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We have developed a theory of the fifth-order off-resonant spectroscopy to study the effect of
anharmonicity of molecular vibrational modes. The anharmonicity, as well as nonlinear dependence
of polarizability on nuclear coordinates, can be the origin of the fifth-order Raman signal. A profile
of the signal varies depending on the relative importance of the two effects—the anharmonicity and
the nonlinearity. The anharmonicity of a potential can be distinguished from the other effects such
as the nonlinearity or the inhomogeneity of vibrational modes. In order to carry out calculations
analytically, we employ the multimode Brownian oscillator model and treat anharmonicity as
perturbation to the harmonic vibrational modes. A simple analytical expression for the fifth-order
polarization is obtained through adiagrammatic technique, called Feynman rule on the unified time
path. Physical pictures for the analytical expression are given for a single mode system through
numerical calculations and through double-sided Feynman diagrams. Applications to CHCl3 and
CS2 are made where the third-order experiments are used to extract parameters. In the CS2 case, the
theoretical fifth-order signals are compared with recent experiment, which suggests some sign of
anharmonicity. © 1997 American Institute of Physics. @S0021-9606~97!00331-0#
I. INTRODUCTION

The feature of inter- and intramolecular vibrational
modes and their dephasing in liquids plays a central role in
virtually all chemical processes in solution. The recent ad-
vent of ultrafast laser technology makes it possible to per-
form nonlinear vibrational experiments that can probe the
information. Experiments conducted so far, including impul-
sive stimulated light scattering ~ISS!,1 femtosecond optical
Kerr effect ~OKE!,2–4 and far infrared ~IR! absorption,5 have
yielded spectral densities in the low-frequency range, provid-
ing characteristic properties of intermolecular nuclear de-
grees of freedom, both local and collective.

Recently, two-dimensional off-resonant spectroscopy
was proposed to separate the inhomogeneous distribution of
slowly varying parameters ~e.g., due to local liquid configu-
rations! from the total spectral distribution of nuclear time
scale.6 This experiment uses two pairs of excitation pulses
and related to the fifth-order nonlinearity. Experimental7–9

and theoretical10–13 studies have been made to explore pos-
sibility to detect such inhomogeneity. In this paper, we
present another possibility of the fifth-order off-resonant ex-
periments: detection of anharmonicity of vibrational modes
with the help of the third-order experiments such as ISS or
OKE.

The primary microscopic basis for understanding spec-
troscopic experiments can be normal modes analysis by mo-
lecular dynamics simulations.14–17 In this simulation method,
calculation of the higher-order optical signals is demanding
and the method to include quantum effects are not well
established.17 On the other hand, if we employ the multi-
mode Brownian oscillator model,18,19 analytical calculation
can be performed quantum mechanically, though micro-
scopic origins of the Brownian modes are sometimes ob-
scured. In the Brownian model, collections of normal mode
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oscillations can be interpreted as being represented by sev-
eral primary ~harmonic! modes coupled to the baths.

For the moment, we consider a system with a single
Brownian coordinate Q to present experimental observables
in terms of response functions. In the third-order off-resonant
experiments, such as ISS and OKE, the signal is related to
the two-time correlation function of the nuclear polarizabil-
ity, R(3)(t);^@a(t),a(0)#&, wherea(t) is the polarizability
in the Heisenberg representation @defined in Eq. ~2.5!#. In
such polarizability sensitive measurements, coordinate de-
pendence of a is essential, since, ifa is a c-number,a(t)
commutes with a~0! and R(3) vanishes. If one expands po-
larizability in terms of the coordinate in the Heisenberg rep-
resentation Q(t), i.e., a(t)5a01a1Q(t)1a2Q2(t)/21•••
~assuming uanQnu@uan11Qn11u!, then characters of R(3) are
determined by a1

2^@Q(t),Q#&.
In the fifth-order off-resonant measurements, the signal

is related to the three-time correlation function, R(5)(t,t8)
; ^@@a(t),a(t8)#,a(0)#&, which is defined in Eq.~2.6!.
Since thea1

3 term ~i.e., ^@@Q(t),Q(t8)#,Q#&! vanishes in the
harmonic Brownian model, features of the signal can be cap-
tured by the term proportional to a1

2a2 ~i.e.,
^@@Q2(t),Q(t8)#,Q#&, etc.!.

The easy-to-handle harmonic models in general are a
fairly good but idealized model. The multimode ~harmonic!
Brownian model has been successfully used to study vibra-
tional spectroscopy in liquids.19 From a molecular dynamics
study, however, anharmonicities in the low frequency vibra-
tional normal modes were found in water15 as well as in
CS2.

16 To reflect such anharmonicities, we include anharmo-
nicity, expressed by g3Q31g4Q41••• , into the primary
Brownian mode. ~More dynamics-oriented interpretation of
anharmonicities is given in Sec. VI.! Although anharmonici-
ties of each normal mode and of the Brownian modes are not
226767/17/$10.00 © 1997 American Institute of Physics
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2268 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
the same, we believe that the present study must be agood
starting point to take the normal-mode anharmonicities into
account.

In the present study we assume that the anharmonicity is
weak so that it can be dealt with as perturbation. In addition,
we assume that the polarizability is well approximated by
first few terms in the expansion in terms of the primary co-
ordinate Q. These assumptions may be reasonable to give
representative results, although there may be a case where
this standpoint is not appropriate.20

Taking the anharmonicity into account, we re-examine
the response function R(3) and R(5) presented above. Even in
the anharmonic case, behavior of R(3) can still be described
by a1

2^@Q(t),Q#& as in the harmonic case, if the anharmo-
nicity is not considerably strong.

In contrast, the main contribution to R(5) in the anhar-
monic case can be different from that in the harmonic case.
For example, if the anharmonicity g3 is significantly large
compared with the nonlinear polarizability a2 , the principal
part can be the term proportional to a1

3g3 ~i.e.,
^@Q(t),Q(t8)#,Q#&!.21 On the contrary, in the harmonic
case, the dominant part is always the thea1

2a2 term as men-
tioned before. Since the time dependence of thea1

3g3 term is
different from that of the a1

2a2 term, R(5) can be used to
detect anharmonicity. In realistic cases, depending on the
relative ratio ã 1

3g̃3 /(ã 1
2ã2) ~where x̃ denotes dimension-

less quantity of x!, the behavior of R(5) may vary since the
time dependences of the terms proportional to g3a1

3 and to
a1

2a2 are different from each other.
Thus it is possible that anharmonicity and nonlinear cou-

pling produce identical third-order signals, but rather differ-
ent fifth-order signals. To demonstrate this, we calculated the
fifth-order response function in the presence of anharmonic-
ity of vibrational modes. To carry out calculations we
employed the Feynman rule on the unified time path,22–25

which is suitable for the oscillators in the coordinate
representation.26 We obtained simple analytical expressions
for the fifth-order off-resonant signal. In asingle mode case,
numerical calculations, as well as interpretations in terms of
double-sided diagrams, were given to explain physical dy-
namics in the fifth-order processes. In the multimode cases,
we calculated the fifth-order signal numerically by using pa-
rameters obtained from the third-order experimental data of
CHCl3 and CS2. By comparison of the numerical results with
the recent fifth-order experimental data by Tokmakoff and
Fleming,9 we found some sign of anharmonicity in CS2. We
analyze the physical nature of the Brownian modes of CS2 in
Sec. VI.

II. THE THIRD- AND FIFTH-ORDER OFF-RESONANT
EXPERIMENT

We consider a molecular system in the condensed phase
irradiated with electronically off-resonant pulses. The off-
resonant pulses allow us to selectively probe the vibrational
dynamics associated with the electronic ground state through
J. Chem. Phys., Vol. 107,

Copyright ©2001. A
the polarizability. The effective Hamiltonian for a system
irradiated with the off-resonant electric field E(r ,t) is given
by18,19

Heff5Hg~P,Q!2E2~r ,t !aQ , ~2.1!

where Hg(P,Q) is a molecular vibrational Hamiltonian on
an electronic ground-state potential surface and aQ is the
coordinate dependent polarizability. Here, P and Q collec-
tively represent the momenta and coordinates of the vibra-
tional motions.

If the system is described by a single nuclear mode
specified by its coordinate Q and momentum P ~generaliza-
tion to a multimode nuclear system is dealt with in Sec. V!,
the polarizability and the vibrational Hamiltonian are, re-
spectively, expressed as

aQ5a01a1Q1
a2

2
Q21••• , ~2.2!

Hg~P,Q!5
P2

2M
1

MV2

2
Q21V~Q!

1(
i 51

N F pi
2

2mi
1

miv i
2

2 S qi2
ciQ

miv i
2D 2G . ~2.3!

Here, V(Q) is the anharmonicity of the potential

V~Q!5
g3

3!
Q31

g4

4!
Q41••• , ~2.4!

and ci is the coupling constant between the system (Q) and
the bath (qi).

This Hamiltonian Hg(P,Q) can describe a dissipative
system in the condensed phase, since the Euler–Lagrange
equation for Q(t) in this system has the friction term

ME dt8 g~ t2t8!Q̇~ t8!,

whereg(t) is specified by the bath parameters (mi ,v i ,ci)
and is proportional to ci

2. ~We have to set N→` to describe
the dissipation.! We can parameterize our theory in terms of
g(t) instead of specifying all the values (mi ,v i ,ci). In the
following we employ the Ohmic dissipation model g(t)
5gd(t), whereg is a constant.@This choice ofg(t) is pos-
sible only after we let N→`.# The strength of dissipation is
reflected in the constantg.

The physical observables in optical experiments can be
related to the response functions R(n),19 which are expecta-
tion values of multicommutators. The response function re-
lated to the third- and fifth-order off-resonant experiment are
defined by

R~3!~t1!5
i

\
^@a~t1!,a~0!#&, ~2.5!

R~5!~t1 ,t2!5S i

\ D 2

^@@a~t11t2!,a~t1!#,a~0!#&, ~2.6!

where @•••# is the commutator (@A,B#[AB2BA), ^•••&
(5Tr@rg•••#) is the expectation by the initial distribution at
the inverse temperatureb

rg5e2bHg~P,Q!/Tr@e2bHg~P,Q!#, ~2.7!
No. 7, 15 August 1997
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anda(t) is the Heisenberg operator associated with the e
tronic ground state Hamiltonian

a~ t !5e~ i /\!Hg~P,Q!taQe2~ i /\!Hg~P,Q!t. ~2.8!

Now we explain pulse configuration for the third- and
fifth-order experiment. In general, the electric field E(r ,t) in
the (2n11)th order experiment is given by E(r ,t)
5Ef (r ,t)1( j 51

n Ej (r ,t), where Ej (r ,t)5Ej (t)(e
iv j t2 ik j –r

1eiv j8t2 ik j8–r)1c.c. and Ef (r ,t)5Ef (t)eiv f t2 ik f–r1c.c. in
which c.c. stands for the complex conjugate. For example, in
the third-order experiment ~ISS or OKE!, the envelopes
E1(t) and Ef (t) peak at t52T1 and t50, respectively (n
51). Thus, in the third order, we apply the system two
simultaneous pulses ~center frequenciesv1 ,v18 and wave
vectors k1 ,k18! at t52T1 and then the probe pulse ~v f and
k f ! at t50.

Pulse configuration for the fifth-order experiment is
given by the above expression for E(r ,t) with n52 and is
described in Fig. 1.6,19 The temporal profiles of the pulses
E1(t), E2(t), and Ef (t) peak at t52T12T2 , t52T2 , and
t50, respectively; the two pairs of pulses are applied to the
system, which are followed by the last probe pulse. The first
pair ~v1 ,v18 and k1 ,k18! is irradiated at the time t52T1

2T2 , the second ~v2 ,v28 and k2 ,k28! at t52T2 , and the
final pulse ~v f and k f ! at t50.

The polarizations relevant to the third-order and the
fifth-order experiments are, respectively, given by6,19

P~3!~ t !5@Ef ~ t !ei ~v f t2k f–r !1c.c.#E
0

`

dt1 R~3!~t1!

32uE1~ t2t1!u2@11cos $Dv1~ t2t1!2Dk1–r%#,

~2.9!

P~5!~ t !5@Ef ~ t !ei ~v f t2k f–r !1c.c.#E
0

`

dt1E
0

`

dt2

3R~5!~t1 ,t2!2uE1~ t2t12t2!u2
•2uE2~ t2t2!u2

3@11cos $Dv1~ t2t12t2!2Dk1–r%#

3@11cos$Dv2~ t2t2!2Dk2–r%#, ~2.10!

where we have introduced Dvn5vn82vn , and Dkn5kn8
2kn .

FIG. 1. Pulse configuration for the fifth-order experiment. The two pairs of
pulses are applied to the system, which are followed by the last probe pulse.
The temporal profiles of the pulses E1(t), E2(t), and Ef (t) peak at
t52T12T2 , t52T2 , and t50, respectively.
J. Chem. Phys., Vol. 107,
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For impulsive pump experiments, we set

Ef~ t !5d~ t !,

E1~ t !5d~ t1T1!,

E2~ t !5d~ t1T11T2!. ~2.11!

Then the signals, which are observed in a phase-matched
direction1,2,7–9 and related to the square of the polarization,
are given by ~up to a proportionality constant!

I ~3!5uR~3!~T1!u2, ~2.12!

I ~5!5uR~5!~T1 ,T2!u2. ~2.13!

III. FEYNMAN RULES FOR RESPONSE FUNCTIONS

In this section we derive the response functions of a
single mode system by using the Feynman rule on the
unified-time path ~UTP!. Originally the Feynman rule was
developed to calculate the vacuum ~the ground state! expec-
tation values of operators in an anharmonic system.27 A simi-
lar diagrammatic rule was initiated by using the Matsubara
Green’s functions ~propagators! to obtain the thermal
expectation.27 The Feynman rule on UTP is an extension of
these rules to obtain the nonequilibrium expectation values,
or the real-time correlation functions.

The common feature of these three methods is that ex-
pectation values are given by the sum of Feynman diagrams.
Each Feynman diagram consists of points connected by lines
and corresponds to an analytical expression by the rule in a
unique way.

We define here some terms for diagrammatic expan-
sions; examples are given shortly. The i -point in a diagram is
a point from which i lines go out. Any i -point is either an
external point or an internal point; the former originates from
an operator for which the expectation value is calculated,
while the latter from anharmonicity. The internal point is
also called vertex and the line is called propagator. The in-
ternal i -point is also called i -vertex.

To illustrate the Feynman rule, we first consider the dia-
grammatic expansion of R(3). According to the expansion of
the polarizability, R(3) can be expressed as

R~3!~T1!5
i

\
a1

2^@Q~T1!,Q~0!#&

1
i

\
a1a2^@Q2~T1!,Q~0!#1@Q~T1!,Q2~0!#&

1
i

\
a2

2^@Q2~T1!,Q2~0!#&1••• , ~3.1!

where Q(t) is the Heisenberg operator

Q~ t !5e~ i /\!Hg~P,Q!tQe2~ i /\!Hg~P,Q!t. ~3.2!

The diagrammatic expansion of the first term is given by
No. 7, 15 August 1997
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2270 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
~3.3!
where we consider the g3 and g4 anharmonicities explicitly
and draw diagrams up to the second order in these anharmo-
nicities.

In each of the above diagrams the two white circles are
external 1-points and correspond to the operatorsa1Q(T1)
anda1Q(0). The black circles are vertices or internal points.
For example, the second diagram have a 4-vertex or an in-
ternal 4-point from which four lines go out; this vertex cor-
responds to the anharmonic interaction g4Q4.

From these diagrams, we know the dependences of the
diagrams on the parametersa i and gi ; the number and types
of circles determine them. The first diagram is proportional
to a1

2, the second to a1
2g4 , the third to a1

2g3
2 and so forth.

These diagrams can be generated as follows. First, we
determine an operator for which the expectation is calcu-
lated, which fixes the external points that have to be used in
diagrams. In the above case, the external points to be used
are the two 1-points represented by white circles, which cor-
respond to the operatorsa1Q(T1) anda1Q(0). Second, we
determine which order of the expectation we calculate,
which fixes the internal points. In the case of the order of
g3

2 @the third and the fourth diagrams in Eq. ~3.3!#, the inter-
nal points are two 3-points represented by black circles.
J. Chem. Phys., Vol. 107,

Copyright ©2001. A
Third, we make all possible connected diagrams out of the
given external and internal points by jointing them with lines
~propagators!. In the g3

2 case, we can make two different
diagrams @the third and forth in Eq. ~3.3!# from two 1-points
and two 3-points. In the course, we can use as many lines as
we need and all possible diagrams have to be taken into
account in the calculation of that order.

The term proportional to a1
2g3 vanishes in Eq. ~3.3!.

Diagrammatically this simply means that we cannot make
connected diagrams out of two 1-points and one 3-point. In
general, we can easily pick up nonzero contributions by
these diagrammatic rules.

In the Feynman rule for the vacuum expectation value
and for the thermal expectation, analytical expressions for
each diagram would be obtained from the above diagrams.
However, in the rule on the unified-time path ~UTP! for the
nonequilibrium expectation, we add indices, ‘‘ 1,’ ’ ‘‘ 2,’ ’ or
‘‘3,’ ’ to all the extremities of the lines in order to derive
analytical expressions. These diagrams with indices are
called specified diagrams, while the diagrams as given above
are called simplified diagrams in the UTP rule.24 The speci-
fied diagrams corresponding to Eq. ~3.3! are given by
~3.4!
No. 7, 15 August 1997
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2271K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
The reason why we need the extra (1,2, 3) indices as
above is that we have three types of time evolution operators
for the nonequilibrium expectation ~see Appendix A!. These
three operators, the real time evolution operator of the ket
e2( i /\)Hg(P,Q)t, that of the bra e( i /\)Hg(P,Q)t, and the imagi-
nary time evolution operator e2bHg(P,Q), are associated with
the C1-, C2-, and C3-paths in Fig. 2, respectively. In the
original Feynman rule for the vacuum expectation, only the
C1-path comes into play, and the propagators D (11), which
connect two points on the C1-path, are used. In the rule for
the thermal expectation, only the C3-path comes into play,
and the propagators D (33) ~Matsubara Green’s function!,
which connect two points on the C3-path, are used. Only one
kind of propagator ~D (11) or D (33)! can appear in both cases.
In the UTP case, however, all the three paths (C1 ,C2 ,C3)
have to be considered and thus we use all the propagators
D ( i j ) ( i , j 51,2,3), which connect a point on the Ci-path and
a point on the Cj -path. For convenience, we use the four
independent elements, D (21), D (22), D (23), and D (33), of
the 333 matrix D ( i j ) in the UTP rule. Thus, in order to
specify the four propagators, we add indices (1,2, 3) to the
diagrams. The detail rule for putting these indices are given
in Ref. 24.

From the specified diagrams, we can easily obtain ana-
lytical expressions. With an external and internal i -points we
associate the factors a i and gi , respectively. With a line
whose ends carry indices l and m ~l , m51,2, 3!, we asso-
re

J. Chem. Phys., Vol. 107,
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ciate the propagator D ( lm). Then, analytical expressions are
obtained by integrating the product of all the factors and
propagators over all internal points. Detail rules are given in
Ref. 24, and here we only present two examples

FIG. 2. The unified time-path C5C11C21C3 on the complex t plane
(T→`). It starts from the origin up to an infinity along the real path
(C1), returns to the origin (C2), and then goes to 2 ib\ along the imagi-
nary axis (C3).
~3.5!

~3.6!
In the Ohmic case the propagator D (21)(t)[D (21)(t,0) is
calculated as23,24

D ~21 !~ t !5u~ t !
\

iM z
e2gt/2 sin zt, ~3.7!

with

z5AV22g2/4, ~3.8!

whereg is the strength of the damping as mentioned befo
 .

Note that, though this propagator does not depend on tem-
perature, all the other propagators ~D (22), D (23), and
D (33)! depend on it.22–24

From the above arguments, we have

R~3!~T1!5
i

\
a1

2D ~21 !~T1!1••• , ~3.9!

where the terms represented by ‘‘ •••’ ’ are anharmonic cor-
rections.

Now we examine R(5)
No. 7, 15 August 1997

ll Rights Reserved.



2272 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
R~5!~T1 ,T2!5S i

\ D 2

a1
3^@@Q~T11T2!,Q~T1!#,Q~0!#&

1S i

\ D 2

a1
2a2^@@Q2~T11T2!,Q~T1!#,Q~0!#

12 terms&1••• . ~3.10!

The first term proportional to a1
3 is called RAH in the

following and diagrammatically expressed as:24

~3.11!

where the terms represented by ‘‘ •••’ ’ are anharmonic higher
order corrections.

The first diagram in Eq. ~3.11! is proportional to a1
3g3 ;

RAH originates from anharmonicity g3 . The a1
3g3

0 term van-
ishes since we can not make a connected diagram out of
three 1-points.

The second term in Eq. ~3.10! proportional to a1
2a2 is

called RNL in the following since it originates from nonlin-
earity a2 . A diagrammatic expression is given by24

~3.12!

where the terms represented by ‘‘ •••’ ’ are anharmonic cor-
rections.

From above specified diagrams, the analytical expres-
sions for RAH and RNL are then given by24

RAH~T1 ,T2!5S i

\ D 2

a1
3S 2

i

\
g3D E

0

`

dt D ~21 !~T11T22t !

3D ~21 !~ t2T1!D ~21 !~ t !1••• , ~3.13!

RNL~T1 ,T2!5S i

\ D 2

a1
2a2D ~21 !~T2!

3@D ~21 !~T11T2!1D ~21 !~T1!#1••• .

~3.14!

We note here we can perform the integration in Eq. ~3.13!
analytically ~see Appendix B!.

In Eqs. ~3.9!, ~3.13!, and ~3.14!, the leading terms, which
are explicitly shown, do not depend on temperature, since the
corresponding diagrams in Eqs. ~3.4!, ~3.11!, and ~3.12! con-
sist exclusively of the temperature-independent propagator
D (21). The temperature dependence of response functions
J. Chem. Phys., Vol. 107,
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come from higher order terms, some of which are shown in
Eq. ~3.4! @they are represented by ‘‘ •••’ ’ in Eqs. ~3.11! and
~3.12!#, through temperature-dependent propagators such as
D (22), D (23), and D (33). This means that these response
functions have aweak temperature dependence if the anhar-
monicity is weak. Although, in what follows, we only con-
sider these temperature-independent terms based on the
weak-anharmonicity approximation, we stress here that these
expressions are the results of temperature-dependent calcula-
tions and are very good approximation within the parameter
region discussed in this study.

For later convenience, the Fourier transform of the two-
time correlation function is defined by

R~3!~v!5E
0

`

dt eivtR~3!~ t !. ~3.15!

Its imaginary part or the spectral distribution in the Ohmic
case is given from Eq. ~3.9! by

J~v![Im R~3!~v!5
a1

2

M

vg

~v22V2!21v2g2 1••• .

~3.16!

IV. FIFTH-ORDER SIGNAL FROM A SINGLE MODE
SYSTEM

In this section, we show that anharmonicity and nonlin-
ear coupling can produce identical third-order signals, but
very different fifth-order signals. Our arguments below are
based on analytical results, double-sided diagrams and nu-
merical simulations.

To clarify the points, we assume thata j in Eq. ~2.2! and
gk in Eq. ~2.4! are proportional to the dimensionless param-
eters aj and gk22, respectively, for the time being.

Even if we do not specify the relative magnitude of a
and g ~but do assume a,g!1!, we can conclude that R(3)

introduced in Eq. ~2.5! has the largest nonzero contribution
of the order a2g0 @explicitly given in Eq. ~3.9!#. Based on
diagrammatic representation, we can also show that remain-
ing correction terms, including terms proportional to a1a2 ,
are all smaller than a2g1. ~The a1a2 term, for example, is
smaller than a2g1, since this term is of the order a3g1; in a
harmonic system, the a1a2 term vanishes, since we cannot
make a connected diagram from one 1-point and one
2-point.!

On the other hand, the largest contribution to R(5) cannot
be determined unless we specify the ratio of a to g. If a is
much larger than g ~but still less than unity!, the largest is
RNL. If g is much larger than a, the largest is RAH. This is
because R(5) consists of RNL, RAH, and the other terms @rep-
resented by ‘‘ •••’ ’ in Eq. ~3.10!# where the largest terms of
RNL and RAH are of the orders a4g0 and a3g1, respectively,
and the other terms are smaller than a4g0 or a3g1. ~Again,
this can be shown from diagrammatic representation.!

Thus under the assumption of a,g!1, the third-order
signals can be identical for two systems which have different
ratios a/g, while the fifth-order signals for the two systems
can look different as seen from the analytical expressions of
No. 7, 15 August 1997
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2273K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
RAH and RNL. In other words, we can use the fifth-order
experiment to determine the relative importance of anharmo-
nicity and nonlinearity.

The effectiveness of this strategy depends on how the
two main contributions, RAH and RNL, behave differently for
J. Chem. Phys., Vol. 107,
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various parameters. Before checking this point numerically,
we explain that the two contributions come from very differ-
ent physical processes.

To have a physical insight, we employ the double-sided
Feynman diagrams.19 For the third-order experiment we have
~4.1!
Here, the first four diagrams correspond to the first term in
Eq. ~3.9! or the diagram in Eq. ~3.5!.

In these diagrams, the lower horizontal line corresponds
to the time evolution ~from the left to the right! of the bra
and the upper line to that of the ket. Black circles stand for
the laser interaction. If the polarizability is linear, the laser
interaction changes the vibrational state of the system uv&
into the state uv61&. This is because we assume the linear
polarizability a1Q, in which Q can be expressed as a1a†.
Here, a and a† are the annihilation and creation operators
~a†uv&5uv11&, etc.!. For simplicity, we have assumed that
the system is initially in the ground state u0& in Eq. ~4.1!.

The first diagram can be interpreted as follows. At first a
system is in the population state u0&^0u. At t52T1 the ket u0&
interacts with the laser, and the system is in the coherence
state u1&^0u in the next period T1 . Here, the coherence state
refers to the state u i &^ j u ( iÞ j ), and the population state to
u i &^ i u. At t50 the ket again interacts with the laser, and the
system is brought back to the state u0&^0u. ~The final state of
the bra and ket have to be the same state so that the case
where the final state becomes u2&^0u should be excluded.!
Thus during the T1 period the system in the state u1&^0u un-
dergoes the coherence relaxation.

Similarly, we find that in the second diagram the system
is in the state u1&^0u in the T1 period, whereas in the third and
fourth diagrams it is in the state u0&^1u in the T1 period. ~In
general, the two diagrams different only in the positions of
the rightmost interaction make the same contribution.! Thus
the third-order experiment probes the dynamics of the coher-
ence state u0&^1u or u1&^0u ~the dephasing process! for the pe-
riod T1 .

The diagrams of RAH in Eq. ~3.13! are given by
~4.2!
In above diagrams the cross stands for the anharmonic
interaction g3Q3, which changes the state uv& into the state
uv61& ~aaa†, etc.! or uv63& ~a†a†a†, etc.!. The cross can
be placed on either upper or lower T2 portion of the horizon-
tal lines; this can be seen from the fact that the integration
*0

` dt in Eq. ~3.13! reduces to the one over the T2 period

*T1

T11T2 dt ~due to the step function contained in D (21)!.
Al l the diagrams which have to be considered for the
first term in Eq. ~3.13! are obtained by the first diagram in
Eq. ~4.2! by moving black circles and the cross to the lower
line. For example, the second diagram is obtained by moving
the leftmost circle to the lower line. Thus, we have 24 dia-
grams in total.

In the first diagram, the system is in the coherence state
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2274 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
u1&^0u in the T1 period, while it changes the state during the
T2 period in two ways: u0&^0u→u1&^0u and u2&^0u→u1&
3^0u.

By studying all the diagrams, we find that in the T1

period the system is in the coherence state while in the T2
J. Chem. Phys., Vol. 107,
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period it changes the state from a population state to a co-

herence state, or from acoherence state to another coherence

state.

The diagrams of RNL are given by
~4.3!
In these diagrams, the white circle stands for the laser
interaction through the nonlinear polarizability a2Q2. This
interaction changes the state uv& into uv62& ~a†a†, etc.! or
does not change the state ~aa†, etc.!.

The diagrams are classified into two types for RNL: In
one type, only the rightmost circle is white @corresponding to
the first diagram in Eq. ~3.12!# and, in the other, only the
middle circle is white @corresponding to the second in Eq.
~3.12!#. Each type has 23 diagrams in the harmonic case.

By studying all the 2323 diagrams, we find that during
the T1 period the system is in a coherence state, while it
keeps either the population state or the coherence state in the
T2 period.

Based on the above analysis, we expect that the T1 de-
pendences of R(3), RAH, and RNL may have similar property
since in all cases the dynamics of the coherence state u0&^1u
and u1&^0u is probed in the T1 period. In addition, we expect
that the T2 dependences of RAH and RNL may look different.
Note that, however, the present analysis based on double-
sided diagram fails to include the effect of dissipation so that
the argument may be reasonable only in weak damping
cases.

In order to carry out numerical calculations, we rewrite
the expressions of signals given in the previous section in
dimensionless quantities. First, the dimensionless propagator
f (t) is defined by

f ~ t !5
V

z
e2gt/2 sin zt. ~4.4!

Note here that the ‘‘frequency’’ z is being allowed to be
complex to include over and underdamped motion. Then, the
dimensionless third-order signal is given by, Ĩ (3)(T1)
[uR̃(3)(T1)u2, where

R̃~3!~T1![
\

a0
2 R~3!~T1!5ã 1

2f ~T1!1••• . ~4.5!

Here,
ãi5
a i

a0
S \

MV D i /2

. ~4.6!

The dimensionless spectral distribution is expressed as

J̃~v![
\V0

a0
2

J~v!5Ṽã 1
2 ṽg̃

~ ṽ 22Ṽ2!21ṽ 2g̃ 2
1••• ,

~4.7!

where

Ṽ5V/V0 , g̃5g/V0 , ~4.8!

with V0 being an arbitrary unit of frequency.
The correction terms represented by ‘‘ •••’ ’ in Eq. ~4.7!

were calculated in Ref. 23 in a different context. The results
show that the correction terms approach to zero when ~1! the
anharmonic parameter becomes smaller, ~2! the damping
constantg/V becomes larger, or~3! the mode frequency
\Vb becomes larger~for a fixed temperature 1/b!. This
means that, even for low frequency modes in liquids where
\V can be much less that 1/b, the correction term can be
negligible if the anharmonic parameter is small enough. In
the following numerical calculations, we use several set of
parameters. In all cases, including CHCl3 and CS2 cases be-
low, we have checked that the correction terms given in Ref.
23 are small and negligible.

The largest contributions to R̃AH[\2RAH/a0
3 and R̃NL

[\2RNL/a0
3 are given by

R̃AH~T1 ,T2!52g̃3ã 1
3E

T1

T11T2
V dt f ~T11T22t !

3 f ~ t2T1! f ~ t !, ~4.9!

R̃NL~T1 ,T2!5ã 1
2ã2f ~T2!@ f ~T11T2!1 f ~T1!#, ~4.10!

where

g̃i5
gi

\V S \

MV D i /2

. ~4.11!
No. 7, 15 August 1997

ll Rights Reserved.



2275K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
FIG. 3. The contour plots of the fifth-order signal from aweak damping mode with g/V50.1. The parameters (g̃3 ,ã2) are ~0.01, 0!, ~0, 0.01!, ~0.01, 0.01!,
and ~20.01, 0.01! in ~a!, ~b!, ~c!, and ~d!, respectively. The frequency V is normalized to unity.
Using these dimensionless expressions, we performed
numerical calculations for the Ohmic damping. The fifth-
order signals defined by Ĩ (5)(T1 ,T2)[uR̃AH(T1 ,T2)
1R̃NL(T1 ,T2)u2 are presented for a weak damping constant
~Fig. 3! and for a strong damping constant ~Fig. 4!. The case
where anharmonicity (g3) is much stronger than nonlinearity
(a2) is discussed by ~a! AH case; the opposite case is dis-
cussed by ~b! NL case. The cases where anharmonicity and
J. Chem. Phys., Vol. 107,
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nonlinearity are comparable are discussed by the two cases
~c! and ~d!, which are different in the relative sign of g3 and
a2 .

In the weak damping case ~Fig. 3!, the signals oscillate
with the frequency 2V along T1 in all the cases ~a!–~d!. This
is the same oscillation as that of R(3)(T1), as clearly seen
from Eq. ~3.9!. This supports the conclusion drawn from the
double-sided Feynman diagrams that the T1 dependences of
No. 7, 15 August 1997
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2276 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
FIG. 4. The contour plots of the fifth-order signal from a strong damping mode with g/V51.0. The other parameters are the same as in Fig. 3.
R(3), RAH, and RNL are similar at least for weak damping.
On the contrary, along T2 , the signals in the case ~a!–~d!

look rather different. In the case ~a!–~d!, the signals along
T2 are superpositions of one, two, three, and three oscillation
~s! of the frequency 2V, respectively. The way of interfer-
ence among these components in case ~c! is opposite to that
in case ~d! due to relative sign difference of g3 anda2 . This
also supports the conclusion on the T2 dependences of the
signals drawn from the double-sided diagrams.

Under strong damping ~Fig. 4!, the signals in the cases
J. Chem. Phys., Vol. 107,

Copyright ©2001. A
~a!–~d! show very different profile. In the AH case, the sig-
nal is distinctly asymmetric with respect to T1 and T2 axis,
while it is fairly symmetric in the NL case. Another feature
in the AH case is that the signal does not have initial rise
along T1 axis within a certain range of T2 ; it only decays
from acertain value along T1 . On the other hand, the signal
rises initially , reaches a peak, and then shows decay along
both axis in the NL case. The signals in cases ~c! and ~d! can
be understood as superpositions of those in cases ~a! and ~b!.

In this way we have shown that two different system can
No. 7, 15 August 1997
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2277K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
produce identical third-order signals but rather different
fifth-order signals.

V. SIGNALS FROM MULTIMODE SYSTEMS

A generalization to the multimode system is straightfor-
ward. The multimode Hamiltonian is given by Eq. ~2.1! with

Hg~P,Q!5(
s

F Ps
2

2Ms
1

MsVs
2

2
Qs

21Vs~Qs!G
1(

s
(
i 51

N F ps,i
2

2ms,i
1

ms,ivs,i
2

2 S qs,i2
cs,i Qs

ms,i vs,i
2 D 2G .

~5.1!

Here, Qs and Vs(Qs) are the coordinate of the sth mode and
the anharmonicity of the potential for the sth mode, respec-
tively. As in the single mode case, we employ the Ohmic
dissipation model and we parameterize the theory in terms of
the damping constant gs instead of giving the values
(ms,i ,vs,i ,cs,i).

The anharmonicity Vs is given by

Vs~Qs!5\VsS g̃3s

3!
Q̃s

31
g̃4s

4!
Q̃s

41••• D , ~5.2!

where the dimensionless coordinate Q̃s is defined by Qs

5Q̃sA\/(MsVs).
In this Hamiltonian Hg(P,Q), all the modes ~specified

by s! are assumed to be mutually independent. This assump-
tion may be reasonable, particularly if the mode frequencies
Vs are well separated in magnitude.

For the polarizability aQ in Eq. ~2.1!, in addition to the
linear model defined by aQ5a0(11(sã1sQ̃s), we consider
two simple models: mode noncoupling model and mode cou-
pling model.

In the mode noncoupling ~MNC! model, the polarizabil-
ity is given by

aQ5a0(
s

exp@ ã1sQ̃s#2a0~Ns21!, ~5.3!

where ã1s is a dimensionless expansion parameter, and Ns is
the number of modes. The modes in this system can be
treated as independent with each other and the total response
function is given by the sum of the response function for
each mode. The response functions are given in Appendix C.

In the mode coupling ~MC! model, we assume6,19

aQ5a0 expF(
s

ã1s Q̃sG . ~5.4!

The modes in this model are no longer independent and they
interact with each other through radiation fields. However,
we can calculate response functions rather easily even in this
model, if we use the collective coordinate Q̃[(sã1sQ̃s as a
main variable in the calculation. For details and the expres-
sions of the response functions in this model, see Appendix
C.

Polarizability in both the MC and MNC models coin-
cides with that in the linear model up to the linear term. ~The
J. Chem. Phys., Vol. 107,
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linear terma0ã1sQ̃s shall be symbolically denoteda1 in the
following.! This is the reason two expressions of the third-
order R(3) in Appendix C are the same within the approxi-
mation. The difference between polarizabilities in the two
models appears in the square term ~denoteda2!; the MC
model has coupling terms such as Q̃1Q̃2 , while the MNC
does not. This is the reason the fifth-order signals in the two
models are different from each other ~see Appendix C!.

The fifth-order expressions for the multimode system
can be classified into two parts as in the single mode case:
one originating from nonlinearity and the other from anhar-
monicity. The former nonlinear contribution in the MC
model, called RNLMC, is different from that in the MNC
model, called RNL. The latter anharmonic contributions in
the two models are the same and are called RAH.

The third-order expression involves the independent pa-
rameters Vs , gs , and ã1s ~see Appendix C!. RAH involves
the parameter g̃3s in addition to the third-order parameters
Vs , gs , and ã1s . On the other hand, RNL and RNLMC are
specified only by the the third-order parameters. This is be-
cause, in the MC and MNC models, the coefficient of the
second nonlinearity is determined by ã1s . Thus from the
third-order experiment, we can determine the parameters
Vs , gs , and ã1s , but we cannot determine the remaining
parameters g̃3s . The remaining parameters g̃3s should be de-
termined through the fifth-order experiment.

To demonstrate the results in the multimode case, we
calculate the fifth-order signals for chloroform (CHCl3) and
for carbon disulfide (CS2) by using parameters obtained
from third-order experiments. Validity of various assump-
tions of the current theory wil l be discussed in the next sec-
tion.

The third-order experiment of CHCl3
3 can be well ex-

plained by the multimode Hamiltonian with three modes as
shown in Fig. 5, where the parameters ~in the unit @cm21#!
are given by

h151.17 V1539.00 g1577.0

FIG. 5. The third-order signals for CHCl3. The experimental data in Ref. 3
~solid line! are well simulated by the three-mode model ~broken line!.
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2278 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
FIG. 6. The fifth-order signal of CHCl3 for the AH2 case. The graph in the right is the signal at T150.33@ps21#.
h252.10 V25258.5 g2515.0 ~5.5!

h351.25 V35368.5 g3522.0.

Here, we have introduced the strength of the mode

hs5Vsã1s
2. ~5.6!

By using the above set of parameters, we calculate and
compare the fifth-order signal of CHCl3 in two considerably
simple cases. In one case ~AH2 case!, we assume that
only the second mode V2 has anharmonicity (g̃31

5 g̃33 5 0, g̃32 Þ 0) and that the polarizability is linear @aQ

5a0(11(sã1sQ̃s)#. Since the value of g̃32 determines only
the absolute magnitude of the signal and does not contribute
to profile of the signal, here we set it to unity. In the other
case ~NL case!, we assume that all the modes are harmonic
in the MNC model.

The fifth-order signal I (5)(T1 ,T2)5uR(5)(T1 ,T2)u2 in
the AH2 case is given in Fig. 6. The features of the signal are
J. Chem. Phys., Vol. 107,
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similar to those in Fig. 3~a! since only the V2 mode comes
into play in this model; the two plots in Fig. 6 complement
the contour plot in Fig. 3~a!. Compared with the plots in Fig.
6, the plots in Fig. 7 are quite complicated due to interfer-
ence of the three modes. The difference between the two
cases are significant enough to be distinguished by experi-
ments.

We next apply our result to carbon disulfide (CS2), for
which the fifth-order experiments have been done
extensively.7–9 As shown in Ref. 7, the third-order experi-
ments on CS2 are well explained by the two-mode system
specified by the parameters ~in @cm21#!

hL51.00 VL512.9 gL543.0
~5.7!

hH52.20 VH539.2 gH563.7.

We examined the mode noncoupling ~MNC! and the
mode coupling ~MC! models, in addition to the linear model,
FIG. 7. The fifth-order signal of CHCl3 for the NL case. The graph in the right is the signal at T150.33@ps21#.
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2279K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
by using this set of parameters and by changing remaining
free parameters g̃3L and g̃3H . After a careful examination,
we found that the MC model is the best of the three. Within
a rather broad range of anharmonicity g̃3H /ã1H526 to 0
with g̃3L50, the MC model gives fairly reasonable fits to the
experimental result ~Fig. 8!.

Al l the signals in Fig. 8 resemble the experimental re-
sults ~given in Fig. 10 of Ref. 9! in the following three
points: ~S1! the 2D signal decays asymmetrically in the two
time variables T1 and T2 . ~S2! along T2 axis with fixed T1 ,
the signal first rises from zero, reaches apeak and then de-
cays with smaller time constant than that of the third-order
signal. ~S3! slowest decay rate along T1 axis is almost iden-
tical to that of third-order signal.

However, there are following two differences between
the experimental signal and the calculated signal in Fig. 8:
~D1! the experimental signal has no inertial rise along the T1

axis around T2502500 @ fs# ~the signal at T150 has anon-
zero value!, while the calculated signal rises from T1

50 @ fs# to the peak around T15120 @ fs#. The ridge along T2

axis ~around T15100–200 @ fs#! observed in the calculated
signals is not seen in the experimental signal. ~D2! in the
experiment the slowest decay along the T2 axis is about three
times faster than that along the T1 axis, while in the calcu-
lated cases the former is faster but not three times faster than
the latter.

The main characters of the strongly damped anharmonic
contribution to the signal is that it has nonzero value at T1

50 and shows no inertial rise in a certain range of T2 @see
Fig. 4~a!, for example# as has been observed in the experi-
ments. We thus suspect that anharmonicity of the VH mode
plays some role in the fifth-order signal, although it is diffi-
cult to determine the qualitative ratio g3H /a1H as mentioned
before. ~Inclusion of the anharmonicity into the lower fre-
quency mode VL deteriorates the fits.!

As seen above, the theoretical signals cannot perfectly fit
the experimental signal. Since the reasons for this have been
already discussed in the literature,7–9 we do not iterate them
here. It should be noticed that the difference between our
analysis and previous ones is only inclusion of anharmonic-
ity which is assumed to be rather weak in the above and thus
can not be the fundamental reason for the discrepancy.

VI. DISCUSSION

In this section, we discuss validity of the assumptions of
weak anharmonicity of the potential and of weak nonlinear-
ity of the polarizability (a1@a2) in real substances. For in-
tramolecular modes these assumptions may be reasonable
since the relevant value of Q̃s is confined to a small region
around an equilibrium configuration. For low frequency in-
termolecular modes, here we explain some more detail by
taking the CS2 case as an example.

Since the third order signal can be well fitted by the two
modes VL and VH , the following simple physical picture
has been employed in the literature ~see, for example, Refs. 7
and 8!: By the first pair of pulses, molecules are excited due
to the strong ~anisotropic! polarizability, and start to librate
J. Chem. Phys., Vol. 107,
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FIG. 8. The fifth-order signal of CS2 for the mode coupling ~MC! model at
~a! g̃3H /ã3H50.0, ~b! g̃3H /ã3H523.0, ~c! g̃3H /ã3H526.0. to be com-
pared with Fig. 10 in Ref. 9.
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2280 K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes
in phase to the other excited molecules in the potential wells
formed by surrounding molecules. This coherently excited
motion decay by the loss of the phase relations among the
excited molecules. After this decay, the initial isotropic po-
larizability can not be restored, because the molecules ex-
cited by the first pair of pulses have perturbed their environ-
ment, forming anet orientation. This anisotropic distribution
of molecular orientation finally decays by diffusion. This bi-
modal process may be observed by the final probe pulse.
From this point of view, the VH mode has its origin in the
coherently excited intermolecular librational motion and the
VL mode in the slowest bulk diffusive motion.

The fast librational motion may be influenced by the
local environment and thus be inhomogeneous, while the dif-
fusive dynamics may be caused by a random process and
thus be homogeneous. Accordingly, Tominaga and Yoshi-
hara as well as Tokmakoff and Fleming simulated the signal
taking into the inhomogeneous effects for the higher fre-
quency mode~s!. However, it was found that the inhomoge-
neous effects are not so large in their analysis. This is the
reason we employed homogeneous two modes here.

Thus it is natural that the librational motion be described
by an anharmonic Brownian oscillator VH . To justify the
description of diffusive motion by VL , it should be noted
that in the Brownian oscillator model a vibrational mode is
not necessarily a physical vibrational mode; in an over-
damped case where Vs

2,gs
2/4, the third-order response func-

tion ~in the harmonic case! can be expressed as aproduct of
a rising function and a decaying function

R̃s
~3!~ t !5ã 1

2 Vs

2zs8
~12e2t/tRs!e2t/tDs, ~6.1!

where 1/tRs52zs8[2Ags
2/42Vs

2 and 1/tD5g/22zs8 . This
form with exponential rise constanttRs and decay constant
tDs has been widely used in previous studies of the third-
order experiment ~see, for example, Ref. 4!. In other words,
the Brownian oscillator model is a convenient mathematical
tool which can deal with a vibrational motion (Vs

2.gs
2/4)

and a diffusive motion (Vs
2,gs

2/4) in a unified way.
As considered above, the anharmonic Brownian oscilla-

tor model seems to be a fairly reasonable modeling for low
frequency modes in liquids. The assumption of weak nonlin-
earity of polarizability (a1@a2) also fits the above interpre-
tation, is amathematically simple assumption that is easy to
handle, and thus can be a reasonable starting point of the
theory. Accordingly, the assumption of weak nonlinearity
has been successfully and widely used for CS2 in the
literature.4,7–9

In this study only the third-order anharmonicity ~i.e.,
g3Q3! surfaces and it makes the leading order contribution to
the fifth-order off-resonance signal in the linear-polarization
approximation. Though the fourth-order anharmonicity ~i.e.,
g4Q4! plays a minor role in the fifth-order experiments, it is
possible to take into account such effects by a simple gener-
alization of the present study. As shown in the separate
article,24 we can explore higher-order anharmonicity through
higher-order experiments. For example, the effects of the
J. Chem. Phys., Vol. 107,
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fourth-order anharmonicity can be lager than those of the
third-order, in the seventh-order spectroscopy ~related to the
four-time correlation function ^@@@a(t1),a(t2)#,a(t3)#,
a(t4)] &).24

The analysis in the present article was focused on off-
resonant measurements using optical pulses. Equivalent ex-
periments can be carried out by using infrared pulses to
probe the vibrational transitions.28 In such a case we should
replace the interaction E2(r ,t)aQ in the effective Hamil-
tonian Eq. ~2.1! by E(r ,t)mQ . Here, mQ is the transition
dipole moment. The present formulation can be adapted to
this case by simply replacing the multitime correlation func-
tions of a(t) by the corresponding correlation function o
m(t). The advantages of the infrared experiment is, for ex-
ample, that lower order nonlinearity is required @the infrared
photon echo ~third-order! and the Raman echo ~seventh-
order! experiments both measure the three-time response
function# although ultrafast technology of infrared laser is
not developed well. Despite the formal similarity of the off-
resonant optical and the resonant infrared experiments, the
information is complementary since the correlation functions
of a andm carry different information as was shown in th
water case.29

VII. CONCLUSION

In this paper, we derived the fifth-order nuclear response
function for the fifth-order off-resonant experiments. The an-
harmonicity of the vibrational modes was treated as pertur-
bation. It is stressed here that the signal is sensitive to rela-
tive importance of the anharmonicity and the nonlinearity,
since both effects can be observed as the largest contribution
to the signal. On the other hand, the third-order signal is
insensitive to neither anharmonicity nor nonlinear coordinate
dependence of polarization, since the largest contribution de-
pends on neither the anharmonicity nor the nonlinearity.

Based on analytical expressions, double-sided diagrams,
and numerical calculations, we showed that anharmonicity
and nonlinear coupling can produce identical third-order sig-
nals, but very different fifth-order signal, explicitly for a
single mode system.

We also calculated the fifth-order two-dimensional sig-
nals for CHCl3 and CS2 using the spectral distribution ob-
served in the third-order experiments such as ISS. We com-
pared our results with experimental data on CS2 obtained by
Tokmakoff and Fleming, which indicates a sign of anharmo-
nicity in CS2.
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APPENDIX A: RESPONSE FUNCTIONS AND THEIR
GENERATING FUNCTIONAL

In this Appendix we introduce the generating function
W(J) and show that the response functions can be generated
from W(J) through derivative by J. Following arguments
are the basis of the Feynman rule on the unified time path
~UTP!. The derivation of the rule itself is given in Ref. 24
which relies on the arguments here.

In order to calculate response functions, we consider the
system given in Eq. ~2.1! with artificial external sources at
E(r ,t)50. The source is introduced for calculational conve-
nience and shall be set to zero at the end. The time evolution
operator and the initial density matrix in the presence of the
artificial external field J[(J1 , J2 , J3) are given by

KJa~ t2 ,t1!5Te2~ i /\!*
t1

t2 dt@Hg~P,Q!2Ja~ t !Q# ~a51,2!,

rJ35Te2~1/\!*0
\b dt@Hg~P,Q!2J3~ t !Q#, ~A1!

where T is the time-ordering operator, which reorders opera-
tors according to the time associated with the operators. The
nonequilibrium generating functional W(J) for the con-
nected ~or cumulant! response function is then defined by

e~ i /\!W~J!5Tr @rJ3@KJ2~`,0!#†KJ1~`,0!#. ~A2!

Here, Tr means the trace over both the system (Q) and the
bath (qi) coordinates. The three operators, KJ1(`,0),
@KJ2(`,0)#†, andrJ3, correspond to the real time evolution
of the ket, that of the bra, and the imaginary time evolution
for the initial state, respectively. These three time evolutions
are, respectively, associated with the C1-, C2-, and C3-path
in Fig. 2.

Introducing the time ordering operator TC on the unified
time path C5C11C21C3 , which reorders operators along
the arrow shown in Fig. 2, we have

e~ i /\!W~JC!5Tr @TC e2~ i /\!*C dt @Hg2JC~ t ! Q##, ~A3!

where JC(t)5Ja(t) if t is on Ca (a51,2,3).
We employ simple notations for derivative operators

]1~ t ![
\

i

]

]J1~ t !
,

]2~ t ![2
\

i

]

]J2~ t !
.

Note that we add the minus sign for ]2 in the above, but it
should be removed if we replace W(J) with W(JC) in the
following expressions sincedC(t2 ,t28)52dC(t22t28) @ t2 ,t28
PC2#.

We can show
J. Chem. Phys., Vol. 107,
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^Q~ t2!Q~ t3!Q~ t1!&c

[^Q2Q3Q1&2^Q2Q3&^Q1&2^Q3Q1&^Q2&

2^Q2Q1&^Q3&12^Q2&^Q3&^Q1&

5]1~ t1!]2~ t2!
1

2
@]1~ t3!1]2~ t3!#

i

\
W~J!U

J50

, ~A4!

for t3.t2.t1 , where Q(t i) is denoted by Qi . In the above
we have set J50 after performing the derivatives in order to
recover the original system.

In general the expectation of the multicommutator is
equal to the cumulant expectation. For example, we have

^@@Q3 ,Q2#,Q1#&c5^@@Q3 ,Q2#,Q1#&, ~A5!

and R(5) can be expressed as

R~5!~T1 ,T2!5S i

\ D 2

^@@a~T11T2!,a~T1!#,a~0!#&c .

Note here the last subscript c is the difference from the pre-
vious definition of R(5).

Thus, from relations similar to Eq. ~A4! and from the
definition

]~1 !~ t ![
\

i

]

]J1~ t !
1

\

i

]

]J2~ t !
,

]~2 !~ t ![
1

2 S \

i

]

]J1~ t !
2

\

i

]

]J2~ t ! D ,

we have

R~5!~T1 ,T2!5S i

\ D 2

@a]1~0!a]1~T1!2a]1~0!a]2~T1!

2a]2~0!a]1~T1!1a]2~0!a]2~T1!#

3a]~2 !~T11T2!

i

\
W~J!U

J50

, ~A6!

where

a]~ t !5a01a1]~ t !1 1
2a2@]~ t !#21••• . ~A7!

In the same way we have the expression for the response
functions R(3), RAH, and RNL in terms of W(J)

R~3!~T1!5
i

\
a1

2]~1 !~0!]~2 !~T1!
i

\
W~J!U

J50

, ~A8!

RAH~T1 ,T2!5S i

\ D 2

a1
3]~1 !~0!]~1 !~T1!

3]~2 !~T11T2!
i

\
W~J!U

J50

, ~A9!
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RNL~T1 ,T2!5S i

\ D 2

a1
2a2@]~1 !~0!]~1 !~T1!]~2 !~T11T2!

1]~1 !~0!]~1 !~T1!]~2 !~T1!

1]~1 !~0!]~2 !~0!]~1 !~T1!#

3]~2 !~T11T2!
i

\
W~J!U

J50

. ~A10!

The derivative operators appearing in Eqs. ~A8!–~A10!
correspond to external points in the specified diagrams. For
example, two 1-points and one 2-point in the first diagram in
Eq. ~3.12! come from the derivative operator ] (1)(0)
] (1)(T1)] (2)(T11T2)] (2)(T11T2) in Eq. ~A10!.

APPENDIX B: ANALYTICA L EXPRESSION FOR
RAH(T1 ,T2)

To perform the integration over t in Eq. ~3.13!, we first
use the formula

sin x1 sin x2 sin x3

52
1

4 (
e2 ,e3561

e2e3 sin~x11e2x21e3x3!. ~B1!

The result of the integration is given by

RAH~T1 ,T2!52g3a1
3@F~T1!2F~T11T2!#, ~B2!

where

F~ t !5
1

4~Mz!3 (
i 51

4

~21! i
e2g~T21t !/2

g2/41~zai !
2

3H g

2
sin@z~ait1bi !#1zai cos@z~ait1bi !#J .

~B3!

Here, (a1 ,a2 ,a3 ,a4)5(1,21,23,21) and (b1 ,b2 ,b3 ,b4)
5(T2 ,T2, 2T11T2, 2T11T2).

APPENDIX C: RESPONSE FUNCTIONS FOR
MULTIMODE SYSTEMS

In this Appendix, we give expressions for response func-
tions for the multimode Hamiltonian. The largest contribu-
tions to R(3)(T1) and to the counterparts of RAH and RNL

~introduced in the single mode case! are presented below
under the assumption ã1s!1.

In the mode noncoupling ~MNC! model, the response
functions are given by the sum of the response functions for
each modes as mentioned before

R~3!~T1!5(
s

a0
2

\
ã 1s

2 f s~T1!, ~C1!

R~5!~T1 ,T2!5RAH~T1 ,T2!1RNL~T1 ,T2!, ~C2!

where
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RAH~T1 ,T2!52
a0

3

\2 (
s

g̃3sã 1s
3 E

T1

T11T2
Vs dt

3 f s~T11T22t ! f s~ t2T1! f s~ t !, ~C3!

RNL~T1 ,T2!5
a0

3

\2 (
s

ã 1s
2 ã2s

3 f s~T2!@ f s~T11T2!1 f s~T1!#. ~C4!

Here, ã2s[ã 1s
2 and the dimensionless propagator f s(t) is

given by

f s~ t !5
Vs

zs
e2gst/2 sin zst ~C5!

with zs5AVs
22gs

2/4.
In the mode coupling ~MC! model, the response func-

tions are expressed as

R~3!~T1!5
a0

2

\
f MC~T1!,  ~C6!

R~5!~T1 ,T2!5RAH~T1 ,T2!1RNLMC~T1 ,T2!, ~C7!

where the function f MC is given by

f MC~ t !5(
s

ã 1s
2 f s~ t !,  ~C8!

and RNLMC, which is equivalent to the homogeneous limi t of
Eq. ~4.17! in Ref. 6, is given by

RNLMC~T1 ,T2!5
a0

3

\2 f MC~T2!@ f MC~T11T2!1 f MC~T1!#.

~C9!

As mentioned in text, the third-order response function
and the fifth-order signal RAH are the same in the two models
within the approximation. Note that R(3) in Eq. ~C1! and Eq.
~C6! as well as RAH in Eq. ~C2! and Eq. ~C7! are the same.
The spectral distribution in the two models of polarizability
is then given by

J~v!5
a0

2

\ (
s

hsvgs

~v22Vs
2!21v2gs

2 , ~C10!

where the strength of the mode is defined by hs5Vsã 1s
2 .

As suggested in text, the expression for RNLMC(T1 ,T2)
given in the above is obtained easily by introducing into the
Hamiltonian the source term Ja (s ã1sQ̃s in which the
source Ja (a51,2,3) is coupled to a collective variableQ̃
[(s ã1sQ̃s . Then derivation of RNLMC becomes straightfor-
ward and, here, we only note that the propagator of this
collective variable is given by

(
s

a1s
2 Ds

~21 !~ t !52 i f MC~ t !,  ~C11!

since the source for the collective modes can be re-expressed
as Ja (s a1sQs where a1s5ã1sA(MsVs)/\.
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