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We hawe developé a theow of the fifth-order off-resonah spectroscop to study the effed of
anharmonicig of molecula vibrationd modes The anharmonicityas well as nonlinea dependence
of polarizability on nuclea coordinatescan be the origin of the fifth-order Raman signal A profile
of the signd varies dependig on the relative importane of the two effects—tle anharmonici and
the nonlinearity The anharmonici of a potentid can be distinguishé from the othe effect such
as the nonlineariy or the inhomogeneit of vibrationd modes In orde to carly out calculations
analytically we emplgy the multimode Brownian oscillatac modé and tread anharmoniciy as
perturbatim to the harmonc vibrationd modes A simple analyticd expressia for the fifth-order
polarizatian is obtaineal throuch adiagrammat technique called Feynman rule on the unified time
path Physica pictures for the analyticd expressia are given for a single mode systen through
numericé calculatiors and throuch double-sidd Feynma diagrams Applications to CHCl; and
CS; are mace whetre the third-orde experimers are usel to extrad parameterdn the CS, casethe
theoretica fifth-order signak are compare with recert experimentwhich suggest sone sign of
anharmonicity © 1997 American Institute of Physics [S0021-960607)00331-0

I. INTRODUCTION

The featue of inter and intramolecula vibrational
modes ard their dephasig in liquids plays a centra role in
virtually all chemicd processg in solution The recen ad-
vent of ultrafag lase technoloy makes it possibé to per-
form nonlinea vibrationd experimers tha can probe the
information Experimens conducte so far, including impul-
sive stimulatel light scatterig (ISS),! femtosecod optical
Kerr effed (OKE),?>~*and far infrared (IR) absorptior?, have
yielded spectradensities in the low-frequeng range provid-
ing characteristi properties of intermolecula nuclea de-
grees of freedom both locd and collective.

Recently two-dimensionk off-resonah spectroscopy
was proposé to separat the inhomogeneasidistribution of
slowly varying parametes (e.g, due to locd liquid configu-
rationg from the totd spectra distribution of nuclea time
scale® This experimen uses two pairs of excitation pulses
ard relatal to the fifth-order nonlinearity Experimentdi—®
and theoretical®™*® studies have been mack to explore pos-
sibility to dete¢ sud inhomogeneity In this paper we
presemh anothe possibility of the fifth-order off-resonanm ex-
periments detectimmn of anharmonici of vibrationd modes
with the help of the third-orde experimens suc as ISS or
OKE.

The primary microscopt bass for understandig spec-
troscopt experimens can be normd modes analyss by mo-
lecula dynamis simulationst*~7 In this simulation method,
calculation of the higher-orde opticd signak is demanding
ard the methal to include quantum effecs are not well
established’ On the othe hand if we employ the multi-
mode Brownian oscillata model®1° analytica calculation
can be performal quantum mechanically though micro-
scopt origins of the Brownian modes are sometims ob-
scured In the Brownian mode| collectiors of normd mode
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oscillatiors can be interprete as being representa by sev-
erd primary (harmoni¢ modes coupld to the baths.

For the moment we conside a systen with a single
Brownian coordinaé Q to presemh experimenthobservables
in terms of respone functions In the third-orde off-resonant
experimentssud as ISS arnd OKE, the signd is related to
the two-time correlation function of the nuclea polarizabil-
ity, R®(t) ~ ([ a(t),a(0)]), wherea(t) is the polarizability
in the Heisenbey representatio [defined in Eqg. (2.5]. In
sud polarizabiliy sensitie measurementscoordinae de-
pendene of « is essential, since, if is a c-number, «(t)
commuts with a(0) and R® vanishes|If one expang po-
larizability in terms of the coordinag in the Heisenbeg rep-
resentatia Q(t), i.e., a(t)=ag+ a;Q(t) + a,Q3(t)/2+ - -
(assumig |a,Q"|>| an+1Q" ), then charactes of R® are
determind by o%([Q(t),Q1).

In the fifth-order off-resonah measurementghe signal
is relatel to the three-tine correlation function, R®)(t,t")
~ {[[a(t),a(t’)],a(0)]), which is defined in Eq(2.6).
Since the a3 tem (i.e., ([[Q(t),Q(t")],Q])) vanishe in the
harmont Brownian mode| features of the signd can be cap-
tured by the term proportional to aiaz (i.e.,
([[Q%(1).Q(t)1.Q1), etc).

The easy-to-handl harmont modek in generé are a
fairly goad but idealizadl model The multimode (harmonig
Brownian modé has been successfull useal to study vibra-
tiond spectroscopin liquids!® From a molecula dynamics
study, however anharmonicitis in the low frequeng vibra-
tiond normd modes were found in water® as well as in
CS,.1® To refled sud anharmonicitieswe include anharmo-
nicity, expresse by g;Q3+g,Q*+:-- , into the primary
Brownian mode (More dynamics-oriente interpretation of
anharmonicitis is given in Sec VI.) Although anharmonici-
ties of ead normd mode and of the Brownian modes are not
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the same we beliewe tha the presem stud/ mug be agood
startirg point to take the normal-mo@& anharmonicitis into
account.

In the preseh study we assune tha the anharmonicy is
we& so tha it can be deat with as perturbationIn addition,
we assune tha the polarizability is well approximatd by
first few terms in the expansio in ternms of the primary co-
ordinae Q. Thes assumptios may be reasonald to give
representati® results althoudh there may be a cae where
this standpoit is not appropriate?

Taking the anharmoniciy into account we re-examine
the respone function R® ard R(®) presentd above Even in
the anharmort case behavia of R(®) can still be described
by ai([Q(t),Q]) as in the harmone case if the anharmo-
nicity is nat considerabyt strong.

In contrast the main contribution to R®) in the anhar-
monic cas can be differert from tha in the harmont case.
For example if the anharmonici g5 is significanty large
compare with the nonlinea polarizability «,, the principal
part can be the term proportional to aig3 (i.e.,
{[Q(1),Q(t")1,Q1)).2* On the contrary in the harmonic
case the dominart patt is always the the aiaz tem as men-
tioned before Since the time dependeneof the afgg tem is
differert from tha of the afa, term R® can be usd to
dete¢ anharmonicity In realistc cases dependig on the
relative ratio @ 393/(@ 3a,) (wher X denotes dimension-
less quantiy of x), the behavio of R®) may vary since the
time dependenceof the ternms proportiona to gga:f ard to
a3a, are differert from ead other.

Thusit is possibé tha anharmonicig and nonlinea cou-
pling produe identicd third-orde signals but rathe differ-
en fifth-order signals To demonstrat this, we calculatel the
fifth-order respone function in the presene of anharmonic-
ity of vibrationd modes To carly out calculatiors we
employel the Feynma rule on the unified time path?*~2°
which is suitabk for the oscillatos in the coordinate
representatio”® We obtainel simple analyticd expressions
for the fifth-order off-resonam signal In asingle moce case,
numericéd calculations as well as interpretations in terms of
double-sidd diagrams were given to explan physicad dy-
namics in the fifth-order processesin the multimode cases,
we calculatd the fifth-order signd numericalyy by using pa-
rametes obtainel from the third-orde experimenthdat of
CHCl; ard CS,. By compariso of the numericé resuls with
the recen fifth-order experimenthdai by Tokmakof and
Fleming? we found sone sign of anharmonicig in CS,. We
analyz the physica natue of the Brownian modes of CS, in
Sec VI.

Il. THE THIRD- AND FIFTH-ORDER OFF-RESONANT
EXPERIMENT

We conside a molecula systen in the condensé phase
irradiatad with electronicaly off-resonam pulses The off-
resonah pulses allow us to selectivey probe the vibrational
dynamic associatd with the electront grourd stae through
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the polarizability. The effective Hamiltonian for a system
irradiated with the off-resonam electrc field E(r,t) is given

by!819
Her=Hg(P,Q)—E?(r,t)aq, 2.1

where Hy(P,Q) is a molecula vibrationd Hamiltonian on
an electronc ground-sta¢ potentid surfa@ and aq is the
coordinaé dependenpolarizability. Here P and Q collec-
tively represehthe momena ard coordinate of the vibra-
tiond motions.

If the systen is describé by a single nuclea mode
specifiel by its coordinaé Q ard momentun P (generaliza-
tion to a multimode nuclea systen is deat with in Sec V),
the polarizability and the vibrationd Hamiltonian are re-
spectively expressd as

= apt @ Q+ 22 Q%4+ (2.2
aQ—ao alQ 2 Q y .
PO PZ  MO? | v

ol ,Q)—er 5 Q°+V(Q)

N 2 2 2
P Mo ciQ
+i§1 2—rni+ > ( i miwiz } (2.3
Here V(Q) is the anharmonici of the potential
O3 5, 094 4
V(Q=3y Q7+ 7 Q7+, (2.9

ard ¢; is the coupling constan betwea the systen (Q) and
the bah (q;).

This Hamiltonian Hy(P,Q) can descrile a dissipative
systen in the condensd phase sine the Euler—Lagrange
equatian for Q(t) in this systen has the friction term

Mf dt’ p(t—t)Q(t’),

where y(t) is specified by the bath parameterg; (v, ,c;)
ard is proportion& to ciz. (We hawe to se& N— oo to describe
the dissipation. We can parameterie our theow in terms of
v(t) insteal of specifyirg all the values (m;,w; ,c;). In the
following we employ the Ohmic dissipation model y(t)
=y4(t), wherevyis a constant{ This choice ofy(t) is pos-
sible only after we let N—.] The strengh of dissipatia is
reflectal in the constanty.

The physicad observable in opticd experimerd can be
related to the respone functiors R(™,1° which are expecta-
tion values of multicommutatorsThe respons function re-
lated to the third- and fifth-order off-resonah experimehare
defina by

R®(ry)= 1 {[a(ry),a(0)]), 25

12
R<5><rl,rz>=(,'i—) ([a(rit 72),a(r)],a(0)]), (26

where [---] is the commutato ([A,B]=AB—BA), (---)
(=Trlpg -+ ]) isthe expectatio by the initial distribution at
the inverse temperatures

pg:e*ﬁHg(P,Q)/Tr[e*BHg(P,Q)], 2.7
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FIG. 1. Puls configuratia for the fifth-order experiment The two pairs of
pulses are applied to the system which are followed by the lagt proke pulse.
The tempord profiles of the pulses E;(t), E,(t), and E; (t) pe&k at
t=—T,—T,, t=—T,, ard t=0, respectively.

and«(t) is the Heisenberg operator associated with the elec-

tronic grourd stat Hamiltonian

a(t):e(i/h)Hg(P’Q)taQe_(i/h)Hg(P’Q)t. (2.8)

Now we explan pulse configuration for the third- and
fifth-order experimentin general the electrc field E(r,t) in
the (2n+1)th orde experimen is given by E(r,t)
=E¢(r,t)+2]_;Ej(r,t), wher E;(r,t)=Ej(t)(e"it "
+eoitik N tee ad E(r,t)=E ()t kK T+cc in
which c.c stand for the complex conjugate For example in
the third-orde experimen (ISS or OKE), the envelopes
E,(t) ard E; (t) pe& at t=—T, ard t=0, respective} (n
=1). Thus in the third order, we apply the systen two
simultaneos pulses (cente frequenciesw,,w; ard wave
vectos k,,k;) at t=—T; ard then the proke pulse (w; and

Pulse configuratio for the fifth-order experimen is
given by the abowe expressia for E(r,t) with n=2 ard is
describel in Fig. 1.5° The tempora profiles of the pulses
El(t), Ez(t), al’d Ef (t) peék at= _Tl_TZ! t= _T2, and
t=0, respectively the two pairs of pulses are applied to the
system which are followed by the lag proke pulse The first
pair (w;,w; and kq,kp) is irradiated at the time t=—T,
—T,, the secoml (w,,w; ard ky,k;) a t=—T,, and the
final pulse (w; ard k;) at t=0.

The polarizatiors relevan to the third-orde ard the
fifth-order experimens are respectively given by®*°

P<3>(t)=[Ef(t)ei<wft—kf-'>+c.c]j dr, R® (7))
0

X2|E1(t_ Tl)|2[l+COS {Awl(t— Tl)_Akl'r}],
(2.9

PO(t)=[E¢ (t)e'“r t—kf'f>+c.c;]f dTlf dr,
0 0

XRO)(71,7)2|Eq(t— 71— 72)|? 2| Ex(t—75) |2
X[1+C$ {Awl(t_Tl_Tz)_Akl'r}]

X[1+codAwy(t—75) —Aky-r}], (2.10

wher we hawe introducel Aw,=w,—w,, ard Ak,=k]
-k
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For impulsive punp experimentswe set

Ef(t)=0o(1),

Ei(t)=6(t+Ty),

E,(t)=6(t+T,+T,). (2.11
Then the signals which are observe in a phase-matched
direction?’~° ard relatel to the squae of the polarization,
are given by (up to a proportionaliyy constankt

1®=|R®(TY|?, (2.12

1®=|RO(T,,Ty)|2 (2.13

Ill. FEYNMAN RULES FOR RESPONSE FUNCTIONS

In this sectiomn we derive the respone functiors of a
single mode systen by using the Feynma rule on the
unified-time pah (UTP). Originally the Feynma rule was
developd to calculae the vacuum (the grourd state expec-
tation values of operatosin an anharmort systen?’ A simi-
lar diagrammat rule was initiated by using the Matsubara
Greens functiors (propagators to obtain the thermal
expectatiorf’ The Feynman rule on UTP is an extensim of
the rules to obtain the nonequilibrium expectatio values,
or the real-time correlation functions.

The comman featue of thes three method is tha ex-
pectatiom values are given by the sum of Feynma diagrams.
Each Feynma diagran consiss of points connectd by lines
ard correspond to an analytica expressia by the rule in a
unigue way.

We defire here sone ternms for diagrammat expan-
sions example are given shortly. The i-point in adiagran is
a point from which i lines go out Any i-poirt is eithe an
externé point or an internd point, the former originates from
an operato for which the expectatia value is calculated,
while the latter from anharmonicity The internd point is
also called vertex and the line is called propagator The in-
ternd i-point is also called i-vertex.

To illustrate the Feynman rule, we first conside the dia-
grammati expansio of R®). According to the expansia of
the polarizability, R©®) can be expresse as

RO(T) = 2 ad([Q(T1).Q0)])

+ 1 aax([QT1),Q(0) 1+ [Q(T1).QX0)])

[
+ 5 a5([QX(T). Q2O+, (3.0
where Q(t) is the Heisenbey operator
Q(t) :e(i/h)Hg(P,Q)th—(i/ﬁ)Hg(P,Q)t_ 3.2

The diagrammat expansia of the first tem is given by
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K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes

o____o+c__Clo+o_Q_Q

where we conside the g; and g, anharmonicitis explicitly
ard draw diagrans up to the secom orde in thes anharmo-
nicities.

In ead of the abo\e diagrans the two white circles are
externd 1-points and correspod to the operatorsa,;Q(T)
and«;,Q(0). The blad circles are vertices or internd points.
For example the seconl diagran hawe a4-verte or an in-
ternd 4-poirt from which four lines go out, this vertex cor-
respond to the anharmorts interaction g,Q*.

From thes diagrams we know the dependenceof the
diagrans on the parametersy; ard g; ; the numbe ard types
of circles determire them The first diagran is proportional
to o3, the seconl to a2g,, the third to a?g3 ard so forth.

Thes diagrans can be generatd as follows. First, we
determire an operato for which the expectatia is calcu-
lated which fixes the externa points that hawe to be usel in
diagrams In the abowe case the externé points to be used
are the two 1-points representa by white circles which cor-
respom to the operatorse;Q(T;) anda;Q(0). Secondwe
determire which orde of the expectatio we calculate,
which fixes the internd points In the cag of the orde of
g3 [the third ard the fourth diagrans in Eq. (3.3)], the inter-
nd points are two 3-points representg by blad circles.

O

(3.3

Third, we make all possibé connectd diagrans out of the
given externd and internd points by jointing them with lines
(propagators In the g% case we can make two different
diagrans [the third ard forth in Eq. (3.3)] from two 1-points
ard two 3-points In the course we can use as mary lines as
we nea ard all possibé diagrans hawe to be taken into
accoun in the calculation of tha order.

The tem proportion to a?gs vanishe in Eq. (3.3).
Diagrammatical} this simply mears tha we cannd make
connectd diagrans out of two 1-points and one 3-point In
general we can easiy pick up nonzeo contributiors by
thes diagrammat rules.

In the Feynman rule for the vacuum expectatio value
ard for the thermd expectation analyticd expressios for
ead diagran would be obtainal from the abow diagrams.
However in the rule on the unified-time pah (UTP) for the
nonequilibriun expectationwe add indices “ +,"” *“ —,"” or
“3,”’ to all the extremities of the lines in orde to derive
analyticd expressions Thes diagrans with indices are
called specifiel diagrams while the diagrans as given above
are called simplified diagrans in the UTP rule?* The speci-
fied diagrans correspondig to Eq. (3.3 are given by

(3.9
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The reasm why we ned the extra (+,—, 3) indices as
abowe is tha we hawe three types of time evolution operators
for the nonequilibrium expectatio (see Appendk A). These
three operatorsthe red time evolution operato of the ket
e (IMH(P.Q tha of the bra e('MHe(P-Qt ard the imagi-
nary time evolution operato e #"o(P-Q) | are associateé with
the C4-, C,-, and Cj-patls in Fig. 2, respectively In the
origind Feynma rule for the vacuum expectationonly the
C;-pah comes into play, and the propagatcs D™V, which
connet two points on the C;-path are used In the rule for
the therma expectationonly the C;-path comes into play,
and the propagatess D (Matsubaa Greens function),
which connet two points on the C;-path are used Only one
kind of propagato (DY or D) can appeain both cases.
In the UTP case however all the three patts (C,,C,,C3)
hawe to be considerd and thus we use all the propagators
DD (i,j=1,2,3, which connet a point on the C;-pah and
a point on the Cj-path For conveniencewe use the four
independenelementsD( "), D7), D(™3) ard DG, of
the 3x3 matrix DM in the UTP rule. Thus in orde to
specify the four propagatorswe add indices (+,—, 3) to the
diagrams The detal rule for putting these indices are given
in Ref. 24.

From the specifiel diagrams we can easiy obtan ana-
lytical expressionswith an extern& and internd i-points we
associa the factors «; and g;, respectively With a line
whos ends carly indices| and m (I, m=+,—, 3), we asso-

T 0 4 2

= ﬁal D(_+)(T1),

12
2h

PH
)
0o
il

In the Ohmic case the propagato D¢~ ")(t)=D(")(t,0) is
calculatel ag®%*

fi
DU ()= a(t) Mz e "2 sin ¢t, (3.7
with
[=Q%— %4, (3.9

wherey is the strength of the damping as mentioned before.

S (—%m)/o dtyDCH(Ty — 1) D7)ty — ) D (¢y).

2271
Im ¢
;Cl t=T
5 - ~ Re t
Cy
Cs
—iBh

FIG. 2. The unified time-pah C=C,;+C,+C; on the comple t plane
(T—). It stars from the origin up to an infinity alorg the red path
(C,), returrs to the origin (C,), ard then goes to —i 3% along the imagi-
nary axis (Cs).

ciate the propagato D(™. Then analyticd expressios are
obtaina by integratirg the produd of all the factors and
propagatcs ove all internd points Detal rules are given in
Ref. 24, ard here we only prese two examples

(3.5

(3.6

Note that thoudh this propagato does not depem on tem-

perature all the othe propagates (D7), D("%, and
D®%) depem on it.22724
From the abowe argumentswe have
i
RO(Ty) = - aZDC T+, (3.9

where the terms representé by “---"’
rections.
Now we examire R(®)

are anharmorg cor-
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i\ 2
RO(T1,To)= ;7) A([[QT1+T2),Q(TH1,Q(0)])

i\ 2
+ ;,L—) aax([[QX(T1+T2),Q(T1)],Q(0)]

(3.10

The first tem proportiona to o3 is called RAM in the
following ard diagrammaticajl expresse as2*

+2 termg+--- .

(3.11

where the terms representg by “ ---
orde corrections.

The first diagran in Eq. (3.11) is proportiona to a§g3;
RAM originates from anharmonicif g5. The a3g3 tem van-
ishes sine we can not make a connectd diagran out of
three 1-points.

The seconl term in Eq. (3.10 proportiona to aiaz is
called RN in the following since it originates from nonlin-
earity a,. A diagrammat expressia is given by**

toT 0Ty + T,
- +
RNHT, Ty) = T +T2<-|— T10< 4.
+00 +00

(3.12
where the terns representé by “ ---’’ are anharmorg cor-
rections.

From abowe specifi@ diagrams the analytica expres-
siors for R*" and RN" are then given by?*

"’ are anharmorg higher

i\2 i =
RANT,,T,)= _) ag(__gs)f dt DU (Ty+ T, 1)
h h 0
XD (t-=Ty)D" () +---, (3.13
i 2
RYN(Ty,T2)= g) aja;D'"(Ty)
X[DU(T+Tp)+D(T)]+--- .
(3.14

We note here we can perfom the integration in Eq. (3.13
analytically (see Appendk B).

In Egs (3.9), (3.13, ard (3.14), the leadirg terms which
are explicitly shown do not deperml on temperaturgsince the
correspondig diagransin Egs (3.4), (3.11), ard (3.12 con-
sig exclusivey of the temperature-independepropagator
D 1), The temperatue dependene of respons functions
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come from highe orde terms sone of which are shown in
Eq. (3.4) [they are representg by “--"" in Egs (3.11) and
(3.12], throuch temperature-dependepropagatos suc as
D7), D3 ard DG, This mears tha thes response
functiors hawe aweg temperatue dependeneif the anhar-
monicity is weak Although in what follows, we only con-
side the® temperature-independenerns basel on the
weak-anharmonigjtapproximationwe stres here tha these
expressionare the resuls of temperature-dependecalcula-
tions and are very goad approximatio within the parameter
region discussd in this study.

For later conveniencgthe Fourig transfom of the two-
time correlation function is defined by

R(?’)(w)=f dt e'“'R3)(t). (3.15
0
Its imaginay partt or the spectra distribution in the Ohmic
ca® is given from Eq. (3.9 by

2
@y wy
M (02— 022+ 02y? +

J(w)=Im R®(w)=
(3.16

IV. FIFTH-ORDER SIGNAL FROM A SINGLE MODE
SYSTEM

In this section we shav tha anharmonicig and nonlin-
ea coupling can produe identicd third-orde signals but
very different fifth-order signals Our argumend below are
base& on analytica results double-sidd diagrans and nu-
mericd simulations.

To clarify the points we assune that«; in Eg. (2.2) and
gk in Eq. (2.4) are proportioné to the dimensionles param-
etess al and g¢~2, respectively for the time being.

Even if we do nat specify the relative magnitue of a
ard g (but do assune a,g<1), we can concluce tha R
introducel in Eq. (2.5 has the larges nonzebp contribution
of the orde a2g° [explicitly given in Eq. (3.9]. Basel on
diagrammat representationwe can alo shav tha remain-
ing correctian terms including terms proportion& to a4 a5,
are all smalle than a?g’. (The a;a, term for example is
smalle than a?g?, since this tem is of the orde a®g?; in a
harmonc system the «; a5, term vanishessincee we cannot
make a connectd diagran from one 1-poirt and one
2-point)

On the othe hand the larges contributian to R®) cannot
be determiné unles we specify the ratio of a to g. If a is
much large than g (but still less than unity), the larges is
RN, If g is mudh large than a, the larges is RAM. This is
becaus R®® consiss of RN-, RAH, ard the othe terms [rep-
resentd by “---’’ in Eqg. (3.10] where the larges terns of
RN ard RAM are of the ordess a*g® ard a®g?, respectively,
ard the othe terms are smalle than a*g® or a®gt. (Again,
this can be shown from diagrammat representatioi.

Thus unde the assumptia of a,g<<1, the third-order
signak can be identicd for two systens which hawe different
ratios a/g, while the fifth-order signak for the two systems
can look different as sean from the analytica expressios of
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RAH amd RNL. In othe words we can use the fifth-order
experimento determire the relative importane of anharmo-
nicity and nonlinearity.

The effectivenes of this stratey depend on how the
two main contributions R*" and RN\, behaw differently for

2273

various parametersBefore checkirg this point numerically,
we explain tha the two contributiors come from vely differ-
ert physica processes.

To hawe a physica insight, we employ the double-sided
Feynma diagrams:® For the third-orde experimenwe have

0 1 0 0 1 1 0 0 0 0 0 1
—_——e— —_— —_—
RO(T) = . n L + L " - T
0 0 0 0 0 1 0 1 0 0 1 1
T1 T1 T1 T1

Herg the first four diagrans correspod to the first tem in
Eqg. (3.9 or the diagran in Eq. (3.5).

In these diagramsthe lower horizonta line corresponds
to the time evolution (from the left to the right) of the bra
ard the uppe line to tha of the ket Black circles stard for
the lase interaction If the polarizabilit is linear, the laser
interaction changs the vibrationd stae of the systen |v)
into the stake v =1). This is becaus we assune the linear
polarizability a;Q, in which Q can be expressd as a+a'.
Here a and a' are the annihilation and creation operators
(@'lv)=|v+1), etc). For simplicity, we hawe assumd that
the systen is initially in the grourd stae |0) in Eq. (4.1).

The first diagran can be interpretel as follows. At first a
systen isin the population stae |0)(0|. At t=—T, the ket |0)
interacs with the laser and the systen is in the coherence

4.2

refers to the stae |i)(j| (i#]), and the population stae to
li)(i]. Att=0 the ket agah interacs with the laser and the
system is brough bad to the stae |0)(0|. (The final stae of
the bra and ket hawe to be the sane stae so tha the case
where the final stae become |2)(0] shoultl be excluded)
Thus during the T, periad the systen in the stae |1)(0| un-
dergos the coherene relaxation.

Similarly, we find tha in the secom diagran the system
isin the stak |1)(0| in the T, period wherea in the third and
fourth diagrans it is in the stae |[0)(1] in the T, period (In
general the two diagrans differert only in the positiors of
the rightmog interaction make the same contribution) Thus
the third-orde experimem probes the dynamic of the coher-
ence stae |0)(1] or |1)(0| (the dephasig process for the pe-
riod T,.

stae |1)(0] in the next period T,. Herg the coherene state The diagrans of RA" in Eq. (3.13 are given by
2 2
0 1 0 1 0 0o 0 1 _ 0 1
o—e * —e *
RAH(T, T) = : ; ' + : : ; +---
0, 12) 00 0 0 0T 1 1 1
T] Tz Tl TZ

In abowe diagrans the cross stand for the anharmonic
interaction g;Q3, which changs the stae |v) into the state
lv+1) (aaa, etc) or [v+3) (a'a'a’, etc). The cross can
be placal on eithe uppe or lower T, portion of the horizon-
tal lines this can be sea from the fact tha the integration
J5 dt in Eq. (3.13 reduce to the one over the T, period
f%”z dt (due to the step function containe in D~ ).

4.2

All the diagrans which hawe to be considerd for the
first tem in Eq. (3.13 are obtainal by the first diagran in
Eqg. (4.2 by moving blad circles and the cross to the lower
line. For example the secom diagram is obtainal by moving
the leftmog circle to the lower line. Thus we hawe 2* dia-
grans in total.

In the first diagram the systen is in the coherene state
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|1)(0] in the T, period while it changs the stat during the
T, periad in two ways |0)(0|—|1)(0| ard |2)(0|—|1)
x{(0].

By studyirg all the diagrams we find tha in the T,
periad the systen is in the coherene stake while in the T,

K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes

periad it changs the stake from a population stat to a co-
herene state or from acoherene stat to anothe coherence
state.

The diagrans of RN" are given by

2 2
0 1 0 0 0 0 0 1
*>——=2 ¢
RYN Ty, Ty) = N N S G B N

0 0 0 0 0 1 1 1 4.3

" Ty " Ty

|
In these diagrams the white circle stand for the laser a [ B\

interaction throuch the nonlinea polarizability «,Q?. This ai_a_o val - (4.6)

interaction changs the stae |v) into [v=2) (a'a', etc) or
does nat chang the stae (aa', etc).

The diagrans are classifie into two types for RN In
one type, only the rightmog circle is white [correspondig to
the first diagram in Eq. (3.12] and in the other, only the
middle circle is white [correspondig to the seconl in Eq.
(3.12]. Ead type has 22 diagrans in the harmont case.

By studyirg all the 2x 22 diagramswe find tha during
the T, periad the systen is in a coherene state while it
keers eithe the populatio stak or the coherene stae in the
T, period.

Basal on the abowe analysis we exped tha the T, de-
pendenceof R®), RAH ard RN may have similar property
since in all cass the dynamic of the coherene stae |0)(1]
and |1)(0| is probed in the T, period In addition we expect
tha the T, dependenceof RAH ard RN may look different.
Note that however the presem analyss basel on double-
sided diagram fails to include the effed of dissipatio so that
the argumenh may be reasonald only in we& damping
cases.

In orde to carly out numericé calculations we rewrite
the expression of signab given in the previows sectin in
dimensionles quantities First, the dimensionles propagator
f(t) is definad by

f(t)= % e "2 sin {t. (4.4

Note her tha the “frequency” ¢ is being allowed to be
comple to include over and underdampe motion Then the
dimensionles third-orde signd is given by, | ®)(Ty)
=|RG)(T,)|?, where

~ h _
RO(Ty)=—5 RO(T) =2 {f(Ty)+-- . (4.5
0

Here,

The dimensionles spectra distribution is expresse as

~ hQg ~,
J(a))E—2 J(w)=0a 1]

o ¥
4.7
where
=010y, F=7vIQy, (4.9
with Q4 beirng an arbitray unit of frequency.
The correctin terms representg by “---’ in Eq. (4.7)

were calculatel in Ref. 23 in a differert context The results
shaw tha the correctian terns approab to zeo when (1) the
anharmorg paramete becoms smaller (2) the damping
constanty/{) becomes larger, of3) the mode frequency
hQ B becomes largeffor a fixed temperature B). This
mears that even for low frequeng modes in liquids where
Q) can be mud less tha 1/8, the correction term can be
negligible if the anharmort parameteis smal enough In
the following numericé calculations we use severd s of
parametersin all casesincluding CHCIl; ard CS, casa be-
low, we hawe checkel tha the correction terms given in Ref.
23 are smal ard negligible. _ _

The larges contributiors to RA"=%2RAM/a3 and RN:
=72RNY o3 are given by

~h g [T B
R*(T,,T))=—0sa 7 Qdt f(Ty+T,—1)
T

1

X f(t—Ty)f(t), (4.9
RVN(T,,Tp) =3 2 H(T)[f(T1+ T +1(T)],  (4.10
where
~ gi % i2
gi:ﬁ(m) . (4.11)
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(c) AH+NL case
18
T; 9
0
(d) AH-NL case
18
Q ©
9
0
0 9 18
Ty

FIG. 3. The contou plots of the fifth-order signd from aweek dampirg mode with y/Q=0.1. The parameter@§,«,) are (0.03, 0), (0, 0.01), (0.01, 0.03),
ard (—0.01, 0.01) in (), (b), (c), and (d), respectively The frequeny () is normalizel to unity.

Using thee dimensionles expressionswe performed
numericd calculatiors for the Ohmic damping The fifth-
order signals defined by 10)(T;,T,)=|RM(T,,T))
+RNY(T,,T,)|? are presentd for a week dampirg constant
(Fig. 3) ard for a strorg dampirg constan (Fig. 4). The case
where anharmonicy (gsz) is much stronge than nonlinearity
(a,) is discussd by (a) AH case the opposit ca is dis-
cussé by (b) NL case The cases wher anharmonicy and

nonlineariy are comparak are discussd by the two cases
(c) ard (d), which are differert in the relative sign of g; and
as.

In the weak dampirg ca (Fig. 3), the signak oscillate
with the frequeng 2Q alorng T, in all the case (a)—(d). This
is the sare oscillation as tha of R®)(T;), as clearly seen
from Eq. (3.9). This suppors the conclusio drawn from the
double-sidd Feynma diagrans tha the T, dependenceof
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(c) AH+NL case
6
T2 - 3
0
0 3 6
T
(d) AH-NL case
6
T2 - 3
T 0
0 3 6
T

FIG. 4. The contou plots of the fifth-order signd from a strorg dampirg mode with y/Q)=1.0. The other parameters are the same as in Fig. 3.

R®), RAH ard RN' are similar at leag for wea damping.

On the contrary alorng T,, the signakin the ca (a)—(d)
look rathe different In the ca® (a)—(d), the signak along
T, are superposition of one two, three ard three oscillation
(s) of the frequeng 2(), respectively The way of interfer-
ene amory thee componerg in cas (c) is opposit to that
in ca® (d) due to relative sign difference of g3 anda,. This
also suppors the conclusiam on the T, dependenceof the
signak drawn from the double-sidd diagrams.

Unde strorg dampirg (Fig. 4), the signak in the cases

(8)—(d) shaw very differert profile. In the AH case the sig-
nd is distinctly asymmetit with respetto T, and T, axis,
while it is fairly symmetrc in the NL case Anothe feature
in the AH ca® is tha the signd does not haw initial rise
along T, axis within a certan rang of T,; it only decays
from acertan value alorng T,. On the otha hand the signal
rises initially, reache apeak and then shows decy along
both axis in the NL case The signakin case (c) and (d) can
be understod as superpositios of thoe in case (a) and (b).
In this way we hawe shown tha two differernt systen can
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produe identicd third-orde signab but rathe different
fifth-order signals.

V. SIGNALS FROM MULTIMODE SYSTEMS

A generalizatio to the multimode systen is straightfor-
ward The multimode Hamiltonian is given by Eg. (2.1) with
Pg Msﬂg 2

Hg(P.Q) =2 [2M5+ 5 Qi+ Vs(Qy)

2
s,i

2 2
Ps,i Mg jwg
+ s,i

Cs,i Qs 2
2mg; 2 ) '

i ms’i (0]
(5.2

Here Qg ard V4(Qs) are the coordinae of the sth mode and
the anharmonicig of the potentia for the sth mode respec-
tively. As in the single mode case we emplgy the Ohmic
dissipation modd and we parameterie the theow in terms of
the dampirg constant ys insteal of giving the values
(ms,i y Wgj -Cs,i)-

The anharmoniciy Vg is given by

Gas =5 as

Ve(Qo) =€y 57 Q¥+ 77 Qi+, (5.2

where the dimensionles coordinaé Qs is defina by Qg
= Qs Vil (M(dy).

In this Hamiltonian Hy(P,Q), all the modes (specified
by s) are assumd to be mutually independentThis assump-
tion may be reasonableparticularly if the mode frequencies
QO are well separatd in magnitude.

For the polarizability ag in Eq. (2.1), in addition to the
linear modé defined by ag=ag(1+ >a,.Q,), we consider
two simple models moce noncouplig modé and mocke cou-
pling model

In the mode noncouplig (MNC) model| the polarizabil-
ity is given by

aq=a02 exf{1Qs] - ao(Ns—1), (5.3
where a, is adimensionles expansio parametgrand Ny is
the numbe of modes The modes in this systen can be
treatal as independenwith ead othe and the totd response
function is given by the sumn of the respons function for
ead mode The respones functiors are given in Appendk C.

In the mode coupling (MC) mode| we assum&?*®

aQ= (4 4)) exﬁ{z 515 65:|

The modes in this modé are no longe independenand they
intera¢ with eat othe throuch radiation fields However,
we can calculae respons functiors rathe easiy even in this
model if we use the collective coordinaé Q==.a,,Q, as a
main variabk in the calculation For detaik ard the expres-
siors of the respone functiors in this mode| see Appendix
C.

(5.9

Polarizability in both the MC ard MNC modek coin-
cides with that in the linear modé up to the linear term (The

2277

Experimental Data ——
Fitted Data ——-

J(w)

200 300

wlcml]

FIG. 5. The third-orde signak for CHCl;. The experimenthdat in Ref. 3
(solid line) are well simulatel by the three-moé modé (broken line).

linear term agar1Qs shal be symbolically denotedw; in the
following.) This is the reasm two expressios of the third-
ordeg R® in Appendk C are the sarre within the approxi-
mation The differene betwea polarizabilities in the two
modek appeas in the squae tem (denotede,); the MC
modd has coupling terns sud as Q;Q,, while the MNC
does not This is the reasm the fifth-order signak in the two
modek are differernt from ead othe (see Appendk C).

The fifth-order expressioa for the multimode system
can be classifi@ into two parts as in the single mode case:
one originating from nonlineariy and the othe from anhar-
monicity. The former nonlinea contribution in the MC
mode| called RN-M€| is differert from that in the MNC
mode| called RNE. The latter anharmort contributiors in
the two modek are the sare and are called RAM.

The third-orde expressia involves the independenpa-
rametes Q, v, and a;5 (see Appendk C). R*H involves
the paramete g3, in addition to the third-orde parameters
Qg vs, ard ;5. On the othe hand RN: and RNEMC are
specifie only by the the third-orde parametersThis is be-
cause in the MC ard MNC models the coefficiert of the
secom nonlineariy is determiné by a,;. Thus from the
third-orde experiment we can determire the parameters
Qg, ys, ard @, but we canna determire the remaining
parametesgs,. The remainirg parametes g, shoutl be de-
termineal through the fifth-order experiment.

To demonstrat the resuls in the multimode case we
calculae the fifth-order signak for chlorofom (CHCI;) and
for carba disulfide (CS,) by using parametes obtained
from third-orde experiments Validity of various assump-
tions of the current theol will be discussd in the nex sec-
tion.

The third-orde experimem of CHCI,® can be well ex-
plained by the multimode Hamiltonian with three modes as
shown in Fig. 5, where the parametes (in the unit [cm™1])
are given by

m=117 Q,=39.00 y,=77.0
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BY(T,T)

FIG. 6. The fifth-order signd of CHClI; for the AH2 case The gragh in the right is the signd at T,=

7,=2.10 Q,=2585 v,=15.0 (5.5
73=1.25 03;=368.5 vy;=22.0.

Here we haw introducel the strengh of the mode
7s=Qga; (5.6

By using the abowe sd of parameterswe calculae and
compae the fifth-order signd of CHCl; in two considerably
simple cases In one ca® (AH2 casg, we assune that
only the secoml mode (), has anharmonicy (gs;
= G33 = 0,03, # 0) ard tha the polarizabiliy islinear [ ag
=ap(1+2.a;Q)]. Since the value of g5, determing only
the absolué magnituc of the signd and does nat contribute
to profile of the signal here we sd it to unity. In the other
ca® (NL case, we assune that all the modes are harmonic
in the MNC model.

The fifth-order signad 19)(T;,T,)=|RO)X(T,,T,)|? in
the AH2 cais givenin Fig. 6. The features of the signd are

MYT,T;)

o‘t\
X AN
'i\ , \ J0\%
V/ /i/;'/ ] /,\\\'I/'//" “‘:',":) N
I/I// Il‘“' \\"/;"\?o N
,,' “"lll {l ‘ “ I‘ 2\
=) /ll‘
0.1 2l ", //I S

0.2
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BH(0.33,Ty)

AA /\ A JAVAYAN
0.2 0.4 0.6 0.8

T, [ps]

0.33ps .

similar to those in Fig. 3(a) sine only the {2, mode comes
into play in this model the two plots in Fig. 6 complement
the contou plot in Fig. 3(a). Compare with the plotsin Fig.

6, the plots in Fig. 7 are quite complicatel due to interfer-
ence of the three modes The differene betwea the two

case are significart enoudp to be distinguishé by experi-
ments.

We next apply our resut to carba disulfide (CS;), for
which the fifth-order experiments have been done
extensively’® As shown in Ref 7, the third-orde experi-
mens on CS, are well explainal by the two-mocde system
specifiel by the parametes (in [cm™1])

7.=100 O, =129 v =43.0 5.7
=220 Qy=39.2 y,=63.7.

We examinel the mode noncouplig (MNC) ard the
mock coupling (MC) models in addition to the linear model,

FY0.33,1y)

0.4 0.6 0.8 1

T, [ps]

FIG. 7. The fifth-order signd of CHCI, for the NL case The graph in the right is the signd at T,=0.33ps 1].
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by using this se of parametes and by changiry remaining
free parametes g5 and gy . After a carefu examination,
we found that the MC modé is the beg of the three Within

a rathe broad range of anharmonici g3, /a;y=—6 t0 0

with g, =0, the MC mode gives fairly reasonald fits to the
experimenthresut (Fig. 8).

All the signak in Fig. 8 resembé the experimenthre-
sults (given in Fig. 10 of Ref 9) in the following three
points (S1) the 2D signd decayg asymmetrical} in the two
time variables T, and T,. (S2) alorg T, axis with fixed T,
the signa first rises from zerq reachs ape& and then de-
cays with smalle time constan than tha of the third-order
signal (S3 slowes decy rate alorg T, axis is almog iden-
tical to that of third-orde signal.

However there are following two differences between
the experimenthsignd and the calculate signd in Fig. 8:
(D1) the experimenthsignd has no inertid rise alorg the T,
axis arourd T,=0—500[fs] (the signd at T;=0 has anon-
zeo valug, while the calculatel signd rises from T,
=0[fs] to the pe&k arourd T;=120[fs]. Theridgealorg T,
axis (arourd T,;=100-200[fs]) observe in the calculated
signak is nat sea in the experimenthsignal (D2) in the
experimenthe slowes deca along the T, axisis abou three
times faste than tha along the T, axis while in the calcu-
lated case the former is faste but nat three times faste than
the latter.

The main charactes of the strongly dampe& anharmonic
contributian to the signd is tha it has nonzep value at T,
=0 ard shows no inertid rise in a certan range of T, [see
Fig. 4(a), for examplé as has been observe in the experi-
ments We thus suspettha anharmonici of the (1, mode
plays some role in the fifth-order signal althoudh it is diffi-
cult to determire the qualitative ratio g /a; as mentioned
before (Inclusion of the anharmonicig into the lower fre-
gueny mode (), deteriorate the fits.)

As seea above the theoretichsignak canna perfecty fit
the experimenthsignal Since the reasos for this hawe been
alread discussd in the literature’~° we do nat iterae them
here It shoutl be noticed tha the differene betwea our
analyss and previots ones is only inclusian of anharmonic-
ity which is assumd to be rathe we& in the abowe ard thus
can nat be the fundamenthreasm for the discrepancy.

VI. DISCUSSION

In this section we discus validity of the assumptioa of
weak anharmoniciy of the potentid ard of we& nonlinear-
ity of the polarizability (a,> «,) in red substanceg~or in-
tramolecula modes thee assumptios may be reasonable
since the relevart value of Qg is confinal to a smal region
arourd an equilibrium configuration For low frequeny in-
termolecula modes here we explan sone more detal by
taking the CS, ca® as an example.

Since the third orde signd can be well fitted by the two
modes (), and Q,, the following simple physica picture
has bean employal in the literature (seeg for example Refs 7
ard 8): By the first pair of pulses molecules are excited due
to the strorg (anisotropi¢ polarizability, ard stat to librate

2279

(@) %3/ 8in =00
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0
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(b) 23/ A =-3.0
1000
Tylfs] 500
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0 500 1000
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(©) %35/ g =060
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FIG. 8. The fifth-order signd of CS, for the mocde coupling (MC) modé at
(@) Qs /@34=0.0, (b) U3y /Azy=—3.0, (C) Q3 /@zy=—6.0. to be com-
para with Fig. 10 in Ref 9.
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in pha® to the othe excited molecules in the potentid wells
formed by surroundilg molecules This coherenty excited
motion deca by the loss of the pha® relatiors amorg the
excited molecules After this decay the initial isotropic po-
larizability can not be restored becaus the molecules ex-
cited by the first pair of pulses hawe perturbel their environ-
ment forming anet orientation This anisotropt distribution
of molecula orientation finally decay by diffusion. This bi-
modd proces may be observe by the final proke pulse.
From this point of view, the ; mode has its origin in the
cohereny excited intermolecula librationd motion and the
0, mock in the slowes bulk diffusive motion.

The fag librationd motion may be influencel by the
locd environmenand thus be inhomogeneoyswhile the dif-
fusive dynamis may be cause by a randan proces and
thus be homogeneousAccordingly, Tominag and Yoshi-
hara as well as Tokmakof and Fleming simulatel the signal
taking into the inhomogeneos! effect for the highe fre-
gueny modes). However it was found tha the inhomoge-
neots effect are not so large in their analysis This is the
reasm we employe&l homogeneositwo modes here.

Thusit is naturd tha the librationd motion be described
by an anharmornt Brownian oscillata Q. To justify the
descriptim of diffusive motion by €, , it shoutl be noted
that in the Brownian oscillata modé a vibrationd moce is
not necessanl a physica vibrationd mode in an over-
dampel cae where Q2< y2/4, the third-orde respons func-
tion (in the harmonc cas¢ can be expresse as aprodud of
arising function and a decayirg function

§(3)(t):a’ % ZQ_; (1_e*t/‘rRs)e7t/TDS’
S

where 1/rge=2¢l=2\/y24— Q2 and 1/rp=yl2— .. This
form with exponentiarise constantrzs and decy constant
Tps has bean widely usal in previows studies of the third-
orde experimen (see for example Ref. 4). In othe words,
the Brownian oscillata modd is a convenieh mathematical
tod which can ded with a vibrationd motion (Q2> y2/4)
ard a diffusive motion (Q§< 75/4) in a unified way.

As considerd above the anharmord Brownian oscilla-
tor modd seens to be afairly reasonald modelirg for low
frequeng modes in liquids. The assumptia of wegk nonlin-
earity of polarizability (a1> a,) also fits the abowe interpre-
tation, is amathematicajl simple assumptia tha is eay to
handle and thus can be areasonald startirg point of the
theory. Accordingly, the assumptia of we& nonlinearity
has been successfull and widely useal for CS, in the
literature®’—°

In this study only the third-orde anharmonici (i.e.,
9°Q3) surface ard it makes the leadirg orde contributian to
the fifth-order off-resonane signd in the linear-polarization
approximation Thouch the fourth-orde anharmoniciy (i.e.,
g*Q*) plays a minor role in the fifth-order experimentsit is
possibe to take into accoun sud effecs by a simple gener-
alization of the presem study. As shown in the separate
article2* we can explore higher-orde anharmonicig through
higher-orde experiments For example the effecs of the

6.
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fourth-orde anharmonicig can be lage than thos of the
third-order in the seventh-ordespectroscop (related to the
four-time correlation  function {[[[a(ty),a(ty)],a(ts)],
a(ty)])).?

The analyss in the presen article was focusel on off-
resonah measuremestusing opticd pulses Equivalen ex-
perimens can be carried out by using infrared pulses to
probe the vibrationa transitions?® In such a cas we should
repla@ the interaction E2(r,t)aQ in the effective Hamil-
tonian Eq. (2.1) by E(r,t)uq. Here, uq is the transition
dipole moment The presem formulation can be adapte to
this cas by simply replacirg the multitime correlatian func-
tions of «(t) by the corresponding correlation function of
n(t). The advantage of the infrared experimen is, for ex-
ample tha lower orde nonlineariy is requireal [the infrared
photan ecto (third-ordey and the Raman eclo (seventh-
ordep experimend both measue the three-tine response
function] althoudh ultrafag technoloy of infrared lase is
not developé well. Despit the formd similarity of the off-
resonah opticd ard the resonah infrared experimentsthe
information is complementay since the correlation functions
of a and u carry different information as was shown in the
wate case?’

VII. CONCLUSION

In this paper we derived the fifth-order nuclea response
function for the fifth-order off-resonahexperimentsThe an-
harmoniciy of the vibrationd modes was treatal as pertur-
bation It is stressd here tha the signd is sensitiwe to rela-
tive importane of the anharmonicig and the nonlinearity,
sinae both effect can be observe as the large$ contribution
to the signal On the otha hand the third-orde signd is
insensitive to neithe anharmonicig nor nonlinea coordinate
dependeneof polarization since the larges contributian de-
pend on neithe the anharmoniciy nor the nonlinearity.

Baseal on analyticd expressionsdouble-sidd diagrams,
and numeric# calculations we showel tha anharmonicity
ard nonlinea coupling can produe identicd third-orde sig-
nals but very differert fifth-order signal explicitly for a
single mode system.

We alw calculatel the fifth-order two-dimensionhsig-
nals for CHCl; ard CS, using the spectra distribution ob-
serval in the third-orde experimens sud as ISS. We com-
pareal our resuls with experimentbhdat on CS,; obtainel by
Tokmakof ard Fleming which indicates a sign of anharmo-
nicity in CS,.
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APPENDIX A: RESPONSE FUNCTIONS AND THEIR
GENERATING FUNCTIONAL

In this Appendk we introduc the generatig function
W(J) ard shaw tha the respons functions can be generated
from W(J) throudch derivative by J. Following arguments
are the bass of the Feynma rule on the unified time path
(UTP). The derivatio of the rule itself is given in Ref. 24
which relies on the argumers here.

In orde to calculat respons functions we conside the
systen given in Eq. (2.1) with artificial externa source at
E(r,t)=0. The soure is introducel for calculationh conve-
nience and shal be sd to zeio at the end The time evolution
operato ard the initial densiy matrix in the presene of the
artificial externa field J=(J,, J,, J3) are given by

. t
KJa(t,,t;) =Te (IIMI2 diHg(P.Q=3(Q]  (5=1 ),

pla=Te (U1 diHg(P.Q)~351Q], (A1)

where T is the time-orderiry operatoy which reordes opera-
tors accordimg to the time associaté with the operatorsThe
nonequilibrium generatig functiond W(J) for the con-
nectal (or cumulanj respone function is then defined by

e(i/h)W(J):Tr [pJ3[ K‘JZ(oo,O)]TKJl(oc,O)]_ (AZ)
Herg Tr mears the trace over both the systen (Q) and the
bah (qg;) coordinates The three operators K’i(«,0),

[KY2(,0)]", and p’2, correspod to the red time evolution
of the ket, that of the bra and the imaginay time evolution
for the initial state respectively Thes three time evolutions
are respectively associaté with the C;-, C,-, ard C-path
in Fig. 2.

Introducirg the time orderirg operate T on the unified
time path C=C;+ C,+ C5, which reordes operatos along
the arrow shown in Fig. 2, we have

e(imW(Ic)

=Tr[Te e (i/h)[c dt [Hg—Jdc(t) Q]], (A3)

where J(t)=J,(t) if tison C, («=1,2,3).
We employ simple notatiors for derivative operators

_ﬁ
31(t)=i—m,

ﬁz(t)E—i—m.

Note that we add the minus sign for d, in the above but it
shoutl be removal if we replae W(J) with W(Jc) in the
following expressios since 8¢ (t,,t5) = — dc(t,—t3) [to,t5
e Cs].

We can show

2281
(Q(t2)Q(t3)Q(t1))c
=(Q2Q3Q1) —(Q2Q3)(Q1) —(Q3Q1)(Q2)
_<Q2Ql><Q3>+2<Q2><Q3><Q1>
=01(t1)dx(t2) 5 [01(t3)+<92(t3)] 7 W) Y (Ad)
for t;>t,>1t,, wher Q(t;) is denotel by Q;. In the above

we hawe sd J=0 after performirg the derivatives in orde to
recove the origind system.

In genera the expectatio of the multicommutato is
equa to the cumulan expectationFor example we have

<[[Q31Q2],Q1]>c:<[[Q31Qz],Q1]>,

and R® can be expressd as

(A5)

12
RO(Ty,Ty)= ( ) ([[a(T1+T2),a(T)],a(0)])c.

Note here the lag subscrip c is the differene from the pre-
vious definition of R®).

Thus from relatiors similar to Eq. (A4) ard from the
definition

h 9 h 9
i

+) (1) = -
Im= aJl(t)+i 3d,(t) "
Oy 1 (ﬁ d o9 )
I O=5 1T 23,0 T 2340
we have

2
i
5 _
Rl )(Tl,Tz)—(%) [, 0)@a, (1)~ @ay0)XayT))
= 0) %oy (T T Aay(0)Xay(Ty]

i
X a&(‘>(T1+T2) g W(J) ’ (A6)

J=0
where
+3ay[d(t)]?+-

ay=apt ayd(t) (A7)

In the sarre way we hawe the expressia for the response
functiors R®), RAM, and RN in terms of W(J)

RO(TY =+ a3 (0)d (T WD), (A9
J=0
i\ 2
RAH(T,,T,) = %) a3d(0)6 M (Ty)
X9 TN (T1+T,) fIL—W(J) , (A9)
J=0
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NL _
RVN(T.,To)=| &
+9(0)9 (T a' (Ty)
+a<*>(0)a<*>(0>a<*>(m]

12
|
_> afay[d(0)d (T T+ Ts)

x = (T1+T2) W(J)

J=0
The derivative operatos appearig in Eqs (A8)—(A10)
correspod to externd points in the specifia diagrams For
example two 1-point ard one 2-poirt in the first diagran in
Eg (3.12 come from the derivatie operator (*)(0)
AT d ) (T1+T,)0 )(T1+T,) in Eq (A10).

(A10)

APPENDIX B: ANALYTICAL EXPRESSION FOR
RAM(T,, Ty)

To perform the integration over t in Eq. (3.13), we first
use the formula

sin X, Sin X5 Sin X3

= - Z 2 €r€3 Sin(X1+ 62X2+ €3X3). (Bl)
52,53:t
The resut of the integration is given by
RAY(Ty,To) = —gaai[F(T) —F(T1+To)], (B2)
where
4 e WTp+t)2
F(t
O=amgr & Y
Y .
X > siM (a;t+b;)]+ ¢a; cog (ait+b))];.
(B3)

Herg (a;,a,a3,a4)=(1,—1,—3,—1) and (by,b,,b3,by,)
=(T2,To, 2T+ T, 2T+ Ty).

APPENDIX C: RESPONSE FUNCTIONS FOR
MULTIMODE SYSTEMS

In this Appendix we give expressiosfor respone func-
tions for the multimode Hamiltonian The large$ contribu-
tions to R®)(T,) ard to the counterpas of RAM ard RN:
(introduca in the single mocde case are presentd below
unde the assumptio a; <1.

In the mode noncouplig (MNC) model| the response
functiors are given by the sum of the response functiors for
ead modes as mentione& before

2
RO(TY=3 °” 28(T1), (C1)

R(S)(Tl IT2) = RAH(Tl ITZ) + RNL(Tl 1T2)1

where

(C2

K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes

3
ag o T1+Ty
RAM(TL To)=— 23 2 Tasdl f O, dt
S Ty

Xfs(Ty+ To—)f(t=Ty)fs(1), (€3
3

RNL(leTz): % E a 55525
Xf(To)[fs(T1+T2) +f5(T1)]. (CH

Here @,,=2 2, and the dimensionles propagato f(t) is
given by
S(t)— e 2 gin £t (C5
with = Q- y/4.
In the mode coupling (MC) mode] the respone func-
tions are expresse as

2

R(Ty)= —° we(Ta), (Co)

RON(T,,To) =RAN(T,, To) + RVME(T, Ty), (C7)
whetre the function fy,c is given by

fuc()=2 @ (D), (C9

and RNSMC ) which is equivalet to the homogeneasilimit of
Eg. (4.17) in Ref. 6, is given by

3
RVMC(T,,T,) = % fmc(T)[fuc(T1+To) +fuc(T) ]
(C9

As mentiond in text, the third-orde respons function
ard the fifth-order signd RA" are the sane in the two models
within the approximationNote that R® in Eq. (C1) ard Eq.
(C6) as well as RA" in Eq. (C2) ard Eq. (C7) are the same.
The spectré distribution in the two modek of polarizability
is then given by

2
o00) NsWYs
2

J(w)= ~Q )2+w272,

(C10

whetre the strengh of the moce is defined by 7,=Q.a is.

As suggeste in text, the expressia for RN-MC(T, | T))
given in the abowe is obtainel easiy by introducirg into the
Hamiltonian the soure tem J, =, a;Qs in which the
soure J, («=1,2,3) is coupled to a collective variab@
=3, a;Qs. Then derivatin of RN-M€ becoms straightfor-
ward and here we only note tha the propagato of this
collective variabk is given by

§ a2, D ()= —ifye(t), (C11)

sinae the soure for the collective modes can be re-expressed

asJ, 3¢ a;4Qs where a;=a1/(M Q) /A.

J. Chem. Phys., Vol. 107, No. 7, 15 August 1997

Copyright ©2001. All Rights Reserved.



K. Okumura and Y. Tanimura: Spectroscopy from anharmonic vibrational modes

1Y.-X. Yan, L.-T. Cheng ard K. A. Nelson in Advancs in Non-linear
Spectroscopyedited by R. J. H. Clark and R. E. Heste (Wiley, New
York, 1987, p. 299 S. RuhmanB. Kohler, A. G. Joly, and K. A. Nelson,
IEEE Quantum Electron 24, 470 (1988; S. Ruhman and K. A. Nelson J.
Chem Phys 94, 859 (1991); B. Kohler ard K. A. Nelson J. Phys Chem.
96, 652 (1992; J. EtchepareG. Grillon, J. P. ChambaretG. Hamoniaux,
and A. Orszag Opt Commun 63, 329 (1987; P. Vohringe and N. F.
SchererJ. Phys Chem 99, 2684 (1995; Y. J. Chang P. Cong ard J. D.
Simon ibid. 99, 7857 (1995.

2D. McMorrow, W. J. Lotshaw ard G. A. Kenny-Wallace IEEE J. Quan-
tum. Electron 24, 443 (1988; C. Kalpouzos D. McMorrow, W. J. Lot-
shaw and G. A. Kenny-Wallace Chem Phys Lett. 150, 138 (1988; T.
Hattoi and T. KobayashiJ. Chem Phys 94, 333 (1991); K. Wynne C.
Galli, and R. M. HochstrasserChem Phys Lett. 193 17 (1992; Y. J.
Charg and E. W. Castner Jr, J. Chem Phys 99, 113 7289 (1993; S.
PaleseL. Schilling, R. J. Dwayre Miller, P. R. Staver and W. T. Lot-
shaw J. Phys Chem 98, 63® (1994; H. P. Deuel| P. Cong and J. D.
Simon ibid. 98, 126 (1994).

3M. Chg, M. Du, N. F. SchererG. R. Fleming and S. Mukame| J. Phys.
Chem 99, 2410 (1993.

“D. McMorrow, N. ThantsyJ. S. Melinger, S. K. Kim ard W. J. Lotshaw,
J. Phys Chem 100, 103® (1996.

SE. Knoziger, D. Leutloff, ard R. Wittenbeck J. Mol. Struct 60, 115
(1980; G. J. Evans J. Chem Soc, Faradg Trans 2 79, 547 (1983; K. E.
Arnold, J. Yarwood ard A. H. Price Mol. Phys 48, 451 (1983.

Y. Tanimum ard S. Mukamel| J. Chem Phys 99, 949 (1993.

7K. Tominaga Y. Naitoh T. J. Kang and K. Yoshiharain Ultrafast Phe-
nomem IX, edited by G. Mouroy, A. H. Zewail, W. H. Knox, ard P. E.
Barbar (Springer Berlin, 1994; K. Tominaga and K. Yoshihara Phys.
Rev. Lett. 74, 3061 (1995; K. Tominaga G. P. Keogh Y. Naitoh, ard K.
Yoshihara J. Raman Spectrosc 26, 495 (1999; K. Tominaga G. P.
Keogh ard K. Yoshihara J. Mol. Liq. 6566, 389 (1995; K. Tominaga
and K. YoshiharaJ. Chem Phys 104, 1159 (1996; K. Tominag and K.
Yoshihara ibid. 104, 4419 (1996; K. Tominaga Off-resonan Fifth and
Severtt Order Time-Doman Nonlinea Spectroscop on Vibrational
Dephasimg in Liquids Advances in Multiphoton Processearnd Spectros-
copy, Vol. 11 (World Scientific Singapore 1997, in pres3.

8T. Steffen and K. Duppen Phys Rev. Lett. 76, 1224 (1996; T. Steffen
ard K. Duppen in Femtochemistryedited by M. Chergu (World Scien-
tific, Singapore 1995 p. 583 T. Steffen and K. Duppen in Ultrafast
PhenomenaVol. 8, 19% OSA Technicé Digeg Series (Opticd Society
of America Washingtm D.C., 1996, p. 208, T. Steffen and K. Duppen J.
Chem Phys 106, 3854 (1997).

9A. Tokmakof ard G. R. Fleming J. Chem Phys 106, 2569 (1997); A.
Tokmakof and G. R. Fleming Chem Phys Lett. (in press.

2283

105, P, Palesed. T. BuontempoL. Schilling, W. T. Lotshaw Y. Tanimura,
S. Mukamé and R. J. D. Miller, J. Phys Chem 98, 1246 (1994.

11, A. Leegwate ard S. Mukame| J. Chem Phys 102, 2365 (1995; V.
Khidekd and S. Mukame| Chem Phys Lett. 240, 304 (1995.

127, Tokmakoff J. Chem Phys 105, 13 (1996.

13T, Steffen J. T. Fourkas ard K. Duppen J. Chem Phys 105 7364
(1996.

14M. Buchner B. M. Ladanyi and R. M. Stratt J. Chem Phys 97, 8522
(1992.

15H, Tanalaard I. Ohming J. Chem Phys 91, 6318 (1989; |. Ohmire and
H. TanakaChem Rev. 93, 2545 (1993; M. Chq G. R. Fleming S. Saito,
I. Ohmine and R. M. Stratt J. Chem Phys 100, 6672 (1994); S. Saib and
|. Ohmine ibid. 102, 3566 (1995; 106, 4880 (1997.

16p. Moore and T. Keyes J. Chem Phys 100, 6709 (1994; K. Keyes ibid.
104, 9349 (1996.

K. Keyes J. Chem Phys 106, 46 (1997).

18y, J. Yan and S. Mukamel J. Chem Phys 94, 997 (1991).

195, Mukamel Principles of Nonlinea Opticd Spectroscop (Oxford Uni-
versity PressNew York, 1995.

2The importane of the contributian proportiona to 3 to R® was studied
in S. Palese S. Mukame| R. J. Dwayre Miller, and W. T. Lotshaw J.
Phys Chem 100, 1038 (1996.

21N the following, we assune that the relevan values of the operato Q are
confinel to a smal region arourd an equilibrium configuration Thus we
will discus the magnituds of terns by the expansia coefficients suc as
03.94,... ad @g,ay,... .

22K, Okumua ard Y. Tanimura Phys Rev. E 53, 214 (1996.

K. Okumua ard Y. Tanimura J. Chem Phys 105 72% (1996.

24K, Okumua ard Y. Tanimura J. Chem Phys 106, 1687 (1997).

25K, Okumum ard Y. Tanimura Phys Rev. E (submitted.

BFEor a treatmen of anharmort oscillatos in the levd schene insteal of
the coordinaé scheme see the following: J. T. Fourkas H. Kawashima,
and K. A. Nelson J. Chem Phys 103 4393 (1995; J. T. Fourkas Theory
of Vibrationd Echo Phenomea in Harmontc and Weaky Anharmonic
Oscillators Sevent Internationa Conferene on Time-Resolvd Vibra-
tiond Spectroscopyedited by W. Woodruf (1995, p. 203 J. T. Fourkas,
Lase Phys 5, 656 (19995.

273. W. Negek and H. Orland Quantum Many-Partick Systera (Addison-
Wesley New York, 1988.

28D, Zimdars A. Tokmakoff S. Chen S. R. Greenfield M. D. Fayer T. I.
Smith, and H. A. SchwettmanPhys Rev. Lett. 70, 2718 (1993; A. Tok-
makof and M. D. Fayer J. Chem Phys 103 2810 (1995.

2%W. Bosma L. Fried and S. Mukamel J. Chem Phys 98, 4413 (1993.

J. Chem. Phys., Vol. 107, No. 7, 15 August 1997

Copyright ©2001. All Rights Reserved.



