
descent direction deviates from the line x = X as men-
tioned above. In other words, the initial radius of the yolk
XPW is given as the solution of the equation

G1 = G2. (47)

This equation can be explicitly solved. The solution is
given by

XPW =

(

2c

2α − β

)1/6

R0. (48)

The numerical values given from this for Figures 6C and D
are X∗

PW = 2.13 and 2.17, respectively, which reproduce
the values indicated in the plots, although θE is fairly large
or close to one (θE = π/4 or π/3).

Extension to the case with CAH is trivial and the ini-
tial yolk radius in equation (48) can be replaced with a
generalized expression

XPW =

(

2c

2α − β − ∆

)1/6

R0, (49)

with ∆ defined in equation (33). This formula gives
XPW = 2.55 for Figure 11C1, which is again almost pre-
cise as seen in the plot. This equation (49) predicts that
an increase in ∆ enlarges the initial yolk radius (compare,
for example, Fig. 6C with Fig. 11C1).

We can also derive the expression for the radius of
contact circle for the final Wenzel or pseudo-Wenzel state
in the non-penetrating regime from the condition G2 = 0:

XPW =

(

2c

∆ − β

)1/6

R0. (50)

This radius at ∆ = 0 gives an approximate radius in
the Wenzel state. Note that −β is positive in the non-
penetrating regime (α < 0) (see Eq. (51) below). This
expression is also valid in the penetration regime when
∆ − β is positive. In such a case, this equation (50) gives
the final radius of the contact circle of a drop which fails to
develop into the sunny-side-up state. In both cases, from
equation (50), the final pseudo-Wenzel size XPW is pre-
dicted to decrease as the hysteresis ∆ increases (compare,
for example, Fig. 11D1 with D2).

Equation (50) also gives good numerical estimates.
The final pseudo-Wenzel radii XPW specified by the point
PPW , in Figure 11A1 in the non-penetrating regime (α <
0) and in Figure 11C2 in the penetrating regime (α > 0),
calculated from equation (50) are 2.09 and 1.88, respec-
tively, which agree well the values indicated in the plots.

Within the above approximation, we can derive the
condition for the sunny-side-up state to be realized in the
penetration regime when ∆ �= 0. This condition amounts
to that the initial yolk size in equation (49) is smaller
than the size given in equation (50), which recovers equa-
tion (34), i.e., α > 0, as announced. This condition,
α > 0, defines the strong penetration regime. The physical
meaning of this condition is clear: when the penetration
strength α exceeds the effect of CAH, the sunny-side-up
state is realized. Otherwise, i.e., in the weak penetration
regime (0 < α < ∆) or in the non-penetration regime
(α < 0), the drop gets trapped into a (pseudo-) Wenzel
state. Note that the strong penetration condition (α > ∆)
guarantees the positivity of the quantity in the parenthesis
in equation (49):

2α − β − ∆ > α − β

= φ(1 − cos θE) > 0. (51)
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4 Discussion

In this paper, we have neglected some physical features
which could be potentially important.

1) In recent experiments [29], the transition is brought
about via evaporation of the drop. As the drop evapo-
rates, the Laplace pressure inside the drop increases. It is
indicated that this pressure increase can induce the tran-
sition. Since the present calculation does not include this
effect of volume change of the drop, direct comparison
would require a special care. However, the transition it-
self takes place within a submillisecond (in which dura-
tion evaporation could be neglected) in evaporating ex-
periments so that the transition itself could be well de-
scribed even with neglecting the volume change; although
we have to be careful when we compare our quasi-static
results with dynamical transitions, it gives some insight;
our result could be compared fairly well with evaporation
experiments (or experiments in which a transition is initi-
ated by vibration), in particular when we place some defect
at the center of the contact circle to initiate a nucleation
from the center.

2) The contact angle hysteresis due to the pinning of
the contact line at the singular or sharp corner of the
top surface of the pillars is important as discussed in [27],
which is neglected in the present work. In contrast, the in-
trinsic hysteresis effect considered in this paper and in [24]
is neglected in [27] so that these two sets of works are com-
plementary to each other. We may need a separate paper
to develop a theory which includes both the pinning and
intrinsic effects of contact angle hysteresis on the basis of
the two sets of works.

3) The penetration of the film of pillar thickness in
the sunny-side-up phase involves hydrodynamic effects.
Recently, this hydrodynamics itself is clearly understood
in [18]; we observe penetration of film into the texture on
the surface not from a yolk of the drop but from a liquid
bath and established the Washburn law [28] (i.e., the pen-
etration length is proportional to the square root of the
penetration time) in the case of textured surfaces with
dependence on texture parameters (i.e., radius, height,
and inter-distance of pillars) clarified. Although our quasi-
static treatment suggests the physical essence why the
yolk (i.e. the central) part of the “sunny-side up” is distin-
guished from “egg white” film (i.e. the surrounding dough-
nut film), we hope to include the dynamical effect in the
future work.

5 Conclusion

We consider the transition of a drop on the textured sub-
strates from the Cassie state to the Wenzel state, assuming
that nucleation occurs from the center of the bottom of
the drop. We derive an expression, equation (19), for in-
termediate energies applicable both in hydrophilic and hy-
drophobic cases. Based on this expression, we investigate,
in particular in hydrophilic cases, the energy for the pro-
cess from the Cassie state to Wenzel/sunny-side-up state

including CAH. An approximate formula for the interme-
diate energy is given in equation (37), which is correct for
large X.

The scenario clarified by the numerically calculated
energy landscape is as follows. Starting from the Cassie
state, the nucleus size x expands without changing the
macroscopic shape of the drop (X and θ constant), and the
nucleus spreads until the size x catches up with the con-
tact circle X = XC . Then, the “nucleus” size x increases
simultaneously with the radius of the contact circle X (x
and X expands with x = X). When the radius X, equal
to x, reaches a certain size, there are two possibilities:

– It gets trapped in a (pseudo-) Wenzel state with the
final radius XPW both in the weak penetration regime
(0 < α < ∆) and in the non-penetration regime
(α < 0)

– It goes into the sunny-side-up state for the egg white
film of thickness h to grow with the yolk radius X
gradually increasing from XPW to the final size X∗

PW
in the strong penetration regime (α > ∆).

We provide expressions to be compared with experi-
ments indicated in [18]:

– The final radius in the (pseudo-) Wenzel state in both
regimes of weak penetration (0 < α < ∆) and of non-
penetration (α < 0) is given in equation (50), which
predicts that the final radius gets smaller as CAH be-
comes larger.

– The initial yolk radius XPW for α > ∆ is given in equa-
tion (49), which asserts that the initial size increases
with the CAH.

– The final yolk size X∗

PW in the sunny-side-up state
for α > ∆ is given in equation (35) or in its good
approximation equation (36). This size is independent
of the CAH and is simply given as the radius when
the contact angle is θC given in equation (18), i.e.,
the average of the contact angle on the solid and the
“liquid” substrates.

We need to measure δ to compare some of these equa-
tions with experiments. In reality, δ in equations (30)
and (31) are different; in such a case ∆ is given as
∆ = (r − 1)δp + (1 − φ)δb.
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Lett. 74, 306 (2006).

20. L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari,
H.A. Stone, Nature Mater. 6, 661 (2007).

21. S. Diertrich, M.N. Popescu, M. Rauscher, J. Phys.: Con-
dens. Matter 17, S577 (2005).

22. M. Tasinkevych, S. Dietrich, Phys. Rev. Lett. 97, 106102
(2006).

23. C. Ishino, K. Okumura, D. Quéré, Europhys. Lett. 68, 419
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