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Assumirg tha the polarizability is alinear function of the nuclea coordinatei.e., a(q) = ¢y + @ q,

we obtain analyticd expressios of the (2n+1)th-orde signak and shaw tha the leadirg orde of

the signak (n>1) is proportionato g,,, 1, wher g, ; is the coefficiert of the anharmorg potential
V(q)=0g30%3! +g,q*4! +---. In othe words detectim of the (2n+1)th-orde signa implies the
dired observatio of the (n+1)th-orde anharmonicig within the approximationBasel on this fact

we discus a possibilily to deted the (n+ 1)th-orde anharmonicig directly from the (2n+1)th-order
experiment Calculatiors are mack by using novd Feynma rules for the nonequilibrium multitime

correlation functiors relevan to the higher-orde off-resonamn spectroscopyThe rules hawe been
developd by the authos and are presentd compacty in this paper With the help of a conventional
double-sidd Feynma diagram we draw physica pictures of higher-orde off-resonan optical
processesRepresentatie calculatiors for CHCI; of the fifth-, seventh- and ninth-orde optical
processegare presentd and discussed © 1997 American Institute of Physics.
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I. INTRODUCTION

Dynamics of intra- and intermolecula vibrationd modes
in the condense pha® play a crucid role in various chemi-
cd reactions The extensie developmenof ultrafag pulse
lases has mack it possibé to measue spectroscop of the
low-frequeng vibrationd modes in red time. The time-
doman third-orde techniquessud as femtosecod optical
Kerr effea (OKE),>2 and impulsive stimulatel Raman scat-
tering (ISS),® hawe directly detectel dephasig of the low-
frequeny modes of liquids.

It is naturd tha experimens of higha nonlinea re-
spong are more selective One of the exampls is Raman-
ectp experiment$™’ relatal to the sevenh order Anothe is
the two-dimensionh off-resonam experimen relatal to the
fifth-order nonlinearity®* Thes experimers were carried
out to separa the inhomogeneosi and homogeneous
dephasing In our previows papel® we showel tha off-
resonahn fifth-order opticd processe can alo be use to
separat effecs of third-orde anharmonici (g5q°/3!) of vi-
brationd modes from the othe effects sud as nonlinear
coordinaé dependene of polarization In the preset paper,
we generalie our previows study of the fifth-order optical
proces to the (2n+1)th orde ard show tha (2n+1)th-order
off-resonam spectroscop is usefu to study the (n+1)th-
orde anharmonicif g, 1.

We emplgy the multimode (anharmoni¢ Brownian os-
cillator modé (for a harmone Brownian oscillata model,
see for example Refs 16 and 17) to incorporaé the intra-
and intermolecula modes in the condensd phase The (2n
+1)th-orde off-resonamnsignd can be expresse by the mul-
ticommutato of the (n+1)-time correlation function of the
polarizability. For example the signd of the third-orde (n
=1) experimensud as ISS and OKE can be directly related
to the two-time correlatinn function R®«([a(t),a(0)]).
To calculat sud multitime correlation functiors for an an-
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harmonc system we use the nonequilibrium generating
functiond obtainel in Ref. 18.

If we assune polarization is a linea function of the
nuclea coordinatgi.e., a=ay+a4q, the respons functions
are expressé as the multitime correlation function of coor-
dinates ([q(t),q]),{[qa(t),a(t")],q]), etc Here the anhar-
monicity plays asignificart role, since correlation functions
of the multicommutato of coordinaé highe than the third
orde vanis for the harmone potentia or in the (harmonig
Brownian particle system In the red world, the anharmonic-
ity often becomsimportant For example the low-frequency
vibrationd modes of wate were found to hawe weak
anharmonicity"®

We incorporae anharmonicitf® into the Brownian mo-
tion theoy throuch Feynma diagrammat technique as
dore in our previows works>*821|n the presen article, we
refine our Feynma diagrammat technique in the form
which we call the three-stp Feynma rule. The conventional
Feynma diagran techniqe (for finite temperatue or for
zew temperaturghas only two steps (1) drav Feynma dia-
grans ard (2) obtan analyticd expressios from the dia-
grams Here we ded with the nonequilibrium expectation,
ard the diagrammat technique can be describd by three
steps (1) drawv simplified Feynma diagrams (2) draw
specifiel Feynma diagrams ard (3) obtan analyticd ex-
pressim from the specifie diagram.

In general a single gragh in this three-stp methal cor-
respond to a sun of mary double-sidd Feynman
diagrams’ Thus calculatin is simple in the three-step
method The physica picture from the three-stp methd is,
however nat as clea as tha from the double-sidd Feynman
diagrams eat double-sidd Feynma diagran has one-to-
one correspondereto the Liouvill e spae path!’ Therefore,
we use the double-sidd techniqe complementgr in the
presemh paper.
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In Sec I, we specify our modé for the off-resonant
experimen and define multicommutato correlation func-
tions which can be directly measurd by the experimentIn
Sec Ill, we give analyticd expressios of the respone func-
tions relevan to (2n+1)th-orde experimers by using the
three-stp method which is summarizd as rules A, B, and
C, with sonme example in Appendk A. In Sec IV, the con-
ventiona double-sidd diagrans (correspondig to the ana-
lytical expressia obtainel in Sec Ill) are presentd to un-
derstad profiles of signak from physica picture In Sec V,
we take parametes from the OKE experimen on
chloroform? carly out numerich calculations ard give
physica interpretatios of the results In the final section we
discus limitations and possibé extentiors of the present
work.

Il. FEYNMAN RULE FOR THE (2n+1)TH
CORRELATION FUNCTION

We conside a molecula systen in the condensé phase
which is subjed¢ to electronicaly off-resonan pulses The
off-resonam pulses can selectivey prolke only the electronic
grourd stak dynamics The effective Hamiltonian is given

by

Heir=H(p,q) — PE(r,t), 2.1)

where p ard g stard for the momentun ard coordinaé of the
nuclea degres of freedom respectivelyn this experiment,
the permanenelectronc dipole does nat play arole. Instead
only the inducal dipole
P=aE(t) (2.2
is probed where « is the polarizability. In the following we
conside the cag in which the nuclea motion is describe by
a single mode Generalizatio to the multimode ca® is
straightforwad (see Ref. 15). We conside the grourd state
Hamiltonian couplel to an environmen in the form

2 2

~ p Mw 2
H(p,q)= >mt 54 +V(q)
N 2 2 2
p; m; w; Ciq
+i21 2_m| 2 (qi_ miw? ) - 23

The correspondig classich equatio of motion of q for this
Hamiltonian has the memoy friction (t), which is com-
pletely specifiel by the bah parametes (¢; ,m; ,w;). All in-
formation abou the bah which is sa by the parameters
(c;,m; ,w;) is concentratd on the quantity y(t) even in the
guantum treatment Thus we can parameterie the theor in
terms of y(t) instead of specifying all the values;(m; , ;).
In the following, we emplgy the Ohmic modé assumingy(t)

= y48(t) wherey is a constant. This choice is allowed only

when we let N—oo,
The variation of the polarizability with the nuclea coor-
dinak is assumd to be
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R 1 1
a=agta;q+ 21 a Pt = o a.Q'EE a;(q)
| i=o0 I! =0
(2.9
The anharmonicig of the potentia is given by
1 3 1 4
V(Q):agsq T 9aa e
1 i
=2 7 9d=2 Vi(a). (2.5

The (2n+1)th-orde off-resonan signd is expresse a1’

|(2n+1)(T1,T2,...,Tn): |R(2n+l)(T1,T2,...,Tn)lz'
(2.6

The respones functiors are definel throudh the multicommu-
tators:

RO(T) =+ ([a(T),(0)]), @7
i\ 2

R(5>(T1,T2)=(%) ([[a(T1+T2),a(Tl)],a(O)]>,
(2.9
(2.9
R D(T, Ty, o+, T) (2.10

= ;L—) ([ [T+ Tot -+ Ty),

(Tt + T ], a(Ty)],(0)]), (2.11)

wherea(t) is the Heisenberg operator defined by the Hamil-

tonian H(p,q) in (2.3), or

a(t):eiﬁt/ﬁ&eqﬁt/h,_‘ (2.12
ard the expectatio implies
(---)=Tr[e*3F’---]/Tr[efﬂp‘].—- (2.13

The respones functions can be expressé by the sum of either
of the two types of connectd Feynma diagram:

R(2n+1)(T1!T2a"' aTn) (214)

=E [topologicaly distina simplified diagrans]
(2.19

=E [topologicaly distina specifie diagrans.
(2.19

Here the summatim X implies the one over all possible
diagrams Detailad explanatios are given in Appendics A
ard B with some examples We hawe three types of time
evolution operatorssina we are calculatirg the expectation
values in the nonequilibrium system Thes three operators,
the red time evolution operato of the ket (e~™H""), tha of
the bra (e'"*), and the imaginay time evolution operator

(e”PH), are associaté with the C;-path C,-path and
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FIG. 1. The unified time-pah C=C;+C,+C; on the comple t plane
(T—w). C, ard C, are alorg the real-time axis wherea C; is on the imagi-
naty axis.

Cs-path respectively or with the unified time path
C=C,;+C,+C; (see Fig. 1). In the conventionh casé?
whetre calculatio of the expectatio at the equilibrium is the
main goal only the imaginay time evolution operator,

e A" (correspondig to the C,-path), is required Thus the
propagatos appearig in the rule for the finite temperature
always connet two points on C; (Matsubaa Green func-
tions). On the contrary we hawe the three patts C,, C,, and
C; in the presemn ca® of nonequilibrium expectation Then
the propagatas in this cae connet arbitrarily two points on
the unified time pah C=C,+ C,+Cj;. In othe words we
hawe a propagato matrix D" (i,j=1,2,3. For convenience,
we take the linear combinatios of the four independenel-
ementsD, D), D and DG, of the 3x3 matrix.
This is why we hawe to add the extra (+,—,3) indices to the
conventionh Feynma diagrans to obtan the specifia dia-
grams (see Appendk A).

By use of the simplified diagram we can gragp the main
contributian to the respons function efficiently. Once asim-
plified diagran is written down, we can readily obtan the
analyticd expressios by way of the specifi@ diagrams Al-
though calculatiors of the nonequilibrium expectatio values
are more complicatel than thoe of the equilibrium ones the
three-stp procedue presentd here—obtainig simplified
diagrams ard then specifie diagrans to derive the analyti-
cd expressions—greatlsimplifies calculations.

Ill. RESPONSE FUNCTIONS OF THE ANHARMONIC
SYSTEM WITH THE LINEAR POLARIZABILITY

In the following, we employ the linear polarizability ap-
proximatian in a seng that

a=ap+ a1, (3.2
and calculat the respons function relevar to the (2n+1)th-
orde experiment In this model the respons function is
given as

1689

T1+ T 0

FIG. 2. The specifial diagran for the leadirg orde of R®.

R(2”+1)(T1,T2,”- T

[ e tare o

(Tt +Tho) ] ,a(T)1,9(0)]) .~ (3.2

By use of the three-stp procedue presentd in Appendk A,
the leadirg contributian is expresse as

5 i\3 5 [Tt T2
R )(Tl,T2)=—(g) g3a1fT dtD (T, +T,01)
1

XD (t,00DC P(t,Ty), (3.3

, i\4 o [T1HT2+Ts
R )(T1:T2:T3):_ g) 94011f

Ti+T,
XD (T +T,+T5,0)DC)(1,0)

XD (4, TYD (4, T1+Ty),~ (3.9

g (T2t T2+ Tat Ty
dt

R<9><T1,T2,T3,T4>=—('g)sgs,al o
172713

XD (T + T+ Ta+Ta0t)

XD (100D, Ty)

XD, T+ Ty)

XD, T+ T+ T3),m (3.5

R(2n+l)(T1y"' T

j\n+l naq [Tat*Th
== % On+101 T dt

1ttt T
XD (Ty+---+T,,)D (1,00 (1, Ty) -

XD, T+ +Thg)m (3.6)

The specifia diagran for the fifth order is explicitly given in
Fig. 2. The temperature-dependepropagatcs D™ and
D®3 do not appea in the abowe leadirg orde calculation;
they play roles in higher-orde contributions.

In the Ohmic ca% the propagato is calculatel as
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FIG. 3. The bare ladde diagran to creat double-sidd diagramsThe lower
(uppe) line stand for the red time evolution of the bra (ket) vecta and
correspond to the C,-(C,-) path.

h
D P)(t,s)=6(t—>s) me”(t*)’z sin ¢(t—s), (3.7
where
(=\w?—y?l4A (3.8

Note here tha by using the formula for oddn (and a similar
formula for evenn),

sin X; Sin X5 - -sin X,

(_1)(n71)/2
:T 2 2 El(_1)62+63+“.+6n

e)=*1 e3==*1 en=7=*

X SiN(Xq+ €Xo+ €nXg+ -+ + €pX;) o (3.9

the integratiors in Eqs 3.3-3.6 can be readily performed.
We use the resut of this integratian for the numerica calcu-
lations in Sec V.

We stres her tha the leadirg contributian is propor-
tiond to g,,..; and thus the detectio of the nonzep | "+
signd implies the dired observatio of the (n+1)th anhar-
monicity within the linear polarization approximation.

As sean from Eqs 3.3-3.6, the range of the integration
is from T;+---+T,_4 to T;+---+T,, namely the time
integration is dore for the periad T, , which indicates that the
signd is causd by the anharmort interaction during this
last period T,, ard thus becoms zem for T,=0.

IV. DOUBLE-SIDED FEYNMAN DIAGRAM AND
PHYSICAL PICTURE

Although the three-stp Feynman rule simplifies calcu-
lations considerablythe physica picture of the diagran ap-
pearirg in the three-stp techniqe may be less clea than the
double-sidd Feynma diagram!’ In this section we illus-
trate a physica picture of signak from nonlinea opticd pro-
cesss by using the double-sidd Feynma diagrams Al-
thoudh the double-sidd Feynma diagrans may be well-
known in this field, to clarify our notations in Appendk C
we give explicit rules to draw the double-sidd Feynman
diagrans of the leadirg orde contributiors to the (2n+1)th-
orde respons function (see Figs 3 ard 4).

Figure 4 shows a heuristc cag where the vibrational
mock of the electron¢ grourd stae is describé by only two
levels go ard g;,. We hawe (n+1) blad circles (lase inter-
actiong and a cross (anharmorg interactior) on the base
diagram (If one consides higher-orde correctin of anhar-
monicity, one has more crosses. In general we have
2"*1x2(n+2) topologicaly differert diagrans at the lead-
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FIG. 4. Examples of the double-sidd Feynma diagram for R®, R?, and
R® for the systen with only two vibrationd levels g, and g;. The black
circle stand for the interaction with a pair of pulses while the cross repre-
sens the anharmont interaction There are 2°x2x4 diagrans (including
the one in the abové for R®. The othe 23x2x4—1 diagrans can be ob-
tained by moving the blad circles up or down and moving the cross to
anothe time segmentHowever the diagrans which do nat hawe the cross
at the lagt periad T, all cancé with ead othe (see text).

ing order Note here that we hawe 2(n+2) distind segments
of the ladder 2n segmerg correspondig to the period

T4, -+, T, and the remainirg four segmers to both ends of

the ladder? The three-stp Feynma rule employel in the

previows section does not require us to take care ead of

these large numbe of double-sidd diagrans separatelyIn-

steal we hawe only to ded with fewer (non-double-sided
diagrams althoudh physicd pictures from thee diagrams
may be less transparenthan thoe from the double-sided
ones Therefore we examire physica pictures with help of

the double-sidd diagrams.

Resuls (3.3)—(3.6) obtainal by the three-stp method
sugges that the double-sidd diagrans which contribue to
them are only the ones havirg the cross eithe on the two
segmerg correspondig to the lag periad T,,. Note tha the
time integratiors in our resuls (3.3)—(3.6) originak from the
anharmort interactio (the crosg ard the range of the inte-
gratiors are equa to T, (from T;+---+T,_; to
Ty+---+T,). All of the othe double-sidd diagrams
[2""1x2(n+2)—2""1Xx 2 in numbel are exacty canceled
out This fact suggest tha the signd become weg when
the lag periad T, isreducel and we expec a slow rise of the
signak as afunction of T,,.

To illustrate the physica picture more clearly, we re-
strict ourselve to the systen whose electronc grourd state
is describé by the two vibrationd levels g, ard g,. The
systen is assumd to be initially in the g, state One of the
double-sidd diagrans for the fifth, seventh and ninth re-
spong functiorsis depicta in Fig. 4. We shal cal the states
denote by |go)(go| and |g;)(g| the vibrationd population
states and |go)(g;| ard |g;){go| the vibrationd coherence
states.
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TABLE |. States during eat periad T; in the signd for the (vibrationa)
two-levd system the abbreviatios coh and pop. imply the coherene and
the population statesrespectively.

1® Y | © |(2n+1)
T, cohn cohn cohn coh.
T, pop—coh= pop=- pop=- pop.
T, *o coh—coh~ coh= coh.
T, * * pop—coh= pop.
coh(n=o0dd)
Tn * * * pop(nzever)HCOh'

Let us examire the first diagran in Fig. 4, which is one
representatie diagran of 1©®. First, notice tha the distance
betwea the leftmod and the middle blad circlesis T,, and
tha betwea the middle ard the rightmog is T,. Then we
realiz tha the systen isin the vibrationd coherene stae in
the periad T4, while in the T, periad the systen goes from
the populatian to the coherene at the time of anharmonic
interaction denotel by the cross The abo\e statemehtis true
of all of the diagramsin which the cross (anharmort inter-
action is on the T, segment.

States for the ead period are summarizd in Table I.
Excegp for the lag periad T,,, the odd time periods deted the
dephasig processe while the even time periods deted the
population relaxation The lag periad T, for evenn de-
scribes both the dephasig ard the population while that for
oddn describs only the dephasig process.

From the aboe discussios we can make the following
statementsFirst, since the T, periad describs the coherence
relaxatian (or the dephasig processes it is natura that all
the sighak resembt ead othe when plotted as afunction of
T, if the othe time periods are fixed. Second the two-
dimensionat signals: 1)(T,,T,)~ and~ 1©(T,,T,=0,
T3;=0,T,) may be similar since the double-sidd diagrans of
19(T,,T,=0, T3=0,T,) (with T,=T5=0) and 1®(T,,T,)
are essentialf the same althoudh the origins are velry differ-
ent since 1®)(T,,T,) amd 19(T,,T,=0, T3=0,T,) come
from the third- and fifth-order anharmonicitiesrespectively.
On the othe hand we can expedt the two-dimensionhksig-

YT, 1))

1691

(El,E{) (E%Eé) (ES, E-S)

N
L [ L.
o -f

FIG. 5. Different expressia of the fifth-order diagran given in Fig. 4. The
lower solid line implies the g, stae while the uppe the g, state The broken
line stand for the vibrationd coherene state The time runs from the left to
the right.

nals 19(T,,T,) ard 17(T,,T,=0,T5) not to resemble.
This is becaus in the lag period T, of the diagran of
18)(T,,T,), the systen goes from the populatio to the co-
herene stae (at the crosg, while in the lag periad T3 of
1)(T,,T,=0,T5) the systen remairs in the coherene state
despie the anharmort interaction.

For the multivibrational-levé systen or the oscillata in
the coordinaé representatio (the Brownian oscillator
mode), the first period T, also detecs the dephasig while
the othe periods T,,--- , T, probe the mixture of the popu-
lation relaxation and the dephasig processand the above
statemerd may be reasonald even in sut acase.

One can expres the physica pictures in anothe sche-
matic way. Figure 5 shows suc an exampé corresponding
to the double-sidd Feynma diagran of the fifth-order re-
spong function presentd in Fig. 4. In this type of diagram
the uppe (lower) horizontd solid line stand for the vibra-
tiond population stae |g,){(91|(|d0){9o|), while the horizon-
tal broken line implies the vibrationd cohereh states
|g1){(go| and |gp){g;|. Time runs horizontaly from left to
right. The systen is initially in the grourd stae |go){(go| (at
the left end in Fig. 5). Then the first pair of lase pulses (E;
ard E;) brings the systen to the vibrationd coherene states
|g1){go| and |go)(g1|. The secom pair of pulses (E, and
E2) brings the systen badk to |gg){(go|. Since we take into
accoum the anharmort interaction after the seconl pair of
pulses which is denotel by the shot arrow, the systen can

T1=0.1[ps] —
5
~
s
e
0 005 01 015 02 025 03

T [ps]

FIG. 6. Signak of the off-resonan fifth-order spectroscop as afunction of the two delay times T, ard T, ard of the lagt delay time T,.
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FIG. 7. Signak of the off-resonah seventh-ordespectroscop as afunction of selecte two delay times T, ard T; and of the lag delay time T.

chang its stak to the coherem one without lase interaction.
Thus the final pulse E; can induce the signd E,. From this

diagram it is clea why the anharmortg interaction is essen-
tial for the systen to hawe asignd in the fifth-order optical

processes.

V. NUMERICAL SIMULATIONS

The profiles of signak expecte from the physicd pic-
tures in the previows section may be summarizd in the fol-
lowing statements:

(1) The (2n+1)th-orde off-resonan signak 12"* 1 will
shaw slow rise as afunction of T,,.

(2) All profiles of 12"+ (for any intege n) as functiors of
the T, periad (with the othe periad fixed) will be similar
since the sane dephasig proces is probel during pe-
riod T, for ary n.

(3) All= of- the- two-dimensionah signals
| G+H4N(T,,0,-++ ,0, T, 4p) (for any intege n) as afunc-
tion of two time variables T, and T, 4,, Will shav simi-
lar profiles since the signak deted similar physica pro-
cessesalthoudh the origins are quite different In the
same way the 2D signab |7 4"(T,,0,-++ ,0,T7,45)
may resembt ead other.

[T\, T,=0,T»=0,T4)

In the following, we presem numericé resuls of the
analyticd expression given in Sec Ill and examire the
abowe statementsFor simplicity we redu@ the numbe of
time variables by settirg T,=0 for the sevenh orde ard by
T,=T3=0 for the ninth order In this configuration of
pulses the seventh and ninth-orde signak 1(T,,T,
=0T, ard 19(T,,T,=0, T5=07T,) redue to two-
dimensionaspectroscopy.

To carly out calculations we take the parametes from
the OKE experimers on chloroform (CHCIl;). The vibra-
tiond modes of this substane can be describé by the fol-

lowing three modes couplel to the Ohmic baths?*®

0,=258.5 v,=15.0 (5.1

0;=368.5 y5=22.0,

where the unit of parametesis cm™*. We assune tha only
the third mode Q; has anharmonicity The resuls for 1,
17, ard 1 are shown in Figs 6-8. The features of the
signak can be summarizd in the following way.
T, dependencelf the lag periad T, is fixed (n=2, 3,
ard 4 for 19,17, and 19, respectively, all the signals
181 oscillates with the frequeny 20, alorg the T,

Ty1=0.1{ps] —

19%0.1,0,0,T,)

0 0.65 0:1 0.'1 5 0:2 0.25 0.3
Ty [ps]

FIG. 8. Signak of the off-resonan ninth-orde spectroscop as afunction of selecte two delay times T, ard T, ard of the lagt delay time T,.
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axis The envelops of all the sighak are monotonously
decreasig with time. At T,=0, envelops may take a

nonzeo value.

T, dependencelf T, is fixed, the signak |® ard 1©

vibrate with frequeny € alorg the T, axis while |

with 2Q,. The envelops of 1® ard 1© are monoto-
nousl decreasig with time, while tha of 1” peals at

arourd T5=0.25 Around T,=0, all of the envelopes
slowly rise from zero.

The reasm the oscillatiors in the signak appea at the fre-

queny ()5 ard 2(); is tha we assumd tha only the Q5

mode of the chloroform has anharmonicity The slow rise for

smal T, suppors the first statemet(inferred from the ana-
lytical expressions The 2D signak in Figs 6—8 exhibit os-
cillation with the sane frequeny 2Q)5 in T4, which supports
our secoml statemet (discussd from the double-sidd dia-

gramg. The fact that the whole 2D profilesof 1® and 1© are
similar, while they look rathe differert from the 2D profile

of 17, confirms the third statement The behavia of the
envelops of the signd can be explaina in the following

way. First of all, since T, ard T, periods both contan the
dephasig processe (see Fig. 4), the longe thes periods
are the weake the strengh of oscillatiors become this is

why all the envelops decreas with time. The envelog of

the IV signd with fixed T,, however has a peak This is

becaus we hawe the double-sidd diagran in which the T4

periad is rephasd during the T, period In those types of the
diagram the T, periad is in the stae |g;){(go| while the T,

periad is in |gg){(g,|, or vice versa One of thee diagrams
can be obtainel by changimy the diagran for R in Fig. 4 by

lowering the rightmos and the secom rightmog black
circles (lase interactions. Thes diagrans are the origin of

the Raman-ech signd in appropria¢ models® In this model,
however we canna single out thes type of diagrans by the
phag matchirg condition The remnan of this echolike ef-

fect may be observe as ape of the T, envelog of |7,

VI. DISCUSSIONS

We presentd the three-stp Feynma rule for the non-
equilibrium expectatio or the multicorrelation functions.
The higher-orde off-resonan signak were calculatel in a
compadt analytica form by the rule. The physica picture for
the signak was given with the help of the double-sidd Feyn-
man diagrams We carried out the numericé calculatiors of
the analyticd expressioa using the parametes obtained
from the experimentand compare the resuls with physical
pictures obtainel from the double-sidd Feynma diagrams.

In this paper we employ the linear polarization approxi-
mation a=ay+a,q for simplicity. If we take into account
the higher-orde terms i.e., a,q°+ aq>+-+-, the profile of
the signd will be governel by the relative importane of
them and the anharmonicity Such a consideratia has al-
read/ been don€” in the cas of the fifth-order signal and it
is alo possibe to include the nonlineariy of the polarizabil-
ity for the higher-orde signak by using the three-stp Feyn-
man diagran method.
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In this article we concentratd on off-resonah measure-
mens using opticd pulses Correspondig experimens are
also possibé by using infrared pulses to probe the vibrational
transitions?* In this cas signak originae from the electric
dipole. Our theowy can be used to study the case by replacing
P with the transition dipole momentw. In this type of ex-
periment we measue the correlation function of w(t) in-
steal of a(t). Both experiments are complementary.
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APPENDIX A: THE THREE-STEP FEYNMAN RULE

In this Appendix we presen the three-stp rule explic-
itly by clarifying the definitiors of the simplified diagrams
ard specifi@ diagrans with some examplesDerivation can
be dore from Eq. (B28).

We representhe simplified Feynman diagrans propor-
tiond to

n+1
Hl aki.Hs g;j(kizl,z’...; 1,=0,1,2-+")
i= i=

in the following manner Hereg |; corresponeto the order in
the jth-orde anharmoniciy g;q’.

A. Rules for simplifie d diagrams

Al. Prepae n+1 white circles correspondig to
DR PR T The white circle corresponding

to a; from which i lines emerg shal be called the
ith-orde externa point.

A2. Prepae |; blad circles (j>3) correspondig to the
jth-orde anharmonici V;(q). The bladk circle
correspondig to Vj(q) from which j lines go out
shal be called the jth-orde internd point Note
here tha the totd numbe of internd points (or the
blad circles inthediagranisv=I53+1,+---. The
internd points are also called vertices

A3. Draw all possibé connectd diagrans by linking
thes internd and extern points by lines (propaga-
torg). A connectd diagran is the one in which ar-
bitrary two points are connectd directly or indi-
rectly throudh lines.

If one cannd make aconnectd diagran out of the external
ard internd points prepare in A1 and A2, it suggest that
the contributian of this orde is zera By use of the simplified
Feynma diagran we can single out nonzeo contributiors to
the respone functions Analyticd expressioafor the simpli-
fied Feynma diagrans are given in Eq. (B28).

Ead simplified Feynma diagran can be expressé by
specifiel Feynma diagrams The specifi@ diagran is the
simplified one with (+,—,3) indices ard time variables at-
tachal to all the internd and externa points and given in the
following manner.

J. Chem. Phys., Vol. 106, No. 5, 1 February 1997

Copyright ©2001. All Rights Reserved.



1694~

B. Rules for specifie d diagrams

B1l. Attach n+1 time variables 0,7, T;+T,,- -,
T;+T,+---+T, to the n+1 externa points in an
arbitray way.

B2. Attach v time variablest,,t,,-- ,t, tothev inter-
nd points in an arbitray way.
B3. Attachthe “ +'" or *“ ="’ index to ead line emerg-

ing from an externd point. An odd numbe of “ +
mug be attachd to the lines from asingle external
point~ except the~ externak point- labeled
T,+T,+---+T, in Bl To all the lines from this
specia externa point the “ ="’ indices mug be at-
tached As aresult the ith-orde extern point in a
diagran has 2j +1 lineslabeled “ =" andi—2j—1
lines labeled “ +", or hasi lines all labela “ —,”

whete 2j +1 stand for an odd numbe ard j can be
an ary intege from zem to (i —1)/2.

B4. Attach theindex “3'’ to all lines emergirg from an
internd point, or attat the index “ +’’ or “ ="’ to
ead line from an internd point. One mug attat an
odd numbe of “ +’’ to the lines from a single in-
ternd point, but canna attach “3'’ and “ +”
(* =") at the sane time to the lines from a single
internd point It follows tha the ith-orde internal
point in adiagran has 2j +1 lines labeled “ —'* and
i—2j—1 lines labele “ +,”” or hasi lines all la-
beled “3,"’ where 2j +1 stand for an any odd num-
be fromonetoi.

Note here tha the diagran which contairs the following
lines vanisha and thus can be excludel from the following
discussions.

bl Line whos extremitissare “ +'" ard “ +'’ (propa-
gatoss connectig “ +'" and “ +").

b2 Line whos extremities are “ +'* and “3.”

b3. Line whos extremities are (—,t) and (+,t') where
t<t'. (The propagatoconnectig “ ="’ and “ 4+’ is
causal).

It can be shown tha a simplified Feynma diagranm is ex-
pressd as the sum of all possibé specifiel diagrans ob-
tained by the abowe rule which are topologically distinct
from ead other Namely, we have

A simplified diagran I'=, [topologicaly distinct

specifi@ diagrans derived from the simplified diagram I'].

(A1)

The analyticd expressia for a specifial Feynma dia-
gram is obtainal from Eq. (B28) as follows.

C. Rules for analytica | expressions

Cl Associate o;/4' with the ith-orde extern& point
which has 2j +1 numbe of lines labela “ +'’ and
(remaining i —2j —1 numbe of lines labele ** —.”

K. Okumura and Y. Tanimura: The (2n+1)th-order off-resonant spectroscopy

C2. Associatey; with the ith-orde extern point which
carries the time variabe T,;+T,+---+T, and
whose i lines are all labeled “ —.”

C3. Associaé —ig,/(4'#) with the kth-orde internal
point which has 2j+1 numbe of lines labeled
“ 4+ ard (remaining k—2j —1 numbe of lines la-
beled * —.”

C4. Associaé —g;/A with the ith-orde internd point
who= i lines are all labeled “3.”

C5. Associae the propagato D/™(t,t') [I,m=+,—,3]
to a line whos extremities are namel (I,t) and

(m,t").
C6. Integrae the produd of all factors describéd in the
abow over the internd time variablest,,t,,--- ,t,.

The range of integratian for an internd point whose
lines are all labela “3'’ is from 0 to Bh. All the
othe internd points are integrate from O to oo,

C7. The contribution of the diagran is obtainal by the
guantiy obtainel in C6 multiplied by (i/4)"/S,
whete the symmety numbe S is the produd of the
line symmety numbe S, and the vertex one S, of
the diagram.

To help understad the abowe rules we presen several
examplesFirst, conside the two-time respons function:

RO(Ty) =+ a([a(Ty),a(0)])
+ 2 aan([(T1),0(0)]+[a(Ty). G%0) )

a3 GO+ = (A2)

Following rule A, the term proportionato o2 is readily given
by the simplified diagrams

%af([q(T1)7Q(0)]) =o—o+ OQQ ! :
98—
° o o 0 (A3)

where we conside the g5 ard g, anharmonicitis explicitly
ard draw up to the seconl orde in thee anharmonicities.

By applyirg rule B, the abo\e simplified diagrans can
be translaté into the specifie diagrams

L@ = ot + () +e

-+ - T
3 3 - -
+ 3 33 + @— + , Tt + _
O—Té=—70 O——pe= 70 O——yeL—o0 — <
R e
tos + LN o 4 o LN ot
N A

(A4
where all the time indices are omitted Then analyticd ex-
pressios are readily obtainal from rule C. For instance,
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B8 = a0 (T, (AS5)

1z 7
I ‘ =37 f(-ﬁg4)/ dt, D= DT - 4,) D), —4)DH (1),

(AB)

Note the line symmety facta S, is 2in Eq. (A6).
Second conside the two-time respons function:

12
R<5><T1.T2)=(f'i—) a([[a(T1+T2),a(T1)1,a(0)])

2
afay([[G3(T1+Ty),

Jq
q(T1)]1,9(0)]+2 termg+--- .= (A7)

By use of rules A and B, the terms proportion# to a3a, are
written down as

(%) ofao([[¢*(1y + T3),¢(T1)], ¢(0)] + 2 terms) = E< F

PT+ T
=n+nl 0 4.
» oo

(A8)

Third, we conside the three-time respons function
R()(T,,T,,T5). Following rule A, the simplified diagrams
are given as

194
w5

Herg the labek abowe ead diagran shav the orde of the
diagram.

of 10293 agog

< < e

(A9)

APPENDIX B: ANALYTICAL EXPRESSION FOR THE
SIMPLIFIED DIAGRAM

By introducirg the nonequilibrium generatig functional
W(J), we obtainel Eq. (A6) of our previows papet®:

i\ 2
3| [@onatary) a0

RO(T,,Ty)=

X a(dy(T1)) = a(dx(0)) a(d1(Ty))

+a(02(0))a(92(T1))]
Xa(d (T +T) 3 WD)lyom (BY)

where
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a(d(t)= ao-l-al&(t)-i- [a(t)]2+--~ - (B2)
Introducirg the sign factor

quin}:(_1)i1+i2+--'+infn,_| (BB)
ard the time variables

S]_:O,

32:T1,

33=T1+T2,

Sn+1 T1+T2+ +Tn,_| (B4)
we can generalie the abowe expressia to the form
R(2”+1)(T1,T2,”- Th)

i\n2 2 2
=| — S . _é) S
(ﬁ) ilzzl izzzl in2:1 iy (G, (s)
X a(3;(S2)) - a(3; (Sn))a(d spia)) + = W()
J=0
(B5)
By expandimy the polarizability « we have
R(2”+1)(T1,T2,”' Th)
Rl 121071 jaii=t 11- Jz- Jn+1!

2 2 2
X D 2SOy AN(S1)d2(s) - N (sy)
i1=11,=1 in=1 n 1 2 n

C
X[A T (sp )Pt = W) =
J=0

(B6)

Notice here that we have droppel the contributian from j; =0
since j,=0 correspond to the c-numbe pat of the polariz-
ability «y and we are considerilg the expectatio values of
multicommutato of the polarizability.

By mathematichinduction with respetto n we have
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;. @ _ By applyirg the methal explainal in Appendk A in Ref. 21
.—|1 —lz E 2 sgn; 4 @1(sy) [see Eq. (A7) in Ref. 21], we have
Ja* )2 Jn i1=1i,=1 in= o
X 92(85)"+ 3}"(sp) (B7)
RED(T, Ty, o0, Ty)
=al" ) (a(s)af) (a(sy) al T (a(sy),~ (BY) e
. n o0 o0
where :('_ e?9¢Dlde oVl el 2
h j1=1j2=1
_ o4] i i
al " 7(a() = 5 [A4(t) = p(1)] (89)
' X Z o (s af) e(sy)
2j+1<i 1 [(9(+)(t)]2j+1 in+1=1
~ i JEO 24 (2j+ 1! o e(sa)ay (¢ 7(Sh41)]p=0com™ (BL2)
[/ @)t ©10
i—2j—1)!
_ ( -1 As specifi@ below, (d/dp)D(dldp) is the second-order de-
Thus we arrive at rivative operate with respet to the three variables ¢'*,
R (T Ty, Ty ¢'”), and g3, and V[ ], ol (e(1)),ai(¢ (1)) are poly-
L . nomid functional)s of the three variables The operation
i\" _ l.—o in Eq. (B12) implies setting ¢=0 after performing the
= — (+-) ¢=0
ﬁ) 11§=:1 j2§=:1 jn§= @iy (d(s1) derivatives of ¢. This operation corresponds to the Wick
+2) (+2) contraction ard we can resot to diagrammat technique.
@, (a(SZ))"'“jn ((sn)) Only the operatiors correspondig to connectd diagrans are
i kept in Eqg. (B12), as implied by conn at the erd of this
Xay (0 (s W) = (B1)  equation.
J=0

The derivative operato is given by

1%

J
(—+)
70 (990 J dtJ’ ds&(P( )(t) )(t,s) 5¢(+>(

oo

3)
T og >(t) Dt

where the propagates D!™[I,m=(+,—,3)] are defined
throudh the two-time correlation functiors for the bilinearly
couplal and harmont system Equatian (B12) [or Eq. (B28)

(9<Ps( T)

L (9
J dtf dsa = )()D (ts) =s)

Al

5N

D(r,7) (B13)

d@3(T) des(t') "

where S ard A are the red and imaginay part, respectively
(C=S+iA). In the cag of Ohmic dissipation the correla-
tion function is explicitly given by

below] with this expressia for d/deDdlde is the origin of

rules C5 and b1-b3. If we introduce the cumulart patt of the

autocorrelatia function C(t+i7)

C(t‘HT):<q(O)Q(t+i7')>bilineara_' (B14)

where 0<t <pf. Then the propagators are expressed as fol-

lows:
D3(t,7)=C(t+in), (B15)
D 7)(t,5)=S(t—s),~ (B16)
D )(t,5)=—2i(t—s)A(t—s), (B17)
D(7,7)=6(7—7)C(ir—i7" )+ 0(—7+7')
XC(—ir+ir'), (B18)

C(t+in)=—ae M4 g,e M otHD_T(t4j7),
(B19)
where
- 1+ coth 2N B20
aj_4m§ co 5| (B20)
* |,,n|ef\vn|x
I(x)=— (B21)

,B = ((uz-l-vﬁ)z—yzvﬁ'_|
with= N\j=92+i¢, MN=v2—i¢, ((=\w’—+?/4),~ and
v,=2mn/Bh.

The polynomid of ¢ originating from the polarizability
is given by
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2j+1<k 1
A Ne)=ae 2 5

[oP(D]PF [ (k8!
2j+1! (k=2j—1)!

(B22)

— «; .
ai(@ (1) =17 [¢ (D] A (823
From thes expressiosard Eq. (B12) [or Eq. (B28) below],
we can understad rules B1, B3, C1, ard C2 by noting the
fact tha ead tem in thee polynomials af™ ((t)) or
(¢ 7)(1)) is the origin of an externa point ard the defini-
tion of time variables s; in Eq. (B4).

The polynomid of ¢ corresponding to anharmonicity is
expresse as

V[sa]:Z Vil el, (B24)
where
Viel=V" o] -V¥ o]. (B25)
Here,
(+-) Ok i * ¢(+)(t) (-) k
Vi Teml=— g [ ad [ £ e
(+) k
_(_so (t)+¢<‘>(t)) }
2j+1<k

1Mt
4 (2j+1)!

dt >,

i o
e, @ 3

¢T3t

k—2j-D1 " (826
and
1 (st
VPlem1=- 27 [ ates(n1t- (B827)

We can understad rule B2, B4, C3, C4, ard C6 from these
expression for V with Eq. (B12) or Eq. (B28) belonv by
noting the faat tha ead tem in thes polynomials
VT I e(t)] or V[ ()] is the origin of an internal point.
We thus obtah the expressia for the simplified diagram
(contributian to the respons function) proportiond to

n+1

I a- T gf
=1 ]=3
in the following form

(;L_) “e(ﬁ/aw)o(a/mp)ﬂs (Vj[qD])'j{ >

ol (e(sy)
1= Kn+1}

X ol (9(S2) - e (@(sn)

><a'_knﬂ((P(_)(Sn-¢—1))|<p:0,conn.a_‘ (B29)
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from which Rules A, B, and C can be derived Here the
summation Xy 1, implies the summatio over all possible

permutatio of kq Ky, - Ky, 1.
APPENDIX C: THE DOUBLE-SIDED FEYNMAN
DIAGRAM

We give the rules to draw double-sidd diagrans for the
respone functiors to clarify our notations.

D. Rules for double-side d diagrams

D1. Prepae the ladde (diagram with (n+1) steps The
separatia of the steg are T,,T,,--- ,T,, (Fig. 3).
The uppe solid line stand for the time evolution of
ket (C, path ard the lower one for that of bra (C,
path.

Plae a blad circle at eithe the uppe or lower end
of ead steps This correspondto the lase interac-
tion a;E?(t)q, and absorls or emits one quantum
(a ora’). Here a ard a' stand for the creation and
annihilation operato of the vibrationd mode
[qe(a+ah)].

Plae asingle cross on eithe the uppe or lower
solid line (body of the laddep. This stand for the
anharmorg interaction g,,,,9""* and absorls or
emits quana whete the numbe of quanagoesin or
out per one interaction can be an any numbe from
zew [correspondig to a"" V2" ("t 12 etc] to
n+1[(ah"*?, etc].
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