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Assuming that thepolarizability is alinear function of thenuclear coordinate, i.e.,a(q)5a01a1q,
we obtain analytical expressions of the ~2n11!th-order signals and show that the leading order of
the signals ~n.1! is proportional to gn11, wheregn11 is the coefficient of theanharmonic potential
V(q)5g3q

3/3!1g4q
4/4!1•••. In other words, detection of the ~2n11!th-order signal implies the

direct observation of the ~n11!th-order anharmonicity within the approximation. Based on this fact
wediscussapossibility to detect the ~n11!th-order anharmonicity directly from the ~2n11!th-order
experiment. Calculations aremade by using novel Feynman rules for the nonequilibrium multitime
correlation functions relevant to the higher-order off-resonant spectroscopy. The rules have been
developed by theauthorsand arepresented compactly in thispaper. With thehelp of a conventional
double-sided Feynman diagram, we draw physical pictures of higher-order off-resonant optical
processes. Representative calculations for CHCl3 of the fifth-, seventh-, and ninth-order optical
processes are presented and discussed. © 1997 American Institute of Physics.
@S0021-9606~97!50805-1#
I. INTRODUCTION

Dynamics of intra- and intermolecular vibrational modes
in the condensed phase play a crucial role in various chemi-
cal reactions. The extensive development of ultrafast pulse
lasers has made it possible to measure spectroscopy of the
low-frequency vibrational modes in real time. The time-
domain third-order techniques, such as femtosecond optical
Kerr effect ~OKE!,1,2 and impulsive stimulated Raman scat-
tering ~ISS!,3 have directly detected dephasing of the low-
frequency modes of liquids.

It is natural that experiments of higher nonlinear re-
sponse are more selective. One of the examples is Raman-
echo experiments4–7 related to the seventh order. Another is
the two-dimensional off-resonant experiment related to the
fifth-order nonlinearity.8–14 These experiments were carried
out to separate the inhomogeneous and homogeneous
dephasing. In our previous paper15 we showed that off-
resonant fifth-order optical processes can also be used to
separate effects of third-order anharmonicity ~g3q

3/3!! of vi-
brational modes from the other effects, such as nonlinear
coordinate dependence of polarization. In the present paper,
we generalize our previous study of the fifth-order optical
process to the ~2n11!th order and show that ~2n11!th-order
off-resonant spectroscopy is useful to study the ~n11!th-
order anharmonicity gn11.

We employ the multimode ~anharmonic! Brownian os-
cillator model ~for a harmonic Brownian oscillator model,
see, for example, Refs. 16 and 17! to incorporate the intra-
and intermolecular modes in the condensed phase. The ~2n
11!th-order off-resonant signal can beexpressed by themul-
ticommutator of the ~n11!-time correlation function of the
polarizability. For example, the signal of the third-order ~n
51! experiment such as ISSand OKE can bedirectly related
to the two-time correlation function, R(3)}^[a(t),a(0)]&.
To calculate such multitime correlation functions for an an-
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harmonic system, we use the nonequilibrium generating
functional obtained in Ref. 18.

If we assume polarization is a linear function of the
nuclear coordinate, i.e., a5a01a1q, the response functions
are expressed as the multitime correlation function of coor-
dinates, ^[q(t),q] &,^[q(t),q(t8)],q] &, etc. Here, the anhar-
monicity plays asignificant role, since correlation functions
of the multicommutator of coordinate higher than the third
order vanish for the harmonic potential or in the ~harmonic!
Brownian particle system. In the real world, the anharmonic-
ity often becomes important. For example, the low-frequency
vibrational modes of water were found to have weak
anharmonicity.19

We incorporate anharmonicity20 into the Brownian mo-
tion theory through Feynman diagrammatic technique, as
done in our previous works.15,18,21In the present article, we
refine our Feynman diagrammatic technique in the form
which wecall the three-step Feynman rule. Theconventional
Feynman diagram technique ~for finite temperature or for
zero temperature! hasonly two steps: ~1! draw Feynman dia-
grams and ~2! obtain analytical expressions from the dia-
grams. Here, we deal with the nonequilibrium expectation,
and the diagrammatic technique can be described by three
steps: ~1! draw simplified Feynman diagrams; ~2! draw
specified Feynman diagrams; and ~3! obtain analytical ex-
pression from the specified diagram.

In general, a single graph in this three-step method cor-
responds to a sum of many double-sided Feynman
diagrams.17 Thus, calculation is simpler in the three-step
method. The physical picture from the three-step method is,
however, not as clear as that from thedouble-sided Feynman
diagrams; each double-sided Feynman diagram has one-to-
one correspondence to the Liouvill e space path.17 Therefore,
we use the double-sided technique complementary in the
present paper.
1687687/12/$10.00¬ © 1997 American Institute of Physics
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In Sec. II , we specify our model for the off-resonant
experiment and define multicommutator correlation func-
tions which can be directly measured by the experiment. In
Sec. III , we give analytical expressions of the response func-
tions relevant to ~2n11!th-order experiments by using the
three-step method, which is summarized as rules A, B, and
C, with some examples in Appendix A. In Sec. IV, the con-
ventional double-sided diagrams ~corresponding to the ana-
lytical expression obtained in Sec. III ! are presented to un-
derstand profiles of signals from physical picture. In Sec. V,
we take parameters from the OKE experiment on
chloroform,2 carry out numerical calculations, and give
physical interpretations of the results. In the final section, we
discuss limitations and possible extentions of the present
work.

II. FEYNMAN RULE FOR THE (2n11)TH
CORRELATION FUNCTION

We consider amolecular system in the condensed phase
which is subject to electronically off-resonant pulses. The
off-resonant pulses can selectively probe only the electronic
ground state dynamics. The effective Hamiltonian is given
by

Heff5Ĥ~p,q!2 P̂E~r ,t !,¬ ~2.1!

wherep and q stand for themomentum and coordinateof the
nuclear degrees of freedom, respectively. In this experiment,
the permanent electronic dipole does not play a role. Instead
only the induced dipole

P̂5âE~ t ! ~2.2!

is probed, whereâ is the polarizability. In the following we
consider thecase in which thenuclear motion isdescribed by
a single mode. Generalization to the multimode case is
straightforward ~see Ref. 15!. We consider the ground state
Hamiltonian coupled to an environment in the form

Ĥ~p,q!5
p2

2m
1
mv2

2
q21V~q!

1(
i51

N F pi22mi
1
miv i

2

2 S qi2 ciq

miv i
2D 2G .¬ ~2.3!

The corresponding classical equation of motion of q for this
Hamiltonian has the memory friction g(t), which is com-
pletely specified by the bath parameters (ci ,mi ,v i). Al l in-
formation about the bath which is set by the parameters
(ci ,mi ,v i) is concentrated on the quantityg(t) even in the
quantum treatment. Thus, we can parameterize the theory in
termsof g(t) instead of specifying all the values (ci ,mi ,v i).
In the following, weemploy theOhmicmodel assumingg(t)
5gd(t) whereg is a constant. This choice is allowed on
when we let N→`.

The variation of the polarizability with the nuclear coor-
dinate is assumed to be
J. Chem. Phys., Vol. 106,
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â5a01a1q1
1

2!
a2q

21•••5(
i50

1

i !
a iq

i[(
i50

a i~q!.

~2.4!

The anharmonicity of the potential is given by

V~q!5
1

3!
g3q

31
1

4!
g4q

41•••

5(
i53

1

i !
giq

i[(
i53

Vi~q!.¬ ~2.5!

The ~2n11!th-order off-resonant signal is expressed as8,15,17

I ~2n11!~T1 ,T2 ,...,Tn!5uR~2n11!~T1 ,T2 ,...,Tn!u2.
~2.6!

The response functions aredefined through themulticommu-
tators:

R~3!~T1!5
i

\
^@a~T1!,a~0!#&, ~2.7!

R~5!~T1 ,T2!5S i\ D 2^@@a~T11T2!,a~T1!#,a~0!#&,

~2.8!

A ~2.9!

R~2n11!~T1 ,T2 ,••• ,Tn! ~2.10!

5S i\ D n^@•••@a~T11T21•••1Tn!,

a~T11•••1Tn21!#,•••a~T1!#,a~0!#&, ~2.11!

wherea(t) is the Heisenberg operator defined by the Ham
tonian Ĥ(p,q) in ~2.3!, or

a~ t !5eiĤ t/\âe2 iĤ t/\,¬ ~2.12!

and the expectation implies

^•••&5Tr@e2bĤ•••#/Tr@e2bĤ#.¬ ~2.13!

The response functionscan beexpressed by thesum of either
of the two types of connected Feynman diagram:

R~2n11!~T1 ,T2 ,••• ,Tn! ~2.14!

5( @ topologically distinct simplified diagrams#

~2.15!

5( @ topologically distinct specified diagrams#.

~2.16!

Here, the summation ( implies the one over all possible
diagrams. Detailed explanations are given in Appendices A
and B with some examples. We have three types of time
evolution operators, since we are calculating the expectation
values in the nonequilibrium system. These three operators,

the real time evolution operator of the ket (e2 iĤ t/\), that of

the bra (eiĤ t/\), and the imaginary time evolution operator

(e2bĤ), are associated with the C1-path, C2-path, and
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C3-path, respectively, or with the unified time path
C5C11C21C3 ~see Fig. 1!. In the conventional case22

where calculation of the expectation at the equilibrium is the
main goal, only the imaginary time evolution operator,

e2bĤ ~corresponding to the C3-path!, is required. Thus, the
propagators appearing in the rule for the finite temperature
always connect two points on C3 ~Matsubara Green func-
tions!. On the contrary, we have the three pathsC1, C2, and
C3 in the present case of nonequilibrium expectation. Then
the propagators in this case connect arbitrarily two points on
the unified time path C5C11C21C3 . In other words, we
have a propagator matrix Di j ( i , j51,2,3). For convenience,
we take the linear combinations of the four independent el-
ements, D ~21!, D ~22!, D ~23!, and D ~33!, of the 333 matrix.
This is why we have to add the extra ~1,2,3! indices to the
conventional Feynman diagrams to obtain the specified dia-
grams ~see Appendix A!.

By use of the simplified diagram, we can grasp themain
contribution to the response function efficiently. Once asim-
plified diagram is written down, we can readily obtain the
analytical expressions by way of the specified diagrams. Al-
though calculations of the nonequilibrium expectation values
aremore complicated than those of the equilibrium ones, the
three-step procedure presented here—obtaining simplified
diagrams, and then specified diagrams to derive the analyti-
cal expressions—greatly simplifies calculations.

III. RESPONSE FUNCTIONS OF THE ANHARMONIC
SYSTEM WITH THE LINEAR POLARIZABILITY

In the following, we employ the linear polarizability ap-
proximation in a sense that

a5a01a1q,¬ ~3.1!

and calculate the response function relevant to the ~2n11!th-
order experiment. In this model, the response function is
given as

FIG. 1. The unified time-path C5C11C21C3 on the complex t plane
~T→`!. C1 and C2 are along the real-time axis, whereasC3 is on the imagi-
nary axis.
J. Chem. Phys., Vol. 106,
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R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D na1
n11^@•••@q~T11•••1Tn!,

q~T11•••1Tn21!#,••• ,q~T1!#,q~0!#&.¬ ~3.2!

By use of the three-step procedure presented in Appendix A,
the leading contribution is expressed as

R~5!~T1 ,T2!52S i\ D 3g3a1
3E

T1

T11T2
dtD~21 !~T11T2 ,t !

3D ~21 !~ t,0!D ~21 !~ t,T1!,¬ ~3.3!

R~7!~T1 ,T2 ,T3!52S i\ D 4g4a1
4E

T11T2

T11T21T3
dt

3D ~21 !~T11T21T3 ,t !D
~21 !~ t,0!

3D ~21 !~ t,T1!D
~21 !~ t,T11T2!,¬ ~3.4!

R~9!~T1 ,T2 ,T3 ,T4!52S i\ D 5g5a1
5E

T11T21T3

T11T21T31T4
dt

3D ~21 !~T11T21T31T4 ,t !

3D ~21 !~ t,0!D ~21 !~ t,T1!

3D ~21 !~ t,T11T2!

3D ~21 !~ t,T11T21T3!,¬ ~3.5!

A

R~2n11!~T1 ,••• ,T4!

52S i\ D n11

gn11a1
n11E

T11•••1Tn21

T11•••1Tn
dt

3D ~21 !~T11•••1Tn ,t !D
~21 !~ t,0!D ~21 !~ t,T1!•••

3D ~21 !~ t,T11•••1Tn21!.¬ ~3.6!

Thespecified diagram for thefifth order is explicitly given in
Fig. 2. The temperature-dependent propagators D ~23! and
D ~33! do not appear in the above leading order calculation;
they play roles in higher-order contributions.

In the Ohmic case the propagator is calculated as

FIG. 2. The specified diagram for the leading order of R~5!.
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D ~21 !~ t,s!5u~ t2s!
\

im z
e2g~ t2s!/2 sin z~ t2s!, ~3.7!

where

z5Av22g2/4.¬ ~3.8!

Note here that by using the formula for odd-n ~and a similar
formula for even-n!,

sin x1 sin x2•••sin xn

5
~21!~n21!/2

2n21¬ (
e2561

(
e3561

••• (
en561

~21!e21e31•••1en

3sin~x11e2x21enx31•••1enxn!,¬ ~3.9!

the integrations in Eqs. 3.3–3.6 can be readily performed.
We use the result of this integration for the numerical calcu-
lations in Sec. V.

We stress here that the leading contribution is propor-
tional to gn11 and thus the detection of the nonzero I

(2n11)

signal implies the direct observation of the ~n11!th anhar-
monicity within the linear polarization approximation.

As seen from Eqs. 3.3–3.6, the range of the integration
is from T11•••1Tn21 to T11•••1Tn , namely, the time
integration isdone for theperiod Tn , which indicates that the
signal is caused by the anharmonic interaction during this
last period Tn and thus becomes zero for Tn50.

IV. DOUBLE-SIDED FEYNMAN DIAGRAM AND
PHYSICAL PICTURE

Although the three-step Feynman rule simplifies calcu-
lations considerably, the physical picture of the diagram ap-
pearing in the three-step techniquemay be less clear than the
double-sided Feynman diagram.17 In this section, we illus-
trate a physical picture of signals from nonlinear optical pro-
cesses by using the double-sided Feynman diagrams. Al-
though the double-sided Feynman diagrams may be well-
known in this field, to clarify our notations, in Appendix C
we give explicit rules to draw the double-sided Feynman
diagrams of the leading order contributions to the ~2n11!th-
order response function ~see Figs. 3 and 4!.

Figure 4 shows a heuristic case where the vibrational
mode of the electronic ground state is described by only two
levels g0 and g1. We have ~n11! black circles ~laser inter-
actions! and a cross ~anharmonic interaction! on the base
diagram. ~If one considers higher-order correction of anhar-
monicity, one has more crosses.! In general, we have
2n1132(n12) topologically different diagrams at the lead-

FIG. 3. Thebare ladder diagram to createdouble-sided diagrams. The lower
~upper! line stands for the real time evolution of the bra ~ket! vector and
corresponds to the C22(C12) path.
J. Chem. Phys., Vol. 106,
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ing order. Note here that we have 2~n12! distinct segments
of the ladder: 2n segments corresponding to the period
T1 ,••• ,Tn and the remaining four segments to both ends of
the ladder.23 The three-step Feynman rule employed in the
previous section does not require us to take care each of
these large number of double-sided diagrams separately. In-
stead we have only to deal with fewer ~non-double-sided!
diagrams, although physical pictures from these diagrams
may be less transparent than those from the double-sided
ones. Therefore, we examine physical pictures with help of
the double-sided diagrams.

Results ~3.3!–~3.6! obtained by the three-step method
suggest that the double-sided diagrams which contribute to
them are only the ones having the cross either on the two
segments corresponding to the last period Tn . Note that the
time integrations in our results ~3.3!–~3.6! originate from the
anharmonic interaction ~the cross! and the range of the inte-
grations are equal to Tn ~from T11•••1Tn21 to
T11•••1Tn!. Al l of the other double-sided diagrams
@2n1132(n12)22n1132 in number# are exactly canceled
out. This fact suggests that the signal becomes weak when
the last period Tn is reduced and weexpect a slow rise of the
signals as afunction of Tn .

To illustrate the physical picture more clearly, we re-
strict ourselves to the system whose electronic ground state
is described by the two vibrational levels g0 and g1. The
system is assumed to be initially in the g0 state. One of the
double-sided diagrams for the fifth, seventh, and ninth re-
sponse functions isdepicted in Fig. 4. Weshall call thestates
denoted by ug0&^g0u and ug1&^g1u the vibrational population
states, and ug0&^g1u and ug1&^g0u the vibrational coherence
states.

FIG. 4. Examples of the double-sided Feynman diagram for R~5!, R~7!, and
R~9! for the system with only two vibrational levels g0 and g1. The black
circle stands for the interaction with apair of pulses, while the cross repre-
sents the anharmonic interaction. There are 233234 diagrams ~including
the one in the above! for R~5!. The other 23323421 diagrams can be ob-
tained by moving the black circles up or down and moving the cross to
another time segment. However, the diagrams which do not have the cross
at the last period T2 all cancel with each other ~see text!.
No. 5, 1 February 1997
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Let us examine the first diagram in Fig. 4, which is one
representative diagram of I ~5!. First, notice that the distance
between the leftmost and themiddle black circles is T1, and
that between the middle and the rightmost is T2. Then we
realize that the system is in the vibrational coherence state in
the period T1, while in the T2 period the system goes from
the population to the coherence at the time of anharmonic
interaction denoted by the cross. The above statement is true
of all of the diagrams, in which the cross ~anharmonic inter-
action! is on the T2 segment.

States for the each period are summarized in Table I.
Except for the last period Tn , the odd timeperiods detect the
dephasing processes while the even time periods detect the
population relaxation. The last period Tn for even-n de-
scribes both the dephasing and the population, while that for
odd-n describes only the dephasing process.

From the above discussions we can make the following
statements. First, since theT1 period describes the coherence
relaxation ~or the dephasing processes!, it is natural that all
the signals resemble each other when plotted as afunction of
T1 if the other time periods are fixed. Second, the two-
dimensional¬ signals¬ I (5)(T1 ,T2)¬ and¬ I ~9!~T1 ,T250,
T350,T4! may besimilar since thedouble-sided diagramsof
I ~9!~T1 ,T250, T350,T4! ~with T25T350! and I (5)(T1 ,T2)
are essentially the same, although the origins are very differ-
ent since I (5)(T1 ,T2) and I ~9!~T1 ,T250, T350,T4! come
from the third- and fifth-order anharmonicities, respectively.
On the other hand, we can expect the two-dimensional sig-

TABLE I. States during each period Ti in the signal for the ~vibrational!
two-level system: the abbreviations coh. and pop. imply the coherence and
the population states, respectively.

I ~5! I ~7! I ~9! I (2n11)

T1 coh.¬ coh.¬ coh.¬ coh.
T2 pop.→coh.¬ pop.¬ pop.¬ pop.
T3 *¬ coh.→coh.¬ coh.¬ coh.
T4 * * pop.→coh.¬ pop.
A A A A  A

Tn * * * H coh.~n5odd!
pop.~n5even!→coh.
J. Chem. Phys., Vol. 106,
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nals I (5)(T1 ,T2) and I (7)(T1 ,T250,T3) not to resemble.
This is because in the last period T2 of the diagram of
I (5)(T1 ,T2), the system goes from the population to the co-
herence state ~at the cross!, while in the last period T3 of
I (7)(T1 ,T250,T3) the system remains in the coherence state
despite the anharmonic interaction.

For the multivibrational-level system or the oscillator in
the coordinate representation ~the Brownian oscillator
model!, the first period T1 also detects the dephasing while
the other periods T2 ,••• ,Tn probe the mixture of the popu-
lation relaxation and the dephasing process, and the above
statements may be reasonable even in such a case.

One can express the physical pictures in another sche-
matic way. Figure 5 shows such an example corresponding
to the double-sided Feynman diagram of the fifth-order re-
sponse function presented in Fig. 4. In this type of diagram
the upper ~lower! horizontal solid line stands for the vibra-
tional population state ug1&^g1u(ug0&^g0u), while thehorizon-
tal broken line implies the vibrational coherent states
ug1&^g0u and ug0&^g1u. Time runs horizontally from left to
right. The system is initially in the ground state ug0&^g0u ~at
the left end in Fig. 5!. Then the first pair of laser pulses ~E1

and E18! brings the system to the vibrational coherence states
ug1&^g0u and ug0&^g1u. The second pair of pulses ~E2 and
E28! brings the system back to ug0&^g0u. Since we take into
account the anharmonic interaction after the second pair of
pulses, which is denoted by the short arrow, the system can

FIG. 5. Different expression of the fifth-order diagram given in Fig. 4. The
lower solid line implies theg0 statewhile the upper theg1 state. Thebroken
line stands for the vibrational coherence state. The time runs from the left to
the right.
FIG. 6. Signals of the off-resonant fifth-order spectroscopy as afunction of the two delay times T1 and T2 and of the last delay time T2.
No. 5, 1 February 1997
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FIG. 7. Signals of the off-resonant seventh-order spectroscopy as afunction of selected two delay times T1 and T3 and of the last delay time T3.
change its state to the coherent onewithout laser interaction.
Thus, the final pulse E3 can induce the signal Es . From this
diagram, it is clear why the anharmonic interaction is essen-
tial for the system to have asignal in the fifth-order optical
processes.

V. NUMERICAL SIMULATIONS

The profiles of signals expected from the physical pic-
tures in the previous section may be summarized in the fol-
lowing statements:

~1! The ~2n11!th-order off-resonant signals I (2n11) will
show slow rise as afunction of Tn .

~2! Al l profiles of I (2n11) ~for any integer n! as functions of
theT1 period ~with theother period fixed! wil l be similar
since the same dephasing process is probed during pe-
riod T1 for any n.

~3! All ¬ of¬ the¬ two-dimensional¬ signals
I (514n)(T1,0,••• ,0,T514n) ~for any integer n! as a func-
tion of two time variables T1 and T514n wil l show simi-
lar profiles since the signals detect similar physical pro-
cesses, although the origins are quite different. In the
same way the 2D signals I (714n)(T1,0,••• ,0,T714n)
may resemble each other.
J. Chem. Phys., Vol. 106,

Copyright ©2001. A
In the following, we present numerical results of the
analytical expressions given in Sec. II I and examine the
above statements. For simplicity we reduce the number of
time variables by setting T250 for the seventh order and by
T25T350 for the ninth order. In this configuration of
pulses, the seventh- and ninth-order signals I (7)(T1 ,T2
50,T3) and I ~9!~T1 ,T250, T350,T4! reduce to two-
dimensional spectroscopy.

To carry out calculations, we take the parameters from
the OKE experiments on chloroform ~CHCl3!. The vibra-
tional modes of this substance can be described by the fol-
lowing three modes coupled to the Ohmic baths:2,15

V1539.00 g1577.0

V25258.5 g2515.0¬ ~5.1!

V35368.5 g3522.0,

where the unit of parameters is cm21. We assume that only
the third mode V3 has anharmonicity. The results for I ~5!,
I ~7!, and I ~9! are shown in Figs. 6–8. The features of the
signals can be summarized in the following way.

T1 dependence: If the last period Tn is fixed ~n52, 3,
and 4 for I ~5!, I ~7!, and I ~9!, respectively!, all the signals
I (5)– I (9) oscillates with the frequency 2V3 along the T1
FIG. 8. Signals of the off-resonant ninth-order spectroscopy as afunction of selected two delay times T1 and T4 and of the last delay time T4.
No. 5, 1 February 1997
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axis. The envelopes of all the signals are monotonously
decreasing with time. At T150, envelopes may take a
nonzero value.
Tn dependence: If T1 is fixed, the signals I ~5! and I ~9!

vibrate with frequency V3 along the Tn axis while I
~7!

with 2V3. The envelopes of I ~5! and I ~9! are monoto-
nously decreasing with time, while that of I ~7! peaks at
around T350.25. Around T150, all of the envelopes
slowly rise from zero.

The reason the oscillations in the signals appear at the fre-
quency V3 and 2V3 is that we assumed that only the V3
modeof the chloroform hasanharmonicity. The slow rise for
small Tn supports the first statement ~inferred from the ana-
lytical expressions!. The 2D signals in Figs. 6–8 exhibit os-
cillation with the same frequency 2V3 in T1, which supports
our second statement ~discussed from the double-sided dia-
grams!. The fact that thewhole2D profilesof I ~5! and I ~9! are
similar, while they look rather different from the 2D profile
of I ~7!, confirms the third statement. The behavior of the
envelopes of the signal can be explained in the following
way. First of all, since T1 and Tn periods both contain the
dephasing processes ~see Fig. 4!, the longer these periods
are, the weaker the strength of oscillations become: this is
why all the envelopes decrease with time. The envelope of
the I ~7! signal with fixed T1, however, has a peak. This is
because we have the double-sided diagram in which the T3
period is rephased during theT1 period. In those types of the
diagram, the T1 period is in the state ug1&^g0u while the T3
period is in ug0&^g1u, or vice versa. One of these diagrams
can beobtained by changing thediagram for R~7! in Fig. 4 by
lowering the rightmost and the second rightmost black
circles ~laser interactions!. These diagrams are the origin of
theRaman-echo signal in appropriatemodels.5 In thismodel,
however, we cannot single out these type of diagrams by the
phase matching condition. The remnant of this echolike ef-
fect may be observed as apeak of the T3 envelope of I

~7!.

VI. DISCUSSIONS

We presented the three-step Feynman rule for the non-
equilibrium expectation or the multicorrelation functions.
The higher-order off-resonant signals were calculated in a
compact analytical form by the rule. The physical picture for
thesignalswasgiven with thehelp of thedouble-sided Feyn-
man diagrams. We carried out the numerical calculations of
the analytical expressions using the parameters obtained
from the experiment, and compared the results with physical
pictures obtained from the double-sided Feynman diagrams.

In this paper, we employ the linear polarization approxi-
mation a5a01a1q for simplicity. If we take into account
the higher-order terms, i.e., a2q

21a3q
31•••, the profile of

the signal wil l be governed by the relative importance of
them and the anharmonicity. Such a consideration has al-
ready been done15 in the case of the fifth-order signal, and it
is also possible to include the nonlinearity of the polarizabil-
ity for the higher-order signals by using the three-step Feyn-
man diagram method.
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In this article we concentrated on off-resonant measure-
ments using optical pulses. Corresponding experiments are
also possibleby using infrared pulses to probe thevibrational
transitions.24 In this case signals originate from the electric
dipole. Our theory can beused to study the caseby replacing
P̂ with the transition dipole momentm. In this type of ex-
periment, we measure the correlation function of m(t) in-
stead of a(t). Both experiments are complementary.
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APPENDIX A: THE THREE-STEP FEYNMAN RULE

In this Appendix, we present the three-step rule explic-
itly by clarifying the definitions of the simplified diagrams
and specified diagrams with some examples. Derivation can
be done from Eq. ~B28!.

We represent the simplified Feynman diagrams propor-
tional to

)
i51

n11

aki
•)
j53

gj
l j~ki51,2,•••; l j50,1,2,••• !

in the following manner. Here, l j corresponds to the order in
the j th-order anharmonicity gjq

j .

A. Rules for simplifie d diagrams

A1. Prepare n11 white circles corresponding to
ak1

,ak2
,••• ,akn11

. The white circle corresponding
to ai from which i lines emerge shall be called the
i th-order external point.

A2. Prepare l j black circles ~j.3! corresponding to the
j th-order anharmonicity Vj (q). The black circle
corresponding to Vj (q) from which j lines go out
shall be called the j th-order internal point. Note
here that the total number of internal points ~or the
black circles! in the diagram is v5 l 31 l 41••• . The
internal points are also called vertices.

A3. Draw all possible connected diagrams by linking
these internal and external points by lines ~propaga-
tors!. A connected diagram is the one in which ar-
bitrary two points are connected directly or indi-
rectly through lines.

If one cannot make aconnected diagram out of the external
and internal points prepared in A1 and A2, it suggests that
the contribution of this order is zero. By useof the simplified
Feynman diagram wecan singleout nonzero contributions to
the response functions. Analytical expressions for the simpli-
fied Feynman diagrams are given in Eq. ~B28!.

Each simplified Feynman diagram can be expressed by
specified Feynman diagrams. The specified diagram is the
simplified one with ~1,2,3! indices and time variables at-
tached to all the internal and external points and given in the
following manner.
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B. Rules for specifie d diagrams

B1. Attach n11 time variables 0,T1 ,T11T2 ,••• ,
T11T21•••1Tn to the n11 external points in an
arbitrary way.

B2. Attach v time variables t1 ,t2 ,••• ,tv to the v inter-
nal points in an arbitrary way.

B3. Attach the ‘‘ 1’ ’ or ‘‘ 2’ ’ index to each line emerg-
ing from an external point. An odd number of ‘‘ 1’’
must be attached to the lines from asingle external
point,¬ except¬ the¬ external¬ point¬ labeled
T11T21•••1Tn in B1. To all the lines from this
special external point the ‘‘ 2’ ’ indices must be at-
tached. As aresult, the i th-order external point in a
diagram has2 j11 lines labeled ‘‘ 2’ ’ and i22 j21
lines labeled ‘‘ 1’’ , or has i lines all labeled ‘‘ 2,’’
where 2 j11 stands for an odd number and j can be
an any integer from zero to ~i21!/2.

B4. Attach the index ‘‘3’ ’ to all lines emerging from an
internal point, or attach the index ‘‘ 1’ ’ or ‘‘ 2’ ’ to
each line from an internal point. Onemust attach an
odd number of ‘‘ 1’ ’ to the lines from a single in-
ternal point, but cannot attach ‘‘3’ ’ and ‘‘ 1’’
~‘‘ 2’’ ! at the same time to the lines from a single
internal point. It follows that the i th-order internal
point in adiagram has2 j11 lines labeled ‘‘ 2’ ’ and
i22 j21 lines labeled ‘‘ 1,’ ’ or has i lines all la-
beled ‘‘3,’ ’ where2 j11 stands for an any odd num-
ber from one to i .

Note here that the diagram which contains the following
lines vanishes and thus can be excluded from the following
discussions.

b1. Line whose extremities are ‘‘ 1’ ’ and ‘‘ 1’ ’ ~propa-
gators connecting ‘‘ 1’ ’ and ‘‘ 1’’ !.

b2. Line whose extremities are ‘‘ 1’ ’ and ‘‘3.’’
b3. Line whose extremities are ~2,t! and ~1,t8! where

t,t8. ~Thepropagator connecting ‘‘ 2’ ’ and ‘‘ 1’ ’ is
causal.!

It can be shown that a simplified Feynman diagram is ex-
pressed as the sum of all possible specified diagrams ob-
tained by the above rule which are topologically distinct
from each other. Namely, we have

A simplified diagram G5( @topologically distinct

specified diagrams derived from the simplified diagram G#.

~A1!

The analytical expression for a specified Feynman dia-
gram is obtained from Eq. ~B28! as follows.

C. Rules for analytica l expressions

C1. Associateai /4
j with the i th-order external point

which has 2 j11 number of lines labeled ‘‘ 1’ ’ and
~remaining! i22 j21 number of lines labeled ‘‘ 2.’’
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C2. Associateai with the i th-order external point which
carries the time variable T11T21•••1Tn and
whose i lines are all labeled ‘‘ 2.’’

C3. Associate 2igk/(4
j\) with the kth-order internal

point which has 2 j11 number of lines labeled
‘‘ 1’ ’ and ~remaining! k22 j21 number of lines la-
beled ‘‘ 2.’’

C4. Associate 2gi /\ with the i th-order internal point
whose i lines are all labeled ‘‘3.’’

C5. Associate the propagator D ( lm)(t,t8) @l ,m51,2,3#
to a line whose extremities are named ( l ,t) and
(m,t8).

C6. Integrate the product of all factors described in the
above over the internal time variables t1 ,t2 ,••• ,tv .
The range of integration for an internal point whose
lines are all labeled ‘‘3’ ’ is from 0 to b\. All the
other internal points are integrated from 0 to `.

C7. The contribution of the diagram is obtained by the
quantity obtained in C6 multiplied by ( i /\)n/S,
where the symmetry number S is the product of the
line symmetry number SL and the vertex one SV of
the diagram.

To help understand the above rules, we present several
examples. First, consider the two-time response function:

R~3!~T1!5
i

\
a1
2^@q~T1!,q~0!#&

1
i

\
a1a2^@q

2~T1!,q~0!#1@q~T1!,q
2~0!#&

1
i

\
a2
2^@q2~T1!,q

2~0!#&1••• .¬ ~A2!

Following ruleA, the term proportional to a1
2 is readily given

by the simplified diagrams

(A3!

where we consider the g3 and g4 anharmonicities explicitly
and draw up to the second order in these anharmonicities.

By applying rule B, the above simplified diagrams can
be translated into the specified diagrams

(A4!

where all the time indices are omitted. Then analytical ex-
pressions are readily obtained from rule C. For instance,
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~A5!

(A6!

Note the line symmetry factor SL is 2 in Eq. ~A6!.
Second, consider the two-time response function:

R~5!~T1 ,T2!5S i\ D 2a1
3^@@q~T11T2!,q~T1!#,q~0!#&

1S i\ D 2a1
2a2^@@q2~T11T2!,

q~T1!#,q~0!#12 terms&1••• .¬ ~A7!

By use of rules A and B, the terms proportional to a1
2a2 are

written down as

(A8!

Third, we consider the three-time response function
R(7)(T1 ,T2 ,T3). Following rule A, the simplified diagrams
are given as

(A9!

Here, the labels above each diagram show the order of the
diagram.

APPENDIX B: ANALYTICA L EXPRESSION FOR THE
SIMPLIFIED DIAGRAM

By introducing the nonequilibrium generating functional
W(J), we obtained Eq. ~A6! of our previous paper15:

R~5!~T1 ,T2!5S i\ D 2@ā~]1~0!!ā~]1~T1!!2ā~]1~0!!

3ā~]2~T1!!2ā~]2~0!!ā~]1~T1!!

1ā~]2~0!!ā~]2~T1!!#

3ā~]~2 !~T11T2!!
i

\
W~J!uJ50 ,¬ ~B1!

where
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ā~]~ t !!5a01a1]~ t !1
a2

2!
@]~ t !#21••• .¬ ~B2!

Introducing the sign factor

sgn$ i n%5~21! i11 i21•••1 i n2n,¬ ~B3!

and the time variables

s150,

s25T1 ,

s35T11T2 ,

A
sn115T11T21•••1Tn ,¬ ~B4!

we can generalize the above expression to the form

R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D n (
i151

2

(
i251

2

••• (
i n51

2

sgn$ i n% ā~] i1~s1!!

3ā~] i2~s2!!•••ā~] i n~sn!!ā~]~2 !~sn11!!
i

\
W~J!U

J50

.

~B5!

By expanding the polarizability ā we have

R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D n (
j 151

`

(
j 251

`

••• (
j n1151

` a j 1

j 1!

a j 2

j 2!
•••

a j n11

j n11!

3 (
i151

2

(
ı251

2

••• (
i n51

2

sgn$ i n% ] i1
j 1~s1!] i2

j 2~s2!•••] i n
j n~sn!

3@]~2 !~sn11!#
j n11

i

\
W~J!U

J50

.¬ ~B6!

Noticehere that wehavedropped thecontribution from j l50
since j l50 corresponds to the c-number part of the polariz-
ability a0 and we are considering the expectation values of
multicommutator of the polarizability.

By mathematical induction with respect to n we have
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a j 1

j 1!

a j 2

j 2!
•••

a j n

j n!
(
i151

2

(
i251

2

••• (
i n51

2

sgn$ i n% ] i1
j 1~s1!

3] i2
j 2~s2!•••] i n

j n~sn! ~B7!

5a j 1
~12 !~]~s1!!a j 2

~12 !~]~s2!!•••a j n
~12 !~]~sn!!,¬ ~B8!

where

a i
~12 !~]~ t !!5

a i

i !
@]1

i ~ t !2]2
i ~ t !# ~B9!

5a i¬ (
j50

2 j11, i
1

22 j
@]~1 !~ t !#2 j11

~2 j11!!

3
@]~2 !~ t !# i22 j21

~ i22 j21!!
.¬ ~B10!

Thus, we arrive at

R~2n11!~T,T2 ,••• ,Tn!

5S i\ D n (
j 151

`

(
j 251

`

••• (
j n1151

`

a j 1
~12 !~]~s1!!

3a j 2
~12 !~]~s2!!•••a j n

~12 !~]~sn!!

3ā j n11
~]~2 !~sn11!!

i

\
W~J!U

J50

.¬ ~B11!
fo
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By applying themethod explained in Appendix A in Ref. 21
@see Eq. ~A7! in Ref. 21#, we have

R~2n11!~T1 ,T2 ,••• ,Tn!

5S i\ D ne]/]wD]/]weV@w# (
j 151

`

(
j 251

`

•••

3 (
j n1151

`

a j 1
~12 !~w~s1!!a j 2

~12 !~w~s2!!•••

3a j n
~12 !~w~sn!!ā j n11

~w~2 !~sn11!!uw50,conn.¬ ~B12!

As specified below, ~]/]w!D~]/]w! is the second-order de
rivative operator with respect to the three variablesw~1!,
w~2!, andw3, and V[w],a i

(12)(w(t)),ā i(w
(2)(t)) are poly-

nomial function~al!s of the three variables. The operation
uw50 in Eq. ~B12! implies settingw50 after performing the
derivatives of w. This operation corresponds to the Wic
contraction and we can resort to diagrammatic technique.
Only theoperationscorresponding to connected diagramsare
kept in Eq. ~B12!, as implied by conn. at the end of this
equation.

The derivative operator is given by
]

]w
D

]

]w
5E

0

`

dtE
0

`

ds
]

]w~2 !~ t !
D ~21 !~ t,s!

]

]w~1 !~s!
1
1

2 E
0

`

dtE
0

`

ds
]

]w~2 !~ t !
D ~22 !~ t,s!

]

]w~2 !~s!

1E
0

`

dtE
0

b\

dt
]

]w~2 !~ t !
D ~23!~ t,t!

]

]w3~t!
1
1

2 E
0

b\

dtE
0

b\

dt8
]

]w3~t!
D ~33!~t,t8!

]

]w3~t8!
,¬ ~B13!
where the propagators D ( lm)[ l ,m5(1,2,3)] are defined
through the two-time correlation functions for the bilinearly
coupled and harmonic system. Equation ~B12! @or Eq. ~B28!
below# with this expression for ]/]wD]/]w is the origin of
rulesC5 and b1–b3. If we introduce the cumulant part of the
autocorrelation function C(t1 i t)

C~ t1 i t!5^q~0!q~ t1 i t!&bilinear,¬ ~B14!

where 0,t ,b\. Then the propagators are expressed as
lows:

D ~23!~ t,t!5C~ t1 i t!, ~B15!

D ~22 !~ t,s!5S~ t2s!,¬ ~B16!

D ~21 !~ t,s!522iu~ t2s!A~ t2s!, ~B17!

D ~33!~t,t8!5u~t2t8!C~ i t2 i t8!1u~2t1t8!

3C~2 i t1 i t8!, ~B18!
l-

where S and A are the real and imaginary part, respectively
(C5S1 iA). In the case of Ohmic dissipation, the correla-
tion function is explicitly given by

C~ t1 i t!52a1e
2l1~ t1 i t!1a2e

2l2~ t1 i t!2G~ t1 i t!,
~B19!

where

aj5
\

4mz S 11coth
ibl j

2 D ,¬ ~B20!

G~x!5
g

mb (
n52`

` unnue2unnux

~v21nn
2!22g2nn

2 ,¬ ~B21!

with¬ l15g/21i z, l25g/22i z, (z5Av22g2/4),¬ and
nn52pn/b\.

The polynomial of w originating from the polarizability
is given by
No. 5, 1 February 1997

ll Rights Reserved.



s

1697K. Okumura and Y. Tanimura: The (2n11)th-order off-resonant spectroscopy
ak
~12 !~w~ t !!5ak¬ (

j50

2 j11,k
1

4 j

3
@w~1 !~ t !#2 j11

~2 j11!!

@w~2 !~ t !#k22 j21

~k22 j21!!
,

~B22!

ā i~w~2 !~ t !!5
a i

i !
@w~2 !~ t !# i .¬ ~B23!

From these expressions and Eq. ~B12! @or Eq. ~B28! below#,
we can understand rules B1, B3, C1, and C2 by noting the
fact that each term in these polynomialsak

(12)(w(t)) or
ā(w (2)(t)) is the origin of an external point and the defini-
tion of time variables si in Eq. ~B4!.

The polynomial of w corresponding to anharmonicity i
expressed as

V@w#5(
i
Vi@w#, ~B24!

where

Vı@w#5Vi
~12 !@w#2Vi

~3!@w#. ~B25!

Here,

Vk
~12 !@w~ t !#52

gk
k!

i

\ E
0

`

dtF S w~1 !~ t !

2
1w~2 !~ t ! D k

2S 2
w~1 !~ t !

2
1w~2 !~ t ! D kG

52
i

\
gkE

0

`

dt (
j50

2 j11,k
1

4 j
@w~1 !~ t !#2 j11

~2 j11!!

3
@w~2 !~ t !#k22 j21

~k22 j21!!
,¬ ~B26!

and

Vk
~3!@w~ t !#52

gk
k!

1

\ E
0

b\

dt@w3~ t !#
k.¬ ~B27!

We can understand rule B2, B4, C3, C4, and C6 from these
expressions for V with Eq. ~B12! or Eq. ~B28! below by
noting the fact that each term in these polynomials
Vk
(12)[w(t)] or Vk

(3)[w(t)] is the origin of an internal point.
We thus obtain the expression for the simplified diagram

~contribution to the response function! proportional to

)
i51

n11

aki
•)
j53

gj
l j

in the following form

S i\ D ne~]/]w!D~]/]w!)
j53

~Vj@w#! l j (
$kn11%

ak1
~12 !~w~s1!!

3ak2
~12 !~w~s2!!•••akn

~12 !~w~sn!!

3ākn11
~w~2 !~sn11!!uw50,conn.,¬ ~B28!
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from which Rules A, B, and C can be derived. Here, the
summation ($kn11% implies the summation over all possible
permutation of k1 ,k2 ,••• ,kn11.

APPENDIX C: THE DOUBLE-SIDED FEYNMAN
DIAGRAM

Wegive the rules to draw double-sided diagrams for the
response functions to clarify our notations.

D. Rules for double-side d diagrams

D1. Prepare the ladder ~diagram! with ~n11! steps. The
separation of the steps are T1 ,T2 ,••• ,Tn ~Fig. 3!.
Theupper solid line stands for the timeevolution of
ket ~C1 path! and the lower one for that of bra ~C2
path!.

D2. Place a black circle at either the upper or lower end
of each steps. This corresponds to the laser interac-
tion a1E

2(t)q, and absorbs or emits one quantum
~a or a†!. Here, a and a† stand for the creation and
annihilation operator of the vibrational mode
[q}(a1a†)].

D3. Place a single cross on either the upper or lower
solid line ~body of the ladder!. This stands for the
anharmonic interaction gn11q

n11 and absorbs or
emits quantawhere thenumber of quanta goes in or
out per one interaction can be an any number from
zero @corresponding to a(n11)/2(a†)(n11)/2, etc.# to
n11 @(a†)n11, etc.#.
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