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We reformulate the theory of simple liquids in a field theoretical way by taking into
account the triplet potentialwi jk , in addition to the external potentialui and the
pair potentialv i j . The innovation here isthe inversion methodand the on-shell
expansionwhich are the building blocks of a novel use of Legendre transformation
developed in field theory. By the inversion method, we renormalize the theory in
terms of one-, two-, and three-particle densities, and present a diagrammatic rep-
resentation for a thermodynamical functional, which is the entropy except for a
trivial constant, in terms of renormalized variables. In other words, we present an
expression for the entropy in terms of only one-, two-, and three-particle densities:
the n-particle density wheren>4 does not appear in the expression. The on-shell
condition, which is a starting point of the on-shell expansion, of the thermodynami-
cal functional thus obtained~the entropy! leads to a set of three self-consistent
equations for one-, two-, and three-particle densities. Through one of the self-
consistent equations, we can systematically improve the Kirkwood’s superposition
approximation for the three-particle density. The on-shell conditions for other ther-
modynamical functionals, also obtained in this article, are found to be extentions of
various well-known equations in the theory of simple liquids. The formulation
presented here is complementary to the conventional re-summation techniques for
renormalization of diagrams. In the present formulation, we do not have to care
about the topological structure of diagrams, often characterized by the irreducibility
of diagrams. Instead, by a perturbative calculation, we can automatically single out
the diagrams with the topological structure predicted by the re-summation tech-
niques. © 1998 American Institute of Physics.@S0022-2488~98!01604-1#

I. INTRODUCTION

In the theory of simple liquids, renormalization of the theory in terms of one-, and
particle densities is essential.~The n-particle density here is sometimes called the correlat
function of then-th order.! To perform such renormalization, re-summation techniques of
grams had been extensively developed.1–4 Such techniques, though elegant and attractive,
sometimes complex and difficult to understand. In such techniques, the topological structure
diagrams for the renormalized theory is determined by using graphical terms such as irredu
of diagrams. If one wants to obtain higher order diagrams, we have to single out, by
diagrams which have the topological structure thus determined, after considering all po
diagrams of that order. At a higher order, this task can be laborious.

In the present reformulation, however, we can obtain the renormalized diagrams automa
order by order through simple~but sometimes tedious! calculations. We do not have to care abo
the topological structure at all; the diagrams with the demanded topology are automatically s
out. In this sense, this reformulation is complementary to the conventional re-summation
niques.

The innovation here is a novel use of the Legendre transformation which has been dev
in field theory and has been applied to quantum systems.5 In this article we present the firs
application to a classical system. This methodology consists of the inversion method a
one-shell expansion, which shall be reviewed briefly below. However, in short, the forme
method by which we can obtain a non-perturbative result through a sort of perturbative ca
tion, and the latter is a formalism in which we can systematically extract all physical inform
20770022-2488/98/39(4)/2077/26/$15.00 © 1998 American Institute of Physics
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concerning a physical variable of interest, starting from an effective action.~The effective action
is a kind of thermodynamical functional in a classical system as we see below.!

The systematic expansion of the entropy of simple liquids theory in terms of the corre
function has received considerable attention. Such an expansion for the canonical ensem
studied in Ref. 6, which followed by the works for the grand canonical ensemble.7,8 Recently,
these expansion schemes have been revisited9–12 and numerically examined13,14 by several re-
searchers. In all these works, the entropy is expanded in terms of one-particle density and tn-th
order term contains the correlation function up to then-th order: the entropy is expressed by t
n-particle densities wheren50,1,...,̀ .

However, as shown below, the entropy functional, which is the effective action except
trivial term, can be described by the correlation functions of the orderup to the n-thif we neglect
higher-body potential thann-body. Indeed, the entropy given in Ref. 1 is described only by o
and two-particle densities since, as in conventional simple liquids theory, the triplet and h
body potential are neglected there.

In this article we present an expression for the entropy as functional of one-, two-
three-particle densities of the grand canonical ensemble. The expansion does not include
tion functions of the order higher than three and thus the theory is renormalized in terms o
two-, and three-particle densities.

To renormalize the theory in terms of the three-particle density, in the present paper, w
explicitly include a triplet potential into a theory, and then, make a Legendre transformation
the triplet potential to the three particle density. The triplet potential can be set to zero aft
renormalization if we like to go back to the~conventional! liquids theory without the triplet
potential. Note here that, by first introducing the triplet potential and then by setting the pot
at the end, we can extract new information, which can not be obtained if we neglect the po
from the start.

Extention of the liquid theory to include triplet potentials is not new and had been stu
though the above viewpoint for the triplet potential as a tool for the Legendre transform
might have not. For example, for a weak triplet potential, they included the effects of the t
potential by modifying the pair potential with the aid of diagrams.15–17Other important reference
can be found in Refs. 12, 18.

Furthermore, inclusion of the generalm-body potential (m51,2,3,4,...) into the liquid theory
is performed in Ref. 19 in a simple and clear way. There, various diagrammatic rules are
given and are renormalized up to the two-particle densities. In the present work, we f
renormalize the theory by the three-particle densities though our case is limited to the speci
where there are no more-than-three-body potentials.~See Sec. VII.!

In the present formalism, the stationary conditions for the entropy or the effective action
out as identities of the Legendre transformation. The set of conditions can be seen as a
self-consistent equations to be solved for the variables of interest.

In this article, we obtain three kinds of the effective actions, which are closely related t
entropy. As stationary conditions for these actions, we get three sets of self-consistent equ
some of which can be seen as a generalization of well-known equations in simple liquids t

Especially, one of the self-consistent equations leads to successive improvement of the
wood’s superposition approximation4 for the three-particle densities. The zero-th order appro
mation of this theory coincides with the previously known approximation~for example, see Refs
20, 12!, which reduces to the Kirkwood’s approximation for the system without the triplet po
tial. The first order approximation of ours can be seen as an improvement over the well-k
approximations.21–24

Let us review the inversion method and the on-shell expansion briefly. Consider a ph
variable of interestf in a system described by a HamiltonianH. In a classical system at a
equilibrium, a physical variable is a thermal expectation value of some quantityf̂. ~In a quantum
system a physical variable is a quantum expectation value of an operatorf̂.! In the inversion
method, we modify the HamiltonianH to H1Jf̂ whereJ is an artificial external source whic
should be set to zero at the end of calculation. However, if the original HamiltonianH already has
a term proportional tof̂, say j f̂, we merely replacej with an artificial sourceJ and set it back
011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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to j at the end of calculation. After this modification of the Hamiltonian, we calculatef by a
perturbative expansion in terms of the expansion parameter, sayg, in the presence of the artificia
sourceJ. We have an expansion calledthe original seriesof the form,

f5f~J!5f~0!~J!1f~1!~J!1f~2!~J!1¯ , ~1.1!

wheref ( i ) is the i -th order ing when we regardJ as independent ofg. Now we invert Eq.~1.1!
in favor of J to get the inversion series,

J5J~f!5J~0!~f!1J~1!~f!1J~2!~f!1¯ , ~1.2!

whereJ( i )(f) is the i -th order ing when we regardf as independent ofg. In order to obtain an
explicit form of J( i )(f), we insert Eq.~1.2! into Eq. ~1.1!:

f5f~0!~J~0!1J~1!1J~2!1¯ !1f~1!~J~0!1J~1!1¯ !1f~2!~J~0!1¯ !1¯ , ~1.3!

or

f5f~0!~J~0!!1f~0!8~J~0!!J~1!1f~1!~J~0!!1f~0!8~J~0!!J~2!1 1
2f

~0!9~J~0!!•~J~1!!2

1f~1!8~J~0!!J~1!1f~2!~J~0!!1¯ . ~1.4!

The trick of the inversion method is to regardf in the left-hand side of this equation as indepe
dent ofg. Then we get a set of equations calledinversion formulae:

f5f~0!~J~0!!, ~1.5!

f~0!8~J~0!!J~1!1f~1!~J~0!!50, ~1.6!

f~0!8~J~0!!J~2!1
1

2
f~0!9~J~0!!•~J~1!!21f~1!8~J~0!!J~1!1f~2!~J~0!!50, ~1.7!

f~0!8~J~0!!J~3!1f~0!9~J~0!!J~1!J~2!1
1

3!
f~0!-~J~0!!•~J~1!!31f~1!8~J~0!!J~2!

1
1

2
f~1!9~J~0!!•~J~1!!21f~2!8~J~0!!J~1!1f~3!~J~0!!50, ~1.8!

and so on. In this way we can obtainJ( i )(f) up to the desired order. Note here that all t
derivatives off ( i ) andf ( i ) itself in the above formulae are evaluated atJ5J(0), which is deter-
mined by the lowest inversion formula~1.5!. Finally, we set the artificially introduced sourceJ
back to the original value, sayj , to go back to the original theory:

J~0!~f!1J~1!~f!1¯5 j . ~1.9!

If we truncate the original series~1.1! at thei -th order, we obtain Eq.~1.9! truncated at thei -th
order. However, these two truncated equations are not equivalent and the latter, which
regarded as an equation determiningf, is a more improved equation forf than the former.

The trick of regardingf as independent ofg corresponds to making the Legendre transf
mation;f andg are dealt with as mutually independent in the Legendre transformation. To fu
clarify this point, we introduce a generating functionW which satisfies the relation

f~J!5
dW~J!

dJ
. ~1.10!

In the case of an equilibrium systemW is nothing but the thermodynamical potential@W5V
52(1/b)lnJ: see Eq.~2.8!#. Now we introducethe effective actionG by the Legendre transfor
011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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mation: G5W(J,g)2Jf(J,g) wheref(J,g)5]W(J,g)/]J. Here, we have emphasized theg
dependence. The variation ofG, if we assume that J and g are independent variables, is expressed
as

dG5
]W~J,g!

]J
dJ1

]W~J,g!

]g
dg2dJf~J,g!2Jdf~J,g!5

]W~J,g!

]g
dg2Jdf~J,g!.

~1.11!

Hence, as is well known, we see that the quantityG can be regarded as a function of tw
independent variablesf andg—G5G(f,g). Equation~1.11! seems trivial but is essential in th
present discussion. What is implied in Eq.~1.11! is as follows: if we solve~or invert! the relation
f(J,g)5]W(J,g)/]J in favor of J, assuming that two quantitiesf and g are mutually indepen
dent, to obtainJ5J(f,g) and then insert this expression ofJ into all J appearing inW(J,g)
2Jf, this quantityW(J,g)2Jf is automatically written by only two independent variablesf
andg. In other words, this inversion process of the Legendre transformation is carried out re
ing f as independent ofg. This is the justification of the trick of the inversion method. Note th
once the inversion or the Legendre transformation is performed and after the sources are s
appropriate value,j for example, the resultantf depends ong. In many quantum cases such
Quantum Electrodynamics~QED!,25 Superconductivity,26 Hubbard model,27 and Superfluidity,5 it
is known that this trick of the inversion method reproduces the mean field approximation
first order~in which we truncate the series ati 51!. In this sense, the inversion method offers
way to systematically advance the mean field approximation.

Reciprocal to Eq.~1.10!, there is an identity,

J52
dG~f!

df
. ~1.12!

This equation is equivalent to the inversion series~1.2! and, at an appropriate value ofJ, say j ,
corresponds to Eq.~1.9!. In other words, Eq.~1.12! at J5 j is an equation which determinesf.
This equation corresponds to the on-shell condition in field theory. The on-shell expansion
expansion of the right-hand side of the on-shell conditionj 52dG(f)/df at the pointf5f0

1Df around the solution of the on-shell conditionf5f0 @i.e., j 52dG(f0)/df0#. Through the
on-shell expansion, we obtain a set of equations containing all the physical information rela
f such as excitations and scatterings. However, since we concentrate on equilibrium prope
liquids in this article, the higher order on-shell equations shall not be examined. Such an imp
issue is reserved for a future work. In this sense, a real application of the on-shell expansio
classical system is relegated to a separate work, which shall deal with dynamical proper
simple liquids.

In the above we consider a simple case wheref is scalar and position independent. Howev
the generalization to a case wheref is a tensor and position dependent is straightforward@see, for
example, Eq.~4.10! below#.

Organization of this article is as follows. In Section II, we reformulate the simple liqu
theory in a field theoretical way and successively introduce three kinds of effective ac
(G1 ,G2 ,G3) through the first, the second, and the third Legendre transformation. We then giv
on-shell condition for each effective action. It is stressed here that the effective actionG3 is the
entropy except for a trivial term and it can be written as a functional of the correlation func
of up to the third order. In Section III, we present a diagrammatic expression for the thermo
namic potential with explicitly including the triplet potentialwi jk . The introduction ofpseudo
2-bondsis essential for the presentation of the diagrams with the triplet potential. Sections
VI deal with renormalization of the theory in terms of one-, two-, and three-particle dens
respectively. After renormalization, we obtain a diagrammatic expression forG1 , G2 , or G3 ~the
entropy! and show that the on-shell condition for eachG i ( i 51,2,3) can be considered as som
extension of various well-known equations in simple liquids theory. In Section VI, we obta
systematic way of improving the Kirkwood’s superposition approximation for the three-pa
densities.
011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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II. A REFORMULATION OF THE SIMPLE LIQUIDS THEORY

Consider anN-particle classical system subject to the potentialu(r ), the pair potential
v(r ,r 8), and the triplet potentialw(r ,r 8,r 9),28

HN[HN~p1 ,...,pN ,q1 ,...,qN!5
1

2m (
i 51

N

upi u21VN , ~2.1!

VN[VN~q1 ,...,qN!5(
i 51

N

u~qi !1(
i , j

N

v~qi ,qj !1 (
i , j ,k

N

w~qi ,qj ,qk!. ~2.2!

Here the pair potentialv(r i ,r j ) andw(r1 ,r2 ,r3) are symmetric under the interchange of positi
variables@v(r1,r2)5v(r2,r1) etc.#. By introducing then-particle density for anN-particle system
(n51,2,3) by

rN
~1!~r !5(

i 51

N

d~r2qi !, ~2.3!

rN
~2!~r ,r 8!5(

iÞ j

N

d~r2qi !d~r 82qj !5rN
~1!~r !rN

~1!~r 8!2d~r2r 8!rN
~1!~r !, ~2.4!

rN
~3!~r ,r 8,r 9!5 (

iÞ j Þk

N

d~r2qi !d~r 82qj !d~r 92qk!, ~2.5!

the grand potentialVN2mN is cast into the form

VN2mN5E dr1ũ~r1!rN
~1!~r1!1

1

2 E dr1E dr2v~r1 ,r2!rN
~2!~r1 ,r2!

1
1

3! E dr1E dr2E dr3w~r1 ,r2 ,r3!rN
~3!~r1 ,r2 ,r3!, ~2.6!

where

ũ~r !52m1u~r !. ~2.7!

This expression for the potential plays a key role in our reformulation of the simple liquids th
in a field theoretical way. From this expression, we can identify (J,f̂) of the inversion method
with (ũ,rN

(1)), (v,rN
(2)), or (w,rN

(3)).
The grand partition functionJ and the thermodynamic potential,

V52
1

b
ln J, ~2.8!

is defined by

e2bV5J5 (
N50

`
1

N!

1

h3N E dpNE dqNe2b~HN2mN!, ~2.9!

where*dpN and*dqN implies the integrations overp1 ,p2 ,...,pN andq1 ,q2 ,...,qN , respectively.
Regarding quantitiesV andJ as functionals of the potentialsũ(r ), v(r ,r 8), andw(r ,r 8,r 9),

we have then-particle density (n51,2,3) by differentiatingV with respect toũ, v, or w:29

r~1!~r ![
dV

dũ~r !
5^rN

~1!~r !&, ~2.10!
011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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r~2!~r ,r 8![
dV

d
1

2
v~r ,r 8!

5^rN
~2!~r ,r 8!&, ~2.11!

r~3!~r ,r 8,r 9![
dV

d
1

3!
w~r ,r 8,r 9!

5^rN
~3!~r ,r 8,r 9!&. ~2.12!

Here, the expectation implies30

^O N&5
1

J (
N50

`
1

N!

1

h3N E dpNE dqNO N e2b~HN2mN!, ~2.13!

and we have used the relations

dũ~r !

dũ~r 8!
5d~r2r 8!, ~2.14!

dv~r1 ,r2!

dv~r18 ,r28!
5

1

2!
@d~r12r18!d~r22r28!1d~r12r28!d~r22r18!#, ~2.15!

dw~r1 ,r2 ,r3!

dw~r18 ,r28 ,r38!
5

1

3!
@d~r12r18!d~r22r28!d~r32r38!1~3!21!terms#. ~2.16!

In order to rewrite the theory in terms ofr (1)(r ), r (2)(r ,r 8), and r (3)(r ,r 8,r 9) instead of
ũ(r ), v(r ,r 8), and w(r ,r 8,r 9), the Legendre transformations are successively performed.
first, the second, and the third Legendre transformations are, respectively, defined by

G1@r~1!,v#[V@ ũ,v,w#2E dr1ũ~r1!r~1!~r1!, ~2.17!

G2@r~1!,r~2!#[G1@r~1!,v#2
1

2 E dr1E dr2v~r1 ,r2!r~2!~r1 ,r2!, ~2.18!

G3@r~1!,r~2!,r~3!#[G2@r~1!,r~2!,w#2
1

3! E dr1E dr2E dr3w~r1 ,r2 ,r3!r~3!~r1 ,r2 ,r3!.

~2.19!

In these equations, (ũ,r (1)), (v,r (2)), or (w,r (3)) can be regarded as (J,f) of the inversion
method. In the present case, the original Hamiltonian already has a term proportional tof: we
should setJ52m1u, v, or w ~instead ofJ50! at the end.~In the conventional simple liquids
theory where the triplet potential is neglected, we have to setJ5w50 at the end.! By using the
relation

dV@ ũ,v,w#5E dr1

dV

dũ~r1!
dũ~r1!1E dr1E dr2

dV

dv~r1 ,r2!
dv~r1 ,r2!

1E dr1E dr2E dr3

dV

dw~r1 ,r2 ,r3!
dw~r1 ,r2 ,r3!, ~2.20!

we can explicitly confirm thatG1 , G2 , andG3 are functionals of (r (1),v,w), (r (1),r (2),w), and
(r (1),r (2),r (3)), respectively, with the identities
011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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dG1@r~1!,v,w#

dr1
~1! 52ũ1 ,

dG1@r~1!,v,w#

d
1

2
v12

5r12
~2! ,

dG1@r~1!,v,w#

d
1

3!
w123

5r123
~3! , ~2.21!

dG2@r~1!,r~2!,w#

dr1
~1! 52ũ1 ,

dG2@r~1!,r~2!,w#

d
1

2
r12

~2!

52v12,
dG2@r~1!,r~2!,w#

d
1

3!
w123

5r123
~3! , ~2.22!

dG3@r~1!,r~2!,r~3!#

dr1
~1! 52ũ1 ,

dG3@r~1!,r~2!,r~3!#

d
1

2
r12

~2!

52v12,
dG3@r~1!,r~2!,r~3!#

d
1

3!
r123

~3!

52w123.

~2.23!

Here, we have used simple and self-evident notations. These can be seen as the on-shell co
for the first, second, and third Legendre transformations, respectively, and shall be sho
correspond to familiar equations of simple liquids theory.

The effective actions introduced above are some thermodynamic functionals and clos
lated to the entropy. We notice that the entropy functional is given by

S/k52bG313^N&/2, ~2.24!

wherek is the Boltzmann constant, because the definition of the entropyS is given by

V5^E&2TS2m^N&, ~2.25!

whereT is the temperature, and because there is the identity

^E2mN&5
3

2
^N&kT1E d1ũ1r1

~1!1E d1E d2v12r12
~2!1E d1E d2E d3w123r123

~3! .

~2.26!

It also follows that, if we neglect the three-body potential, the entropy is expressed as

S/k52bG213^N&/2 ~w50!, ~2.27!

and, if we further neglect the two-body potential, it is given by

S/k52bG113^N&/2 ~v5w50!. ~2.28!

We stress here that the stationary condition for the entropy, which leads to the self-con
equations, automatically comes out as identities of the Legendre transformation. For examp
identities in~2.23! are equivalent to

]S/k

]r1
~1! 5bũ11

3

2
,

]S/k

]r12
~2! 5bv12,

]S/k

]r123
~3! 5bw123. ~2.29!

From the above argument it may be clear that, in general, the entropy of simple liquids th
where potentials of higher thanm-body are neglected, can be written as a functional of
correlation functions of the order up to them-th. In such a case, higher order correlation functio
can be expressed by the correlation functions of up to them-th order.

By using the results given in this section, we can establish the general statement thatn-particle
density can be given as an explicit functional ofs-particle densities wheres<n21. From the
second equality in Eq.~2.21! we readily notice thatr (2) is given as a functional ofr (1), v, andw.
From the last equality in Eq.~2.22!, we notice thatr (3) is given byr (2), r (1), andw. In the same
way, if we introduceGn by taking into generalm-body potentials, we can confirm thatGn is a
functional ofr (s) (s51,2,...,n) as a consequence of the basic property of the Legendre tran
011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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mation. Sincer (n) is given by the derivative ofGn21 as in Eqs.~2.21! and~2.22!, we arrive at the
general statement. This statement is not limited to the classical case; the parallel argum
relativistic quantum field theory is developed in Ref. 31.

III. DIAGRAMMATIC EXPRESSION FOR THE THERMODYNAMIC POTENTIAL

The thermodynamic potential can be expressed as

e2bV5J5 (
N50

`
1

N! E d@N#F)
i

zi* G•F)
i , j

~11 f i j !G•F )
i , j ,k

~11t i jk !G , ~3.1!

where

E d@N#[E dq1E dq2¯E dqN , ~3.2!

zi* [z* ~qi !5ze2bu~qi !, ~3.3!

f i j [ f ~qi ,qj !5e2bv~qi ,qj !21, ~3.4!

and

t i jk[t~qi ,qj ,qk!5e2bw~qi ,qj ,qk!21. ~3.5!

Here, we have introduced the activity

z5
ebm

L3 , ~3.6!

where the de Broglie thermal wavelengthL5A2pb\2/m originates from the momentum inte
gration*dpe2bupu2/2m/h5L21.

Diagrammatically2bV can be expressed as a sum of connected diagrams built up with
circles, 2-bonds, 3-bonds, and pseudo 2-bonds, where every pair of circles connected by th
3-bond should be connected by a pseudo 2-bond.32 Here, the graphical terms are defined
follows. A 2-bond connects a pair of circles but a pair can not be connected directly more
once by 2-bonds. A 3-bond connects a triplet of circles but a triplet can not be connected d
more than once by 3-bonds. A pseudo 2-bond is basically the same as the 2-bond: it con
pair of circles but a pair can not be connected directly more than once by pseudo 2-bond
difference between 2-bonds and pseudo 2-bonds is the following: if a pair is connected
same 3-bond, the pair should be connected by a pseudo 2-bond; otherwise, simply by a 2
The pseudo 2-bond is found to be very useful for a collective representation of diagrams
contain 3-bonds. Without use of pseudo 2-bonds, the number of diagrams is dramatica
creased. We give all diagrams of2bV explicitly up to the fourth order in the activityz:

2bV52bV~1!12bV~2!1¯ , ~3.7!

where

~3.8!

~3.9!

~3.10!
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~3.11!

We note here that, as suggested above, every triplet connected by a 3-bond forms a triangle
sides are pseudo 2-bonds. We can convince ourselves that all the diagrams at the fourth o
written out in Eq.~3.11! if we note the following three points, which, respectively, concern
fourth order diagrams including two, three, and four 3-bonds.~1! If we chose two distinct triplets
from four distinct points, two~and only two! points are necessarily shared by the two triplets.~2!
If we chose three distinct triplets from four distinct points, one~and only one! point is necessarily
shared by the three triplets, while each of the other three points is shared by two~and only two!
of the three triplets.~3! If we chose four distinct triplets from four distinct points, every point
necessarily shared by three~and only three! of the four triplets, and every pair of points should
shared by two~and only two! of the four triplets.

The algebraic expression corresponding to a diagram is obtained by the following step~see
Table I!.

1. Assign the numbers 1,2,...,n to all the black circles in an arbitrary way. We associate
factorsz1* ,z2* ,...,zn* to the black circles labeled 1,2,...,n, respectively. Heren is the total
number of black circles in the diagram.

2. Associate the factorf i j and 11 f i j to the 2-bond and the pseudo 2-bond, respectiv
whose ends are labeledi and j in the first step.

3. Associate the factort i jk to the 3-bond whose ends are labeledi , j , andk in the the first
step.

4. Integrate the product of all the factorsz* , f , 11 f and t over the variablesq1 ,...,qn .
5. Multiply the integral by the inverse of the symmetry numberS of the diagram.

The symmetry number is the number of all possible ways of labeling~one of which is done in the
first step! topologically equivalent to each other. For example, if a diagram containsj black circles

TABLE I. Analytical expressions corresponding to the symbols in the specified parts of the text. The white circles
same as the black circles but no integrations are associated with them.
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which play equivalent roles~in the sense any interchange of the labels among those circles
not change the topology of the graph!, the set ofj circles contributes the symmetry factorj !. The
symmetry numbers for the diagrams in Eqs.~3.8!–~3.11! are successively given by 1,2,~2,3!,3!!,
(2,3!,2•4,2!,2!2!,4!,...,4!).

Since the pseudo 2-bonds are not conventional, we present two examples of diagrams
contain the pseudo 2-bonds:

~3.12!

~3.13!

Though Eq.~3.13! is mathematically correct under the above rules 1–5 for analytical express
only the second expression~which consists of two diagrams! accords with our convention o
distinguishing 2-bonds from pseudo ones.~For example, in the first expression, a pair which is n
connected by the same 3-bond is connected by a pseudo 2-bond and thus this expression
our convention.! Because of this, we employ the second expression in what follows.

IV. INVERSION FROM ONE-BODY POTENTIAL TO ONE-PARTICLE DENSITY

In this section we renormalize the theory in terms of the one-particle density by usin
inversion method. To this end we identifyf in the inversion formulae with the one-partic
densityn1[r (1)(r1). The diagram expression forn1 can be easily obtained from that for2bV if
we notice that the differentiation by the one-particle potentialu1 changes one of the black circle
to a white circle. This is understood from

2bn152b
dV

du1
, ~4.1!

and

dz1*

du18
52bz1* d118 . ~4.2!

Here, a white circle should be associated withzi* but no integration is performed over the variab
i . Except for this rule for a white circle, the rules for obtaining an analytical expression fro
diagram are not changed~see Table I!.

We give all the diagrams up to the fourth order in the activityz:

n15n1
~0!@ ũ #1n1

~1!@ ũ #1¯ , ~4.3!

where

~4.4!

~4.5!
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~4.6!

~4.7!

where¯ represents derivatives of the last six diagrams written in Eq.~3.11!.
In the aboven(0) is NOT the zero-th order inz and, strictly speaking, we should identifyf in

the inversion formulae not withn1 but n1 /z. However, here, we have identifiedf with n1 since
the result is the same. We have also identifiedJ with ũ and regardedũ as anartificial source,
though it should be set to the original value at the end. In other words, in the following we
use the same symbolũ for both J and j .

From Eq.~1.5!, or n15n1
(0)@ ũ (0)#, and from Eq.~4.4!, we have

n15e2b ũ1
~0!

/L3 ~2bũ 1
~0!5 ln n113 ln L!. ~4.8!

This relation implies

z1* u ũ→ ũ~0!5n1 . ~4.9!

This means that the replacementũ→ũ (0), as implied in the inversion formulae Eqs.~1.5!–~1.8!,
is equivalent to a change of interpretation of circles: in the new diagram all the white and
circles should be associated not withzi* but with ni .

In the present case wheref5n1 , Eq. ~1.6! can be re-written as

E d18
dn1

~0!@ ũ ~0!#

dũ 18
~0! ũ 18

~1!
1n1

~1!@ ũ ~0!#50, ~4.10!

where, from Eq.~4.4!,

dn1
~0!@ ũ ~0!#

dũ 18
~0! 52bn1d118 . ~4.11!

Thus, from Eq.~4.5!, Eq. ~4.10! is diagrammatically expressed as

~4.12!
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from which we obtain

~4.13!

We stress here in the above two graphs the white and black circles now correspond not tozi* but
to ni . This is because these diagrams originate from the inversion formula in which we replaũ1

by ũ 1
(0) and, as explained above, this replacement changes the circles in the diagrams fromz1* to

ni . By the same token, all the circles should be associated withni in what follows~see Table I!.
The first term in Eq.~1.7! can be written as2bn1ũ 1

(2) as above. The second term in Eq.~1.7!
in this case is written as

1

2
f~0!9~J~1!!25

1

2 E d18E d28
d2n1

~0!@ ũ ~0!#

dũ 18
~0!dũ 28

~0! ũ 18
~1!ũ 28

~1! , ~4.14!

where, from Eq.~4.4!,

~4.15!

From Eq.~4.13!, Eq. ~4.14! can be expressed as

Sincef (1)8 in Eq. ~1.7!, in this case, implies@from Eq. ~4.5!#

~4.16!

the third term in Eq.~1.7! can be expressed as .

Here the factor 2 in front of the second graph appears because the symmetry factor of the g
2. ~Up to now we have omitted the index 1 for a white circle, if there is only one white circl
the diagram.! Thus, Eq.~1.7! reduces to

~4.17!

In this equation, we see that the three diagrams explicitly written exactly cancel the 1-red
diagrams appearing inn1

(2)@ ũ (0)#. Here, the 1-reducible diagram is a diagram in which there i
least one circle the removal of which leads to a separation of the diagram. Thus we have

~4.18!

Concerning Eq.~1.8!, in a similar manner, we have~see Appendix A!

f~0!8J~3!52bn1ũ 1
~3! , ~4.19!

~4.20!
011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



ctly

.
n-shell

2089J. Math. Phys., Vol. 39, No. 4, April 1998 Ko Okumura

Downloaded 07 Jul 2
~4.21!

~4.22!

~4.23!

~4.24!

By substituting these results in Eq.~1.8!, we see again that all the 1-reducible diagrams exa
cancel out. As a result we have

~4.25!

where¯ represents derivatives of the last six diagrams written in Eq.~3.11!.
We have derivedũ1 explicitly up to the third order inn1 ~black circle! and in principle we can

continue such a calculation up to the desired order. Then the inversion series is given by

bũ15bũ 1
~0!1bũ 1

~1!1bũ 1
~2!1¯ , ~4.26!

whereũ 1
( i ) ( i 50,1,2,3) are given in Eqs.~4.8!, ~4.13!, ~4.18!, and~4.25!. As we see below in Eq

~4.30!, this inversion series, obtained by the inversion method, can be regarded as the o
condition and as a generalization of a well-known formula in simple liquids theory.

Now we can integrate the expression~4.26! to get a generating functionalG1@n,v,w# due to
the relationbũ152bdG1@n,v,w#/dn1 . The result is given by

~4.27!
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We stress here that in the above diagram circles are associated withni and thus all the diagram
are functional not ofzi* but of ni . All the diagrams up to the fourth order ofni are explicitly
shown in Eq.~4.27!.

Equation~4.27! can be related to the previously known results for the entropy and the
modynamic potential. The entropy in the case wherev5w50 can be given by2bG11(3/2)
3^N&, as stated before. Indeed, if we further setu50 ~the ideal gas!, we recover the entropy o
the ideal gas,S/k5Vn(5/22 ln n23 ln L!, wheren and V is the density and the volume of th
system, respectively. If we neglect the triplet potential, Eq.~4.27! reduces to the standard expre
sion for the thermodynamic potential renormalized by one-particle density:1,2

2bV5E d1n1~12 ln n11 ln z2bu1!1K ~1!@n, f #, ~4.28!

whereK (1)@n, f # is the whole class of the 1-irreducible~1IR! diagrams built up withn-circles and
f -bonds~f -bonds are functionals ofv!. Here the 1IR diagram is the one in which deletion of a
one of the black circles does not cause a separation of the diagram.

The on-shell condition for the first Legendre transformation@the first equation in~2.21!#, or

b
dG1@n,v,w#

dn1
52bũ1 , ~4.29!

for G1 in Eq. ~4.27!, reduces to

~4.30!

which is equivalent to the inversion series~4.26!, as stated above. This inversion series is
generalization of a familiar equation in the simple liquid theory:1,4

ln~n1 /z1* !5K1
~1!@n, f #, ~4.31!

whereK1
(1)@n, f #5dK (1)@n, f #/dn1 is a sum of all 1-irreducible diagrams consisting of one wh

circle labeled 1, one or more black circles, andf -bonds. If we again neglect the triplet potenti
and setu to zero~a homogeneous liquid!, Eq. ~4.30! reduces to this standard result~4.31!.

V. INVERSION FROM PAIR POTENTIAL TO TWO-PARTICLE DENSITY

In this section we renormalize the theory in terms of the two-particle density by using
inversion method. To this end we try to identifyf in the inversion formulae with the two-particl
densityn12[r (2)(r1 ,r2). The diagram expression forn12 can be easily obtained from that forG1

if we notice that the differentiation by the two-particle potentialv12 removes one of the~pseudo!
2-bonds with making black circles of both ends white circles if we multiply the resultant diag
by a factor 11 f 12. This is understood from the relations

2bn1252b
dV@u,v,w#

d
1

2
v12

52b
dG1@n,v,w#

d
1

2
v12

, ~5.1!

and

d f 12

d
1

2
v1828

52b~11 f 12!~d118d2281d128d218!. ~5.2!
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Thus, we have

~5.3!

We notice here that all the diagrams have two white circles, which stand forni . This implies that,
if we considerni as the expansion parameter of the inversion method,n12

(0) vanishes while the
inversion method assumes a non-zerof (0). To avoid this difficulty we identifyf with a new
quantity defined by

h12[
n12

n1n2
21. ~5.4!

It is diagrammatically given as

h125h12
~0!@v#1h12

~1!@v#1¯ , ~5.5!

where

~5.6!

~5.7!

~5.8!

Here, the terms represented bȳ are the derivatives of the last three diagrams in Eq.~4.27!.
From Eq.~1.5!, or h125h12

(0)@v (0)#, and from Eq.~5.6!, we have

h125e2bv12
~0!

21 @2bv12
~0!5 ln~h1211!#. ~5.9!

This implies

f 12uv→v~0!5h12. ~5.10!

Equation~1.6! in this case can be written as

E d18E d28
dh12

~0!@v ~0!#

dv1828
~0! v1828

~1!
1h12

~1!@v ~0!#50, ~5.11!
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which reduces to~see Appendix B!

~5.12!

Thus, we have

~5.13!

In the above diagrams the~pseudo! 2-bonds are notf -bonds but~pseudo! h-bonds due to the
replacementv→v (0) in the inversion formula~1.6! @see Eq.~5.10!#. Similarly the 2-bonds and the
pseudo 2-bonds appearing in the following diagrams should all be associated withhi j and
11hi j , respectively~see Table I!.

The terms in Eq.~1.7! are calculated as follows~see Appendix B!:

f~0!8J~2!52b~11h12!v12
~2! , ~5.14!

~5.15!

~5.16!

By substituting these results in Eq.~1.7!, we see that all the 2-reducible diagrams except

exactly cancel out. Here, the 2-reducible diagrams are defined as follows. First, we m
0-diagram from the diagram by connecting external points 1,2 by a~pseudo! 2-bond along with
n1 ,n2 and then by integrating the diagram over the variables 1, 2.~The 0-diagram, here, is a
diagram which has no external points and white circles.! Then the original diagram is 2-reducibl
if the resultant 0-diagram is the one in which there is at least one pair of circles the delet
which leads to a separation of the diagram.

From Eqs.~5.14! to ~5.16!, we have

~5.17!

where¯ represents derivatives of the last three diagrams in Eq.~4.27!.
We have derivedv12 explicitly up to the second order inn1 ~black circle! and in principle we

can continue such a calculation up to the desired order. Then the inversion series is given

bv125bv12
~0!1bv12

~1!1bv12
~2!1¯ , ~5.18!
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wherebv12
( i ) ( i 50,1,2) are given in Eqs.~5.9!, ~5.13!, and~5.17!. As we see below in Eq.~5.35!,

Eq. ~5.18! can be regarded as the on-shell condition and as a generalization of some equ
familiar in the theory of simple liquids.

Now we can integrate the inversion series~5.18! to get a generating functionalG2@n,h,w# due
to the relationbv522bdG2@n,h,w#/dr (2), or

bv1252b
2

n1n2

dG2@n,h,w#

dh12
, ~5.19!

and the result is given by

2bG25E d1n1~12 ln n123 ln L!1
1

2 E d1E d2n1n2@h122~11h12!ln~11h12!#

~5.20!

We stress here that in the above diagram circles, 2-bonds, and pseudo 2-bonds are associa
ni , hi j and 11hi j , respectively, and thus all the diagrams are functional ofni , hi j , andwi jk . All
the diagrams up to the fourth order ofni are explicitly shown in Eq.~5.20!. As stated before, from
this expression we can readily obtain the entropy for the system without the triplet potential,
coincides with the expression given in Ref. 1.

If we neglect the triplet potential, Eq.~5.20! reduces to the standard expression for
thermodynamic potential renormalized by one-particle density:1,2

2bV5E d1n1~12 ln n11 ln z2bu1!2
b

2 E d1E d2r12
~2!v12

1
1

2 E d1E d2n1n2$h122@11h12# ln@11h12#%1N @n,h#1K ~2!@n,h#. ~5.21!

N @n,h# are made up of polygonal diagrams and, if we regard@nh#12[n1h12 is the~1,2! element
of the functional matrix@nh#, it is given by

N @n,h#52 (
p53

`
~21!p

2p
Tr@nh#p5

1

2
TrF ln~11nh!2nh1

1

2
~nh!2G . ~5.22!

K (2)@n,h# is the whole class of the 2-irreducible~2IR! diagrams built up withn-circles and
h-bonds. Here, a 2IR diagram is the one in which the deletion of any pair of the black circles
not cause a separation of the diagram.

In the conventional definition, a 2-irreducible diagram consists of circles and 2-bonds b
of 3-bonds and pseudo 2-bonds. However, in the following, we include such diagrams con
of 3-bonds and pseudo 2-bonds into the definition of 2IR diagrams, and call the whole cl
such 2IR diagramsK (2)@n,h,w# instead ofK (2)@n,h#. Then, Eq.~5.20! is equivalent to Eq.
~5.21! whereK (2)@n,h# is replaced byK (2)@n,h,w#.

The on-shell condition for the second Legendre transformation@the first two equations in
~2.22!# are equivalent to
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dG2@n,h,w#

dn1
52ũ12E d2n2~11h12!v12, ~5.23!

dG2@n,h,w#

d
1

2
h12

52n1n2v12, ~5.24!

from which we have

ln z2 ln n11E d2n2$h122~11h12!ln~11h12!%1
dN @n,h#

dn1
1

dK ~2!@n,h,w#

dn1

5bu11bE d2n2~11h12!v12, ~5.25!

2 ln~11h12!1
2

n1n2
S dN @n,h#

dh12
1

dK ~2!@n,h,w#

dh12
D 5bv12, ~5.26!

where

dN @n,h#

dn1
5

1

2 S h•

1

11@nh#
2h1h•@nh# D

11

, ~5.27!

2

n1n2

dN @n,h#

dh12
5S h2h

1

11@nh# D
12

. ~5.28!

This set of equations, corresponding to Eq.~4.30! in the previous section, is to be solved se
consistently for the two variablesn andh. In the above,h and@nh# stand for the functional matrix
as before. The diagrammatic expression for the sum of derivatives ofN @n,h# or K @n,h,w# in
Eq. ~5.25! and in Eq.~5.26! can be easily obtained from the diagrams in Eq.~5.20! by removing,
in all possible ways, one of the black circles and one of the~pseudo! 2-bonds~along with two
black circles at the both ends!, respectively.

If we introduce the direct correlation functionc(r1 ,r2)5c12 by the so-called Ornstein–
Zernike relation,

h125c121E d3c13n3h32, ~5.29!

or, in our simplified notation,

h5c1c•@nh#5c1c•@nc#1c•@nc#21¯ , ~5.30!

we have

c5h2c•@nh#5h2h•@nh#1h•@nh#22¯5h
1

11@nh#
. ~5.31!

Thus we obtain

dN @n,h#

dn1
5

1

2
~c2h1h•@nh# !11, ~5.32!

2

n1n2

dN @n,h#

dh12
5h122c12, ~5.33!

from which we have
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ln z2 ln n11E d2n2$h122~11h12!@ ln~11h12!1bv12#%1
1

2 S c112h111E d2h12n2h21D
1

dK ~2!@n,h,w#

dn1
5du1 , ~5.34!

2 ln~11h12!1h122c121
2

n1n2

dK ~2!@n,h,w#

dh12
5bv12. ~5.35!

Note here thatc12 and the derivatives ofK (2)@n,h,w# are explicitly given as functionals ofn and
h. This set of equations are self-consistent equations forni ,hi j , which is equivalent to the set o
~5.25! and ~5.26!, and Eq.~5.35! can be regarded as another expression of the inversion s
~5.18!, as stated above.

The inversion series~5.35!, obtained as the on-shell condition, is a generalization of a fam
exact relation,

h122c122 ln~11h12!5bv122d12, ~5.36!

which was derived by van Leenwenet al.,4 if d12, originally given by thef -bond expansion, is
rewritten as anh-bond expansion.

The hypernetted-chain~HNC! approximation,

h122c122 ln~11h12!5bv12, ~5.37!

is reproduced if we neglect all the 2IR diagrams in Eq.~5.35!.
The Percus–Yevick~PY! approximation can be expressed as

bv121 ln~11h12!5 ln~11h122c12!, ~5.38!

implying the approximation

h122c121
2

n1n2

dK ~2!@n,h,w#

dh12
. ln~11h122c12!. ~5.39!

VI. INVERSION FROM TRIPLET POTENTIAL TO THREE-PARTICLE DENSITY

In this section we renormalize the theory in terms of three-particle density by using
inversion method. To this end we try to identifyf in the inversion formulae with the two-particl
densityn12[r (2)(r1 ,r2). The diagram expression forn123 can be easily obtained from that forG2

if we notice that the differentiation by the three-particle potentialw123 removes one of the 3-bond
with making black circles of the three ends white circles if we multiply the resultant diagram
a factor 11t123. This is understood from the relations

2bn12352b
dV@u,v,w#

d
1

3!
w123

52b
dG2@n,h,w#

d
1

3!
w123

~6.1!

and

dt123

d
1

3!
w182838

52b~11t123!@d118d228d3381~3!21!terms#. ~6.2!

Then, we notice that all the diagrams ofn123 have three white circles. This implies that, if w
regardni as the expansion parameter of the inversion method,n123

(0) vanishes while the inversion
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method assumes non-zerof (0). In addition, since, in all the diagrams ofG2@n,h,w#, everyt i jk is
accompanied by a factorninjnk(11hi j )(11hjk)(11hki), it is convenient to identifyf not with
n123 but with g123 defined by

g1235
n123

n1n2n3~11h12!~11h23!~11h31!
21. ~6.3!

Then this quantity is diagrammatically given as

g1235g123
~0!1g123

~1!1¯ , ~6.4!

where

~6.5!

~6.6!

From Eq.~1.5!, or g1235g123
(0)@w(0)#, and from Eq.~6.5!, we have

g1235e2bw123
~0!

21 @2bw123
~0! 5 ln~g12311!#. ~6.7!

This implies

t123uw→w~0!5g123. ~6.8!

Equation~1.6! in this case can be written as

E d18E d28E d38
dg123

~0! @w~0!#

dw182838
~0! w182838

~1!
1g123

~1! @w~0!#50, ~6.9!

where

dg123
~0! @w~0!#

dw182838
~0! 52

b

3!
~11g123!@d118d228d3381~3!21!terms#. ~6.10!
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Thus, we have

~6.11!

Here, the 3-bonds should be associated not witht i jk but with g i jk @see Eq.~6.8! and Table I#.
We have derivedw123 explicitly up to the first order inn1 ~black circle! and in principle we

can continue such a calculation up to the desired order. Then the inversion series is given

bw1235bw123
~0!1bw123

~1! 1bw123
~2!1¯ , ~6.12!

wherebw123
( i ) ( i 50,1) are given in Eqs.~6.7! and ~6.11!. As we see below in Eq.~6.20!, this

inversion series can be obtained from the on-shell condition and can be seen as a serie
systematically improve the Kirkwood’s approximation for the three-particle density.

Now we can integrate the inversion series~6.12! to get a generating functionalG3@n,h,g# due
to the relationbw523!bdG3@n,h,g#/dr (3), or

bw12352b
3!

n1n2n3~11h12!~11h23!~11h31!

dG3@n,h,g#

dg123
, ~6.13!

and the result is given by

2bG35E d1n1~12 lnn123lnL!1
1

2E d1E d2n1n2@h122~11h12!ln~11h12!#

1
1

3!E d1E d2E d3n1n2n3~11h12!~11h23!~11h31!@g1232~11g123!ln~11g123!#

~6.14!

In the above diagrams, the 3-bonds are nott-bonds but g-bonds due to the replaceme
w→w(0) in the inversion formula~1.6! @see Eq.~6.8! and Table 1#. We stress here that, in th
above diagram, circles, 2-bonds, pseudo 2-bonds, and 3-bonds are associated withni , hi j , 1
1hi j , andg i jk , respectively, and thus all the diagrams are functional ofni , hi j , andg i jk . All the
diagrams up to the fourth order ofni are explicitly shown in Eq.~6.14!.

From Eq. ~6.14!, the renormalized entropyS/k of the system can be easily obtained as
functional of one- to three-particle densities due to the relationS/k52bG31(3/2)*d1n1 , as
stated earlier. This result for the entropy should be compared with the previously known resu
example, given in Ref. 8. Up to the third order~in ni!, these two coincide with each othe
However, above this order, they look different. For example, while the fourth order ofDS/k given
in Ref. 8 includes the four-particle density, our expression does not contain the four-pa
density and is written in terms of only one- to three-particle densities. This implies that, fo
system without higher-body potential than 3-body, the four-particle density can be written in
of one- to three-particle densities.
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The result~6.14! was suggested in Ref. 2, where the diagrammatic part is collectively c
T @n,h,g#. In there,T @n,h,g# is not defined explicitly and any diagrams contained in it are
presented, unfortunately.

The on-shell conditions for the third Legendre transformation@the three equations in~2.23!#
are equivalent to

dG3

dn1
52u12E d2n2~11h12!v122

1

2 E d2d3n2n3~11h12!~11h23!~11h31!~11g123!w123,

~6.15!

dG3

dh12
52

1

2
n1n2v122

1

2
n1n2E d3n3~11h23!~11h31!~11g123!w123, ~6.16!

dG3

dg123
52

1

3!
n1n2n3~11h12!~11h23!~11h31!w123, ~6.17!

from which we have

ln z2 ln n11E d2n2@h122~11h12!$ ln~11h12!1bv12%#1
1

2 E d2d3n2n3~11h12!~11h23!

3~11h31!@g1232~11g123!$ ln~11g123!1bw123%#1
dT

dn1
5bu1 , ~6.18!

2 ln~11h12!1E d3n3~11h23!~11h31!@g1232~11g123!$ ln~11g123!1bw123%#

1
2

n1n2

dT

dh12
5bv12, ~6.19!

2 ln~11g123!1
3!

n1n2n3~11h12!~11h23!~11h31!

dT

dg123
5bw123. ~6.20!

This set of equations, corresponding to the set of~5.25! and~5.26! in the previous section, is to b
solved for the three variablesn, h, andg.

This set can also be seen as a generalization of Eqs.~6!–~8! in Ref. 12. If we approximateT
by the fifth term in Eq.~5! in Ref. 12, which is originally obtained in Ref. 11, this set of equatio
here reduce to Eqs.~6!–~8! in Ref. 12. However, we notice that our diagrammatic expression
T does not have diagrams directly corresponding to the fifth term in Eq.~5! in Ref. 12. This is
because this fifth term originates from the last term in Eq.~4! of Ref. 12, and this term, which
should be equal toT for the system without higher order potential than the third, conta
correlation functions of up to the infinite order whileT here contains correlation functions up
the third order.

As mentioned above, Eq.~6.20! can be expressed as

bw1235bw~0!1bw~1!1bw~2!1¯ , ~6.21!

where

bw~0!52 ln~11g123!, ~6.22!

bw~1!5E d4n4h41h42h231¯ , ~6.23!

where¯ representsg-dependent terms which correspond to the last seven diagrams in Eq.~6.11!.
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Equation~6.21! or ~6.20! can be related to some of the previously known approximation
we truncate the inversion series~6.21! at i 50, we obtain the well-known approximatio
g1235e2bw12321 ~for example, see Ref. 12!. At w12350, this approximation reduces to th
Kirkwood’s superposition approximation,

n1235n1n2n3~11h12!~11h23!~11h31!. ~6.24!

If we truncate the series ati 51 and further neglect theg-dependent terms inbw(1) ~with
w12350!, we get the first order approximation given in Ref. 24,

n1235n1n2n3~11h12!~11h23!~11h31!expF E d4n4h41h42h43G . ~6.25!

Equation~6.25! with h-bonds in the exponential replaced byf -bonds had also been studied~see,
for example, Refs. 21–23!.

Thus, in our formulation, the zero-th order approximation reproduces the superpositio
proximation and the first order approximation, which is the solution of the equation@obtained from
Eq. ~6.11!#,

bw12352 ln~11g123!1E d4n4h41h42h431E d4n4h41~11h42!~11h43!g423

1E d4n4h42~11h41!~11h43!g4131E d4n4h43~11h41!~11h42!g412

1E d4n4~11h41!~11h42!~11h43!~g412g4231g421g4131g413g423!

1E d4n4~11h41!~11h42!~11h43!g412g423g431, ~6.26!

contains more information than the first approximation in Ref. 24. Solving our first order app
mation is practically an interesting problem, which is reserved for a future work. Further sy
atic improvement of the approximation is obtained if we calculatebw(2),bw(3),..., by theinver-
sion method.

VII. DISCUSSION

In this paper, we applied the inversion method to a classical system and renormalized
theory in terms of one-, two-, and three-particle densities in the presence of the three
potential. Our approach here complements the previously known re-summation technique
showed that the entropy functional can be expressed by up to three-particle densities an
lower order diagrams of the entropy explicitly. We also pointed out that the stationary cond
for the entropy leads to a set of self-consistent equations. In a certain case, the self-con
equation can be a base for a systematic advancement of the Kirkwood’s superposition a
mation.

Some of the results presented here are mere repetition or only a slight extension
well-known results as suggested frequently in the text. We could not avoid mixing up know
unknown results to explain our approach explicitly. Here, we appreciate and clarify to what e
these results can be considered original. In Section II, the introduction ofG3 and its relation to the
entropy seems a rather novel viewpoint. In Sections III–V, all the results are at least implied
previous literature~see, for example, Ref. 19!. However, we pointed out that, if one introduces t
pseudo 2-bonds, the diagrams ofV andGn in the presence of the 3-body potential can be writ
economically and we gave the diagrams of~up to! the fourth order~V (4), etc.! explicitly; other-
wise the number of diagrams is too many to be included in a paper—this may be one reas
fourth order diagrams~in the presence of the 3-body potential! have not been given explicitly in
the literature. In addition, the derivation ofGn based on the inversion method has originality a
complements the previously known ways. The results in Sec. VI are the renormalization in
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of one-, two-, and three-particle densities. In that the entropy does not include more-than
particle densities, this explicit diagrammatic result may be original. The result reduces to
previously known approximations in special cases.

The present work can be related to the work by Stell19 in the following way. In the second
article in Ref. 19, he gave diagrammatic rules for some correlation functions in terms ofr1 , h2 ,
and f s ~wheres>3! in his notation. In the special case where there are no more-than-three
potentials, his result can be regarded as the diagrammatic rule in terms of one- and two-p
densities and the three-body potential.~Notice here that hisf 3 is our t i jk .! This corresponds to the
description byG2 , which is still a functional of the three-body potentialw123 ~or f 3!, in our
language: the theory is renormalized up to the two-particle densities. In the present work, t
it is limited to the special case~without m-body potential wherem>4!, we further changed the
variablewi jk ~or f 3! of the theory to the three-particle densityr (3) or g i jk . This is accomplished
by use of G3 , which is a functional ofr (3), and then the theory is renormalized up to t
three-particle density. For example,w3(123) in Eq.~3.12! of the second article in Ref. 19~which
is expressed in terms ofr (1), hi j , andt i jk!, coincides with the second term on the left-hand s
of Eq. ~6.20! of this article~which is expressed in terms ofr (1), hi j , andg i jk!, when renormalized
up to the three-particle densities by changing the variable fromt i jk to g i jk .
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APPENDIX A: USEFUL FORMULAE FOR THE INVERSION FROM ONE-PARTICLE
POTENTIAL TO ONE-PARTICLE DENSITY

In this appendix, we present useful formulae for the inversion process. Belowf ( i )9¯8 stands
for dkn1

( i )@u(0)#/dũ 18
(0)dũ 28

(0)
¯dũ k8

(0) :

~A1!

~A2!

~A3!

~A4!

~A5!

~A6!

where

~A7!
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~A8!

~A9!

~A10!

APPENDIX B: USEFUL FORMULAE FOR THE INVERSION FROM TWO-PARTICLE
POTENTIAL TO TWO-PARTICLE DENSITY

In this appendix, we present useful formulae for the inversion process. Belowf ( i )9¯8 stands
for dkh12

( i )@v (0)#/dv18
(0)dv28

(0)
¯dvk8

(0) :

f~0!8→2
b

2
~11h12!~d118d2281d128d218! ~B1!

f~0!→S 2
b

2 D 2

~11h12!~d118d2281d128d218!~d138d2481d148d238! ~B2!

~B3!where

~11h12!852
b

2
~11h1828!~d118d2281d128d218! ~B4!

~B5!

~B6!
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~1!~r !rN
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~1!~r !&^rN
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The second equality can be understood from
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~1!~r !rN
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