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We reformulate the theory of simple liquids in a field theoretical way by taking into
account the triplet potential;;, , in addition to the external potential and the

pair potentialv;; . The innovation here ishe inversion methodnd the on-shell
expansiorwhich are the building blocks of a novel use of Legendre transformation
developed in field theory. By the inversion method, we renormalize the theory in
terms of one-, two-, and three-particle densities, and present a diagrammatic rep-
resentation for a thermodynamical functional, which is the entropy except for a
trivial constant, in terms of renormalized variables. In other words, we present an
expression for the entropy in terms of only one-, two-, and three-particle densities:
the n-particle density wher@=4 does not appear in the expression. The on-shell
condition, which is a starting point of the on-shell expansion, of the thermodynami-
cal functional thus obtaine@he entropy leads to a set of three self-consistent
equations for one-, two-, and three-particle densities. Through one of the self-
consistent equations, we can systematically improve the Kirkwood'’s superposition
approximation for the three-particle density. The on-shell conditions for other ther-
modynamical functionals, also obtained in this article, are found to be extentions of
various well-known equations in the theory of simple liquids. The formulation
presented here is complementary to the conventional re-summation techniques for
renormalization of diagrams. In the present formulation, we do not have to care
about the topological structure of diagrams, often characterized by the irreducibility
of diagrams. Instead, by a perturbative calculation, we can automatically single out
the diagrams with the topological structure predicted by the re-summation tech-
nigues. ©1998 American Institute of Physid$0022-24888)01604-]

I. INTRODUCTION

In the theory of simple liquids, renormalization of the theory in terms of one-, and two-
particle densities is essentidlThe n-particle density here is sometimes called the correlation
function of then-th order) To perform such renormalization, re-summation techniques of dia-
grams had been extensively developetiSuch techniques, though elegant and attractive, are
sometimes complex and difficult to understand. In such techniques, the topological structure of the
diagrams for the renormalized theory is determined by using graphical terms such as irreducibility
of diagrams. If one wants to obtain higher order diagrams, we have to single out, by hand,
diagrams which have the topological structure thus determined, after considering all possible
diagrams of that order. At a higher order, this task can be laborious.

In the present reformulation, however, we can obtain the renormalized diagrams automatically
order by order through simplgut sometimes tedioligalculations. We do not have to care about
the topological structure at all; the diagrams with the demanded topology are automatically singled
out. In this sense, this reformulation is complementary to the conventional re-summation tech-
nigues.

The innovation here is a novel use of the Legendre transformation which has been developed
in field theory and has been applied to quantum sysfeisthis article we present the first
application to a classical system. This methodology consists of the inversion method and the
one-shell expansion, which shall be reviewed briefly below. However, in short, the former is a
method by which we can obtain a non-perturbative result through a sort of perturbative calcula-
tion, and the latter is a formalism in which we can systematically extract all physical information
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concerning a physical variable of interest, starting from an effective adfltre effective action
is a kind of thermodynamical functional in a classical system as we see below.

The systematic expansion of the entropy of simple liquids theory in terms of the correlation
function has received considerable attention. Such an expansion for the canonical ensemble was
studied in Ref. 6, which followed by the works for the grand canonical enseffiifecently,
these expansion schemes have been revisittdnd numerically examinédi'* by several re-
searchers. In all these works, the entropy is expanded in terms of one-patrticle density td the
order term contains the correlation function up to thtéh order: the entropy is expressed by the
n-particle densities where=0,1,...¢0.

However, as shown below, the entropy functional, which is the effective action except for a
trivial term, can be described by the correlation functions of the angep the n-thif we neglect
higher-body potential than-body. Indeed, the entropy given in Ref. 1 is described only by one-
and two-particle densities since, as in conventional simple liquids theory, the triplet and higher-
body potential are neglected there.

In this article we present an expression for the entropy as functional of one-, two-, and
three-particle densities of the grand canonical ensemble. The expansion does not include correla-
tion functions of the order higher than three and thus the theory is renormalized in terms of one,
two-, and three-particle densities.

To renormalize the theory in terms of the three-particle density, in the present paper, we first
explicitly include a triplet potential into a theory, and then, make a Legendre transformation from
the triplet potential to the three particle density. The triplet potential can be set to zero after the
renormalization if we like to go back to th@onventional liquids theory without the triplet
potential. Note here that, by first introducing the triplet potential and then by setting the potential
at the end, we can extract new information, which can not be obtained if we neglect the potential
from the start.

Extention of the liquid theory to include triplet potentials is not new and had been studied,
though the above viewpoint for the triplet potential as a tool for the Legendre transformation
might have not. For example, for a weak triplet potential, they included the effects of the triplet
potential by modifying the pair potential with the aid of diagrai®s.’ Other important references
can be found in Refs. 12, 18.

Furthermore, inclusion of the generatbody potential (h=1,2,3,4,...) into the liquid theory
is performed in Ref. 19 in a simple and clear way. There, various diagrammatic rules are neatly
given and are renormalized up to the two-particle densities. In the present work, we further
renormalize the theory by the three-particle densities though our case is limited to the special case
where there are no more-than-three-body potentiSlse Sec. VI).

In the present formalism, the stationary conditions for the entropy or the effective action come
out as identities of the Legendre transformation. The set of conditions can be seen as a set of
self-consistent equations to be solved for the variables of interest.

In this article, we obtain three kinds of the effective actions, which are closely related to the
entropy. As stationary conditions for these actions, we get three sets of self-consistent equations,
some of which can be seen as a generalization of well-known equations in simple liquids theory.

Especially, one of the self-consistent equations leads to successive improvement of the Kirk-
wood’s superposition approximatidfor the three-particle densities. The zero-th order approxi-
mation of this theory coincides with the previously known approximatfonexample, see Refs.

20, 12, which reduces to the Kirkwood's approximation for the system without the triplet poten-
tial. The first order approximation of ours can be seen as an improvement over the well-known
approximationg1-24

Let us review the inversion method and the on-shell expansion briefly. Consider a physical
variable of interest) in a system described by a Hamiltoni&h In a classical system at an
equilibrium, a physical variable is a thermal expectation value of some quantity a quantum
system a physical variable is a quantum expectation value of an opeFatdn the inversion
method, we modify the HamiltoniaH to H+J¢ whereJ is an artificial external source which
should be set to zero at the end of calculation. However, if the original Hamiltéhiaineady has
a term proportional tap, sayj¢, we merely replacg with an artificial sourcel and set it back
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to j at the end of calculation. After this modification of the Hamiltonian, we calcufatey a
perturbative expansion in terms of the expansion parameteg,saythe presence of the artificial
sourceJ. We have an expansion call¢ite original seriesof the form,

=0 =32+ ¢M(D+¢P(I)+ -, (1.9

where ¢! is thei-th order ing when we regard as independent af. Now we invert Eq(1.1)
in favor of J to getthe inversion series

3I=AP)=30($) +IV($) + () + | (12

wheredW(¢) is thei-th order ing when we regardp as independent df. In order to obtain an
explicit form of JV(¢), we insert Eq(1.2) into Eq. (1.1):

b= 3030+ IV I )4 DO 4 IV 4 4 DOy pe (13
or

b= ¢(0)(J(0))+ ¢(0)/(J(0))J(1)+ ¢(1)(J(0)) + ¢(0)/(J(0))J(2)+ %¢(0)//(J(0)) . (J(l))Z
+ ¢(1)’(J(0))J(1)+ ¢(2)(J(0))+. - (1.4

The trick of the inversion method is to regagdin the left-hand side of this equation as indepen-
dent ofg. Then we get a set of equations caliegersion formulae

=322, (1.5
¢(0)'(J(0))J(1)+ (l)(l)(J(O)):O, (1.6)
¢(0)/(J(0))J(2)+ % ¢(0)//(J(0)) . (J(l))2+ ¢(1)/(J(0))J(1)+ ¢(2)(J(0)):0' 1.7

1
(0)7(3(00) 33 4 $Or( 3O 3D 3@ L — 4O 30y (JD)34 HD)1 (3032
I+ (I I o3 6T - ()T (I

1
= W30y (W24 $@)7 (300 3D 4 H3)(JO) =
+5 ¢ 7T ()T STIT)ITH I =0, (1.9

and so on. In this way we can obtai)(¢) up to the desired order. Note here that all the
derivatives of¢() and ¢() itself in the above formulae are evaluatedlatJ(®, which is deter-
mined by the lowest inversion formuld.5). Finally, we set the artificially introduced sourde
back to the original value, say to go back to the original theory:

J(O)(¢)+J(l)(¢)+‘“:j. (19)

If we truncate the original serigd.l) at thei-th order, we obtain Eq.1.9) truncated at thé-th
order. However, these two truncated equations are not equivalent and the latter, which can be
regarded as an equation determinigis a more improved equation fa@¥ than the former.

The trick of regardingp as independent af corresponds to making the Legendre transfor-
mation; ¢ andg are dealt with as mutually independent in the Legendre transformation. To further
clarify this point, we introduce a generating functidhwhich satisfies the relation

dW()
¢I)=—g3 (1.10

In the case of an equilibrium systeW is nothing but the thermodynamical potentj&l/= ()
=—(1/B)InE: see Eq(2.8]. Now we introducethe effective actiod’ by the Legendre transfor-
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mation: T'=W(J,9) —J#(J,9) where ¢(J,9)=dW(J,g)/dJ. Here, we have emphasized the
dependence. The variation Bf if we assume that J and g are independent varightesexpressed
as

dW(J,9)
dg—dJp(3,0)~3dp(3.9)= —;—

~dW(J,9) dW(J,9)
I'= >3 dJ+ 79 dg—Jde(J,9).

(1.11

Hence, as is well known, we see that the quantitican be regarded as a function of two
independent variablegg andg—I"=1'(¢,g). Equation(1.11) seems trivial but is essential in the
present discussion. What is implied in Ef.11) is as follows: if we solveor invert) the relation
#(3,0) =dW(J,0)/4J in favor of J, assuming that two quantitieg and g are mutually indepen-
dent to obtainJ=J(¢,g) and then insert this expression dfinto all J appearing inW(J,g)
—J¢, this quantityW(J,g) —J¢ is automatically written by only two independent variabtgs
andg. In other words, this inversion process of the Legendre transformation is carried out regard-
ing ¢ as independent af. This is the justification of the trick of the inversion method. Note that
once the inversion or the Legendre transformation is performed and after the sources are set to an
appropriate valuej for example, the resultart depends org. In many quantum cases such as
Quantum Electrodynamid€ED),?® Superconductivity® Hubbard modef! and Superfluidity’, it
is known that this trick of the inversion method reproduces the mean field approximation at the
first order(in which we truncate the series iat 1). In this sense, the inversion method offers a
way to systematically advance the mean field approximation.

Reciprocal to Eq(1.10, there is an identity,

_dr(¢)

J= W

(1.12

This equation is equivalent to the inversion se(i&®) and, at an appropriate value &f say]j,
corresponds to Eq1.9). In other words, Eq(1.12 atJ=| is an equation which determines

This equation corresponds to the on-shell condition in field theory. The on-shell expansion is an
expansion of the right-hand side of the on-shell condifien—dI'(¢)/d¢ at the pointd= ¢,

+ A ¢ around the solution of the on-shell conditigr= ¢ [i.e.,j = —dI'(&g)/d ). Through the
on-shell expansion, we obtain a set of equations containing all the physical information related to
¢ such as excitations and scatterings. However, since we concentrate on equilibrium properties of
liquids in this article, the higher order on-shell equations shall not be examined. Such an important
issue is reserved for a future work. In this sense, a real application of the on-shell expansion to a
classical system is relegated to a separate work, which shall deal with dynamical properties of
simple liquids.

In the above we consider a simple case whgis scalar and position independent. However,
the generalization to a case whefés a tensor and position dependent is straightfornjaeg, for
example, Eq(4.10 below].

Organization of this article is as follows. In Section Il, we reformulate the simple liquids
theory in a field theoretical way and successively introduce three kinds of effective actions
(I'y,T'5,T'3) through the first, the second, and the third Legendre transformation. We then give the
on-shell condition for each effective action. It is stressed here that the effective Agtisnthe
entropy except for a trivial term and it can be written as a functional of the correlation functions
of up to the third orderIn Section lll, we present a diagrammatic expression for the thermody-
namic potential with explicitly including the triplet potential;;. . The introduction ofpseudo
2-bondsis essential for the presentation of the diagrams with the triplet potential. Sections IV to
VI deal with renormalization of the theory in terms of one-, two-, and three-particle densities,
respectively. After renormalization, we obtain a diagrammatic expressiohi;fof',, or I'; (the
entropy and show that the on-shell condition for edch(i=1,2,3) can be considered as some
extension of various well-known equations in simple liquids theory. In Section VI, we obtain a
systematic way of improving the Kirkwood’s superposition approximation for the three-particle
densities.
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II. A REFORMULATION OF THE SIMPLE LIQUIDS THEORY

Consider anN-particle classical system subject to the potentiét), the pair potential
v(r,r'), and the triplet potential(r,r’,r"),?

N
1
INETNPL PO ) = 5 2 [ Vi, (2.1
N N N
VN=Va(Ag, .0 =2, u(a) + 2 v(g,0)+ > w(d;,dj,d0)- (2.2)
i=1 i<j i<j<k

Here the pair potential(r;,rj) andw(r,r,,r;) are symmetric under the interchange of position
variableg v (rq,r,)=v(r,,r,) etc). By introducing then-particle density for amN-particle system

(n=1,2,3) by
N
p(N”(r)=Zl s(r—ay, 2.3
N
P& (r,r')= E S(r—ag)a(r'—a)=pP(MpP(r’)—8r—r")p{(r), (2.4)
N

PR (r, M= 2 8(r—q)8(r'—q;)8(r"—qy), (2.5

i#j#k

the grand potential/y— wN is cast into the form
Vn—uN= Jdrlu(rl)PN)(r1)+ Jdrlj drov(ry,r)pi(re.r2)

1
+§Jdrlf erJ’ draw(ry,ra,r3)p(r1,r2,r3), (2.6)
where

u(r)=—pu+u(r). (2.7

This expression for the potential plays a key role in our reformulation of the simple liquids theory
in a field theoretical way. From this expression, we can identifyp] of the inversion method
with (T,p{"), (v.p), or (w,p{).

The grand partition functio® and the thermodynamic potential,

1
Q=—Eln B, (2.8
is defined by
-BO _ = . 11 —B(.7, N)
e =n=N§=:0 NI dpM [ dgVe NTH (2.9

where[dp" andfdgN implies the integrations over; ,p,,...,py andd;,qgs,....0n, respectively.
Regarding quantitie€ and = as functionals of the potentialgr), v(r,r’), andw(r,r’,r"),
we have then-particle density §=1,2,3) by differentiating with respect tdi, v, or w:%°

dQ
1)( )_ 5U(I’) <p(1) >1 (2-1@
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pA(rr)=— =(p(r.r), (2.1
5§v(r,r )
)
PO )= ——————=(p\(r.r".1"). (212
5§w(r,r’,r”)
Here, the expectation impligs
15 11 y
<@N>:gNE:O NI N f dIONf dgNy e AN, (2.13
and we have used the relations
51](r) =4 ! 2.1
o) (r=r’), (2.14
5U(rl,r2) 1
mzi[5(r1—r1/)5(r2—r2/)+5(r1—r2/)5(r2—r1/)], (2.19
M(rlvr2|r3)

1
mZ ? [8(ri—rq1)8(ry—r5)8(rg—rg)+(3!1—1)termg. (2.16

In order to rewrite the theory in terms @f1)(r), p®)(r,r"), and p®(r,r’ ,r") instead of

Uu(r), v(r,r’), andw(r,r’,r"), the Legendre transformations are successively performed. The
first, the second, and the third Legendre transformations are, respectively, defined by

Ao 01=00T0 w1~ [ 0rT(r)pV(ry) 217
1
Pdp® @ 1=Talp M 01= 5 [ ary [ drawtrs e, o), 219

1
F3[p(1>1p(2)1p(3)]Erz[p(l)!p(Z)IW]_ 5 f drlJ’ drzf dr3W(rlvr21r3)p(3)(r11r2!r3)'
(2.19
In these equationsu(p™), (v,p®), or (w,p®) can be regarded asl($) of the inversion
method. In the present case, the original Hamiltonian already has a term proportiapiaivie
should setl= — u+u, v, orw (instead ofJ=0) at the end(In the conventional simple liquids

theory where the triplet potential is neglected, we have taJsev=0 at the end.By using the
relation

— o o)
5Q[U,U,W]:J' drl m 5U(I’1)+J’ drlf dl’z m 5v(r1,r2)
o)
+jdrlf drzj drgmé\/v(rl,rz,rg), (22@

we can explicitly confirm thal';, T',, andI'; are functionals of §,v,w), (p™),p®,w), and
(p™M),p?@ p®)) respectively, with the identities
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oLylpPow] . oTulpPow] o TulpMow] g (2.20
5p(11) 1 1 P12 s 1 P123 .
55012 5§W123
SUo[pM,p 2wl Ty [pW,pP W] STLp™MpPw]
— m - Y T TV, o TP (2.22
P1 5= p2 5w
2 12 31 123
STalp™,p@p¥]  _ Tg[p™,p®,p%] . oLolp™p o] _
) — Uy, ="V, =—Wyo3.
op1 5= p2 5i (3)
2 P12 31 P123

(2.23

Here, we have used simple and self-evident notations. These can be seen as the on-shell conditions
for the first, second, and third Legendre transformations, respectively, and shall be shown to
correspond to familiar equations of simple liquids theory.

The effective actions introduced above are some thermodynamic functionals and closely re-
lated to the entropy. We notice that the entropy functional is given by

S/k=—BI'3+3(N)/2, (2.29
wherek is the Boltzmann constant, because the definition of the entBagygiven by
Q=(E)~TS—u(N), (2.29

whereT is the temperature, and because there is the identity

3 TP D) (2) (3)
(E-uN)=5 (N)KT+ [ diliypi"+ | di | d2vppif+ | d1| d2 | d3wisepids.
(2.26

It also follows that, if we neglect the three-body potential, the entropy is expressed as
Slk=—pBr,+3(N)/2 (w=0), (2.27)
and, if we further neglect the two-body potential, it is given by
Slk=—pr1+3(NY/2 (v=w=0). (2.29

We stress here that the stationary condition for the entropy, which leads to the self-consistent
equations, automatically comes out as identities of the Legendre transformation. For example, the
identities in(2.23 are equivalent to

aSlk . 3 99k aSlk
W:ﬁul‘*‘ 5 @:ﬂvni @=ﬁwlzs- (2.29

From the above argument it may be clear that, in general, the entropy of simple liquids theory,
where potentials of higher tham-body are neglected, can be written as a functional of the
correlation functions of the order up to theth. In such a case, higher order correlation functions
can be expressed by the correlation functions of up tantkta order.

By using the results given in this section, we can establish the general statemenp#title
density can be given as an explicit functional ssparticle densities where<n—1. From the
second equality in Eq2.21) we readily notice thap(®) is given as a functional g5*), v, andw.

From the last equality in Eq2.22, we notice thap'® is given byp®, p(), andw. In the same
way, if we introducel’,, by taking into generam-body potentials, we can confirm thht, is a
functional of p® (s=1,2,...n) as a consequence of the basic property of the Legendre transfor-
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mation. Sincep"™ is given by the derivative df ,_; as in Eqs(2.21) and(2.22, we arrive at the
general statement. This statement is not limited to the classical case; the parallel argument in
relativistic quantum field theory is developed in Ref. 31.

Ill. DIAGRAMMATIC EXPRESSION FOR THE THERMODYNAMIC POTENTIAL

The thermodynamic potential can be expressed as

o1
e M=E=2 —fd[N] Iz I a+tp|| I @+l @D
N=o N! i <] Sk J
where
| atni= [ da, [ day- [ da, 32
zF=z*(q)=ze AU, (3.3
fiy="F(q,qp)=e A% -1, (3.4
and
tij=t(C 0y , Q) =€~ A% %) — 1, (3.9

Here, we have introduced the activity

eB//«
= Xg—, (36)

where the de Broglie thermal wavelength= \/277,8h2/m originates from the momentum inte-
gration fdpe AlPI2mp= A ~1,

Diagrammatically— B€) can be expressed as a sum of connected diagrams built up with black
circles, 2-bonds, 3-bonds, and pseudo 2-bonds, where every pair of circles connected by the same
3-bond should be connected by a pseudo 2-bBridere, the graphical terms are defined as
follows. A 2-bond connects a pair of circles but a pair can not be connected directly more than
once by 2-bonds. A 3-bond connects a triplet of circles but a triplet can not be connected directly
more than once by 3-bonds. A pseudo 2-bond is basically the same as the 2-bond: it connects a
pair of circles but a pair can not be connected directly more than once by pseudo 2-bonds. The
difference between 2-bonds and pseudo 2-bonds is the following: if a pair is connected by the
same 3-bond, the pair should be connected by a pseudo 2-bond; otherwise, simply by a 2-bond.
The pseudo 2-bond is found to be very useful for a collective representation of diagrams which
contain 3-bonds. Without use of pseudo 2-bonds, the number of diagrams is dramatically in-
creased. We give all diagrams efB() explicitly up to the fourth order in the activity:

—BO=-B0Y+-pO@+-.. (3.7

where
-6 = o (3.9
- = o—e (3.9

(3.10

—p® = /\ + A +
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TABLE I. Analytical expressions corresponding to the symbols in the specified parts of the text. The white circles are the

same as the black circles but no integrations are associated with them.
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Symbol|  Egs. (3.8)-(4.7)| Egs. (4.12)-(5.8)|  Egs. (5.12)-(6.6)]  Eqgs. (6.11)—(6.14)
Appendix A Appendix B
? 2 ny m ny
1 2 Ji2 fi2 hia hia
1+ fia L+ fi2 1+ hyy 1+ hio
123 123 t123 Y123

(3.11

We note here that, as suggested above, every triplet connected by a 3-bond forms a triangle whose
sides are pseudo 2-bonds. We can convince ourselves that all the diagrams at the fourth order are
written out in Eq.(3.1)) if we note the following three points, which, respectively, concern the
fourth order diagrams including two, three, and four 3-boittlsIf we chose two distinct triplets
from four distinct points, twdand only twg points are necessarily shared by the two tripl&2s.
If we chose three distinct triplets from four distinct points, ¢aed only ong point is necessarily
shared by the three triplets, while each of the other three points is shared Wgridonly two
of the three triplets(3) If we chose four distinct triplets from four distinct points, every point is
necessarily shared by thréend only thregof the four triplets, and every pair of points should be
shared by twgand only two of the four triplets.

The algebraic expression corresponding to a diagram is obtained by the followindsteps
Table ).

1. Assign the numbers 1,2,n.to all the black circles in an arbitrary way. We associate the
factorszy ,z5 ,...,zx to the black circles labeled 1,2, ,respectively. Here is the total
number of black circles in the diagram.

2. Associate the factof;; and 1+f;; to the 2-bond and the pseudo 2-bond, respectively,
whose ends are labelédand]j in the first step.

3. Associate the factdr;, to the 3-bond whose ends are labeled, andk in the the first
step.

4. Integrate the product of all the factar$, f, 1+ f andt over the variables,...,q,.

5. Multiply the integral by the inverse of the symmetry numBeof the diagram.

The symmetry number is the number of all possible ways of labétng of which is done in the
first step topologically equivalent to each other. For example, if a diagram congditack circles
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which play equivalent role@in the sense any interchange of the labels among those circles does
not change the topology of the grapthe set ofj circles contributes the symmetry factdr The
symmetry numbers for the diagrams in E¢&8—(3.11) are successively given by 1,2,3!,3)),
(2,31,2.4,21,221,41,....41).

Since the pseudo 2-bonds are not conventional, we present two examples of diagrams which
contain the pseudo 2-bonds:

e = %/dl/dQ/d?»/dél ningnanatizafaa(l + fr2)(1 + fas)(1 + far) (3.12

(3.13

Though Eq(3.13 is mathematically correct under the above rules 1-5 for analytical expressions,
only the second expressiagwhich consists of two diagramsaccords with our convention of
distinguishing 2-bonds from pseudo oné=or example, in the first expression, a pair which is not
connected by the same 3-bond is connected by a pseudo 2-bond and thus this expression violates
our conventior). Because of this, we employ the second expression in what follows.

IV. INVERSION FROM ONE-BODY POTENTIAL TO ONE-PARTICLE DENSITY

In this section we renormalize the theory in terms of the one-particle density by using the
inversion method. To this end we identify in the inversion formulae with the one-particle
densityn;=p®)(r,). The diagram expression fo can be easily obtained from that ferg( if
we notice that the differentiation by the one-particle potentiathanges one of the black circles
to a white circle. This is understood from

9}
—Bn;=— Sy 4.1
and
8z} .
Wl/ = — 1321 511! . (42)

Here, a white circle should be associated wgithbut no integration is performed over the variable
i. Except for this rule for a white circle, the rules for obtaining an analytical expression from a
diagram are not changddee Table)l

We give all the diagrams up to the fourth order in the actiwvity

ny=ny”[U J+n{ (U ]+, (43

where
n(lo)[ﬂ] = 0 (4.4
V] = o—e (4.5
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SEAN (49
-
T
8%

+ I 4.7

where- - - represents derivatives of the last six diagrams written in(BEd.D.

In the aboven®) is NOT the zero-th order im and, strictly speaking, we should identifyin
the inversion formulae not with; butn,/z. However, here, we have identifieblwith n; since
the result is the same. We have also identifiedith U and regardedi as anartificial source,
though it should be set to the original value at the end. In other words, in the following we shall
use the same symbal for both J andj.

From Eq.(1.5), or n;=n{"[T (], and from Eq.(4.4), we have

—e FIIA% (=BT ©=Inn,+3InA). (4.8
This relation implies
Z; [_mo=n;. (4.9

This means that the replacemént-u (), as implied in the inversion formulae Eq4.5—(1.8),
is equivalent to a change of interpretation of circles: in the new diagram all the white and black
circles should be associated not with but with n; .

In the present case whetle=n;, Eq. (1.6) can be re-written as

snO[T ©
Jd '#"“unm[u (01=0, (4.10

where, from Eq(4.4),

snP[u 0]

5’6—(0) = _Bnlﬁll/ . (41])
l/

Thus, from Eq.(4.5), Eq. (4.10 is diagrammatically expressed as

—pn i) + o—e =0,

(4.12
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from which we obtain
pil) = —e .

(4.13

We stress here in the above two graphs the white and black circles now correspond;hbito

to n; . This is because these diagrams originate from the inversion formula in which we raplace

byu (10) and, as explained above, this replacement changes the circles in the diagrara$ fiom

n;. By the same token, all the circles should be associatedmyithh what follows (see Table)l
The first term in Eq(1.7) can be written as- 8n,U {¥) as above. The second term in E#.7)

in this case is written as

n 52n(0)[u (0)]
_¢<0> (Iy2== fdl de’ — o= U 1f)ﬁ (21,>, 414
856 9ot O
where, from Eq(4.4),
29 [5©
6~(0)[~(o)] (- —B)*611612 O . (4.15

From Eq.(4.13, Eq. (4.14 can be expressed /\

Since ™’ in Eq. (1.7), in this case, implie§from Eq. (4.5)]

W10
5"_5:&‘7_] = -8 o—o0 — Bb1y O—e , (4.16

the third term in Eq(1.7) can be expressed a_ A _9 /\

Here the factor 2 in front of the second graph appears because the symmetry factor of the graph is
2. (Up to now we have omitted the index 1 for a white circle, if there is only one white circle in
the diagram. Thus, Eq.(1.7) reduces to

g + /\ —( A +2 /\ ) + n?[@] = 0. (4.17

In this equation, we see that the three diagrams explicitly written exactly cancel the 1-reducible
diagrams appearing in(lz)['ﬁ (©)]. Here, the 1-reducible diagram is a diagram in which there is at
least one circle the removal of which leads to a separation of the diagram. Thus we have

1 1
B = A + (4.19
Concerning Eq(1.8), in a similar manner, we havsee Appendix A
$©"3¥=—pnu ¥, (4.19
¢(0)”J(1)J(2) N , 4.20
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1
TR A M ) (4.2

S0 @) _ /I\_ él\,_

%¢‘””(J(1))2—>:I + D)\’+3 /L‘ (4.23
Case B e BN

AL

By substituting these results in E(L.8), we see again that all the 1-reducible diagrams exactly
cancel out. As a result we have

ﬂagB)ZEI +Z +ZI + é;; +- (4.29

where- - - represents derivatives of the last six diagrams written in(Bd.D).
We have derived, explicitly up to the third order im, (black circle and in principle we can
continue such a calculation up to the desired order. Then the inversion series is given by

) (4.22

(4.24)

Bl =pU 7'+ U 1Y+ U P+ (4.29

whereu (1') (i=0,1,2,3) are given in Eq$4.9), (4.13, (4.18, and(4.25. As we see below in Eqg.
(4.30, this inversion series, obtained by the inversion method, can be regarded as the on-shell
condition and as a generalization of a well-known formula in simple liquids theory.

Now we can integrate the expressi@h26) to get a generating function&l;[ n,v,w] due to
the relationgu, = — B5I'1[n,v,w]/én,. The result is given by

_ﬂ[‘lz/dlnl(l—lnnl—3lnA)+0——0 +A +

(4.27)
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We stress here that in the above diagram circles are associated;vaitid thus all the diagrams
are functional not ofz" but of n;. All the diagrams up to the fourth order of are explicitly
shown in Eq.(4.27).

Equation(4.27) can be related to the previously known results for the entropy and the ther-
modynamic potential. The entropy in the case wherew=0 can be given by- BT+ (3/2)
X{N), as stated before. Indeed, if we further get0 (the ideal gas we recover the entropy of
the ideal gasS/k=Vn(5/2—In n—3In A), wheren andV is the density and the volume of the
system, respectively. If we neglect the triplet potential, @R7) reduces to the standard expres-
sion for the thermodynamic potential renormalized by one-particle dehsity:

—BQ=j diny(1—In n;+In z— Buy) +. 7Y n,f], (4.28

where 7V n, ] is the whole class of the 1-irreducik2IR) diagrams built up witm-circles and
f-bonds(f-bonds are functionals af). Here the 1IR diagram is the one in which deletion of any
one of the black circles does not cause a separation of the diagram.

The on-shell condition for the first Legendre transformafithe first equation if2.21)], or

on,

for I'y in Eq. (4.27), reduces to

ﬂulz—lnn1+lnz+O—O+A +‘w

which is equivalent to the inversion serié$.26), as stated above. This inversion series is a
generalization of a familiar equation in the simple liquid thebfy:

(4.30

In(n,/z¥)=K¥[n,f], (4.31)

whereK(ll)[n,f]= 5.9 n,f]/6n, is a sum of all 1-irreducible diagrams consisting of one white
circle labeled 1, one or more black circles, airtionds. If we again neglect the triplet potential
and setu to zero(a homogeneous liquidEq. (4.30 reduces to this standard res@t31).

V. INVERSION FROM PAIR POTENTIAL TO TWO-PARTICLE DENSITY

In this section we renormalize the theory in terms of the two-particle density by using the
inversion method. To this end we try to identidyin the inversion formulae with the two-particle
densityn;,=p®)(ry,r,). The diagram expression for, can be easily obtained from that fby,
if we notice that the differentiation by the two-particle potentigj removes one of th@pseudo
2-bonds with making black circles of both ends white circles if we multiply the resultant diagram
by a factor 4 fq,. This is understood from the relations

60 u,v,w] SI'q[n,v,w]
—Bnp=—p4 —1 =—p —1 (5.9
55012 55012
and
1—: _ﬁ(1+ le)(ﬁll' 522/ + 512/ 521/). (52)
5 E Ui1ror
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niz = (1 + fiz)(0 °+A +

We notice here that all the diagrams have two white circles, which stang farhis implies that,
if we considern; as the expansion parameter of the inversion meth@%],vanishes while the
inversion method assumes a non-zefd. To avoid this difficulty we identify¢ with a new
quantity defined by

Thus, we have

) (5.3

_ Mz
h,= i, 1. (5.9
It is diagrammatically given as
h12—h [v]+h12[v]+ (5.9
where
Ml = — (5.6
B[] = (14 fua)( /\ + (5.7
1 2
R (o] = (1 + fiz)( T '[+ M +
1 2 1 2 2 1
+
_|_
+ (5.9

Here, the terms represented by are the derivatives of the last three diagrams in @R7).
From Eq.(1.5), or h;,=h{%[v(?], and from Eq.5.6), we have

hp=e #2 -1 [-BuY=In(hy+1)]. (5.9
This implies

f 12y —0(0)=N12- (5.10

Equation(1.6) in this case can be written as

(0)
f a1’ fdz’#v(f,z, hY[o®]=0, (5.11

0172/
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which reduces tgsee Appendix B

-B(1 + h12)vg) + (14 hy2)( A + (5.12

Thus, we have

(5.13

In the above diagrams thgpseud® 2-bonds are nof-bonds but(pseud9 h-bonds due to the
replacement — v (® in the inversion formuld1.6) [see Eq(5.10]. Similarly the 2-bonds and the
pseudo 2-bonds appearing in the following diagrams should all be associatech;yigmd
1+h;;, respectively(see Table)l

The terms in Eq(1.7) are calculated as followsee Appendix B

9" I?=—p(1+h)v?, (5.14
2
%45(0)”(*](1))2—"(1+h12)( l + (5.15
1
2 : 2
&Wﬂ”a—a+hm@([:1'+
1 1
+2 | l + | ; | + l ; |
1 2 1 2 2 1
) (5.16

By substituting these results in E@L..7), we see that all the 2-reducible diagrams exT—T

1 2
exactly cancel out. Here, the 2-reducible diagrams are defined as follows. First, we make a
0-diagram from the diagram by connecting external points 1,2 fysaud® 2-bond along with
n.,n, and then by integrating the diagram over the variables ¥TBe 0-diagram, here, is a
diagram which has no external points and white cir¢l&sen the original diagram is 2-reducible
if the resultant O-diagram is the one in which there is at least one pair of circles the deletion of
which leads to a separation of the diagram.

From Egs.(5.14) to (5.16, we have

m9=—l | +LZj +

1 2 2

where- - - represents derivatives of the last three diagrams in(£47).
We have derived ;, explicitly up to the second order im, (black circle and in principle we
can continue such a calculation up to the desired order. Then the inversion series is given by

0 1 2
B 1= ,805_2)‘{‘,303_2)“',80&2)“" - (5.18
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whereguv{) (i=0,1,2) are given in Eqg5.9), (5.13, and(5.17. As we see below in Eq5.35),
Eqg. (5.18 can be regarded as the on-shell condition and as a generalization of some equations
familiar in the theory of simple liquids.
Now we can integrate the inversion ser{Bsl8 to get a generating functionBb[ n,h,w] due
to the relationBv = — 2861 ,[n,h,w]/8p?, or

2 oI'y[n,h,w]

Bvi=—p i, ohy, (5.19

and the result is given by

1
—,BFzzfdlnl(l—ln n;—31n A)+§fd1f d2n;ny[ hyo— (1+hyo)In(1+hyy)]

(5.20

We stress here that in the above diagram circles, 2-bonds, and pseudo 2-bonds are associated with
n;, hjj and 1+ h;; , respectively, and thus all the diagrams are functional, oh;; , andw;j, . All
the diagrams up to the fourth ordermfare explicitly shown in Eq(5.20). As stated before, from
this expression we can readily obtain the entropy for the system without the triplet potential, which
coincides with the expression given in Ref. 1.

If we neglect the triplet potential, Eq5.20 reduces to the standard expression for the
thermodynamic potential renormalized by one-particle dergity:

—,eQ=f din;(1—In n;+In z—ﬂul)—g f le d2p2v1,
1 .
+§fd1f d2n;ny{hy,—[1+hg]In[1+h] +.7nh]+. %P [n,h]. (5.21)

/In,h] are made up of polygonal diagrams and, if we redgard],,=n;h,, is the(1,2) element
of the functional matri¥ nh], it is given by

©

o (—1)P
Y [n,h]——p23 o

1 1
Tr[nh]pzz Tr In(1+nh)—nh+§(nh)2 . (5.22

2#)[n,h] is the whole class of the 2-irreducibl@IR) diagrams built up withn-circles and
h-bonds. Here, a 2IR diagram is the one in which the deletion of any pair of the black circles does
not cause a separation of the diagram.

In the conventional definition, a 2-irreducible diagram consists of circles and 2-bonds but not
of 3-bonds and pseudo 2-bonds. However, in the following, we include such diagrams consisting
of 3-bonds and pseudo 2-bonds into the definition of 2IR diagrams, and call the whole class of
such 2IR diagrams%{?[n,h,w] instead of %{®[n,h]. Then, Eq.(5.20 is equivalent to Eq.
(5.21) where.7z{®[n,h] is replaced by7?[n,h,w].

The on-shell condition for the second Legendre transformdtiba first two equations in
(2.22)] are equivalent to
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ol'5[n,h,w -
%=—ul—‘[ d2n2(1+h12)l)12, (523
1
sTo[n,hw]
e i, (5.24
55 h12

from which we have

a/0Tn,h]  62P[n,h,w]
In z—In n1+f d2ny{h,—(1+hy)In(1+hqy)}+ +

onq ony
=,3u1+,8f d2n2(1+ h12)U12, (525)
(Lot 2 6./1/[n,h]+5.%(2)[n,h,w])_ 55
- n( 12) nin, 5h12 5h12 =PU12, ( . @

where

o/ [nh] 1 Hh-fnh -
“an, 2" e MERINRI] (529
2 oJnh] h 1 -
nn, oShy, 1+[nh]/ (5.28

This set of equations, corresponding to E4.30 in the previous section, is to be solved self-
consistently for the two variablesandh. In the aboveh and[ nh] stand for the functional matrix
as before. The diagrammatic expression for the sum of derivativeg[of,h] or .Z[n,h,w] in
Eq. (5.25 and in Eq.(5.26 can be easily obtained from the diagrams in Eg20 by removing,
in all possible ways, one of the black circles and one of (f/s=ud® 2-bonds(along with two
black circles at the both endgsespectively.

If we introduce the direct correlation functioe(r,,r,)=cq, by the so-called Ornstein—
Zernike relation,

h12:C12+f d3cy3n3hay, (5.29
or, in our simplified notation,
h=c+c-[nh]=c+c-[nc]+c-[nc]?+---, (5.30
we have
=h-— h]=h—h-[nh]+h-[nh]?>—---=h ! 5.3
Thus we obtain
orInhl L hnh 53
5—"11_5(0_ -[nhD11, (5.32
2 asinnl_ 3
i, ohy, 12~ C12, (5.33

from which we have
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1
In Z_In nl+J d2n2{h12—(l+ h12)[|n(1+ h12)+BUlZ-|}+ E (Cll_h11+J d2h12n2h21)

842 [n,h,w]
+ _—

an, duq, (5.39

2 s72@[nhw] -
nan 5h12 _ﬁv12' ( . 5)

- |n(1+ h12) + h12_ C12+

Note here that,, and the derivatives ofZ?)[n,h,w] are explicitly given as functionals of and
h. This set of equations are self-consistent equations;fdr;; , which is equivalent to the set of
(5.25 and (5.26), and Eq.(5.35 can be regarded as another expression of the inversion series
(5.18, as stated above.

The inversion serie.35), obtained as the on-shell condition, is a generalization of a familiar
exact relation,

hio—C1o—IN(1+hyy) = Bvi,—dyy, (5.36

which was derived by van Leenwest al,* if d;,, originally given by thef-bond expansion, is
rewritten as arh-bond expansion.
The hypernetted-chaitHNC) approximation,

hi,—C1o—IN(1+h1p) = By, (5.39

is reproduced if we neglect all the 2IR diagrams in Ef35.
The Percus—YevickPY) approximation can be expressed as

Bv o+ In(1+hyp)=In(1+hyo—Cyp), (5.38
implying the approximation

2 8%%[n,h,w]
nin; ohy,

h12_ C12+ :ln(1+ h12_ ClZ)' (539)

VI. INVERSION FROM TRIPLET POTENTIAL TO THREE-PARTICLE DENSITY

In this section we renormalize the theory in terms of three-particle density by using the
inversion method. To this end we try to identidyin the inversion formulae with the two-particle
densityn;,=p®)(r,,r,). The diagram expression for,; can be easily obtained from that fbp
if we notice that the differentiation by the three-particle potemntigl; removes one of the 3-bonds
with making black circles of the three ends white circles if we multiply the resultant diagram by
a factor 1+t;,3. This is understood from the relations

6Qu,v,w] 65N, h,w]
—BN123=— —:_,3—1 (6.9
o 37 Wiz 6 37 Wiz
and
&123
1 :_B(1+t123)[51176227 533r+(3!_1)termg. (62)
55 W1/2/37

Then, we notice that all the diagrams f,3 have three white circles. This implies that, if we
regardn; as the expansion parameter of the inversion meth@i,vanishes while the inversion
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method assumes non-zegd®). In addition, since, in all the diagrams Bg[n,h,w], everyt;j is
accompanied by a facternjn,(1+h;;)(1+h;)(1+hy), it is convenient to identifyp not with
n123 but with Y123 defined by

Ni23
Y1237 e (1 hyp) (L4 ) (1 hg) ©.3

Then this quantity is diagrammatically given as
Yiog= Yidut Yigat (6.4

where

(6.9
1
15 = (1 + t12s)(
(6.6
From Eq.(1.5), or y;55= ¥y w®], and from Eq.(6.5), we have
()
Yiog=€ M123-1 [ = BWigs=In(y15+ 1)]. 6.7
This implies
t12dw—w(® = Y123- (6.9
Equation(1.6) in this case can be written as
R L
| ar [ a2 [ o TGS i, w0, 6.9
1723’
where
Sydw”] B
W = i (1+ 7123)[5117 522! 533! +(3| - l)tel‘mﬂ (61@
17213/ :
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Thus, we have

Buly, =

2
(6.1))

Here, the 3-bonds should be associated not wyjthbut with y;;, [see Eq(6.8) and Table ].
We have derivedv,,5 explicitly up to the first order im, (black circleé and in principle we
can continue such a calculation up to the desired order. Then the inversion series is given as

0 1 2
BWi25= BWS D5+ BW Gt BWiEst -, (6.12

Where,BW‘l'z)3 (i=0,1) are given in Eqs(6.7) and (6.11). As we see below in Eq6.20, this
inversion series can be obtained from the on-shell condition and can be seen as a series which
systematically improve the Kirkwood’s approximation for the three-particle density.

Now we can integrate the inversion seriésl? to get a generating functionBk[ n,h, y] due
to the relationgw=—3!86T'3[n,h,y]/5p®, or

3! 5F3[n’h!7]

W — ; 6.1
BWi23 ’8n1n2n3(1+h12)(1+h23)(1+h31) 57123 643

and the result is given by

1
—Bf3=f d1n1(1—|nn1—3|nA)+§f dlf d2n1n2[h12—(1+h12)|n(1+h12)]

1
+§f dlf d2f d3n;non3(1+h12)(1+ho3)(1+hgy)[ y123— (1+ y123)IN(1+ y129)]

+ .- (6.14

e @

In the above diagrams, the 3-bonds are mdionds buty-bonds due to the replacement
w—w in the inversion formulg1.6) [see Eq.(6.8) and Table 1. We stress here that, in the
above diagram, circles, 2-bonds, pseudo 2-bonds, and 3-bonds are associatag, with 1
+hjj, andy;j, respectively, and thus all the diagrams are functional, oh;; , andy;j, . All the
diagrams up to the fourth order of are explicitly shown in Eq(6.14).

From Eq.(6.14), the renormalized entrop®/k of the system can be easily obtained as a
functional of one- to three-particle densities due to the relaBbo= — gI';+(3/2)fd1n,, as
stated earlier. This result for the entropy should be compared with the previously known result, for
example, given in Ref. 8. Up to the third ordén n;), these two coincide with each other.
However, above this order, they look different. For example, while the fourth ordeS4 given
in Ref. 8 includes the four-particle density, our expression does not contain the four-particle
density and is written in terms of only one- to three-particle densities. This implies that, for the
system without higher-body potential than 3-body, the four-particle density can be written in terms
of one- to three-particle densities.
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The result(6.14) was suggested in Ref. 2, where the diagrammatic part is collectively called
7 [n,h,y]. In there,7 [n,h,v] is not defined explicitly and any diagrams contained in it are not
presented, unfortunately.

The on-shell conditions for the third Legendre transformafibe three equations i2.23]
are equivalent to

oI 1
Rjz —u;— f d2ny(1+hypvyo— > f d2d3n;,n3(1+hyp)(1+hag)(1+h3) (14 y129) W23,
(6.15
STy 1 1
= 5 M5 nanJ d3n3(1+hyg)(1+h3) (14 y129) W13, (6.19
Shy, 2 2
STy 1
——— == 27 N1N2N3(1+hyp) (1+haz) (1+hg)Wyps, (6.17)
0Y123 3!

from which we have

1
In z—In nl+f d2n,[hi,—(1+hy){In(1+hq) + Bvt]+ > J d2d3n,n3(1+hyy) (1+hyy)

9

X (14 Ng)[ y125— (1+ y129{IN(1+ Y129 + BWiog ]+ 5"—nl=3u1, (6.18

Ity + [ 03051+ (1 N iz (15 129 N1+ 7520+ Bz

2 87
+ ———=—=Bv1s, (6.19
nin, dhy,
3! I

—In(1+ + = BW;o3. 6.2
(It Y12t (T hia) (17 Pog) (1+ ha) Syaae 1123 (620

This set of equations, corresponding to the sebdl5 and(5.26) in the previous section, is to be
solved for the three variables h, andy.

This set can also be seen as a generalization of ®is(8) in Ref. 12. If we approximate”™
by the fifth term in Eq(5) in Ref. 12, which is originally obtained in Ref. 11, this set of equations
here reduce to Eq$6)—(8) in Ref. 12. However, we notice that our diagrammatic expression for
.7 does not have diagrams directly corresponding to the fifth term if&qn Ref. 12. This is
because this fifth term originates from the last term in &g.of Ref. 12, and this term, which
should be equal to7” for the system without higher order potential than the third, contains
correlation functions of up to the infinite order whilé here contains correlation functions up to
the third order.

As mentioned above, E@6.20 can be expressed as

BW1p5= AW O+ gwH + pw(@ 4. | (6.20)

where
BW 0= —In(1+ y159), (6.22
IBW(l):f d4n4h4lh42h23+' Ty, (623

where- - - representg~dependent terms which correspond to the last seven diagrams (6.Ef).
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Equation(6.22) or (6.20 can be related to some of the previously known approximations. If
we truncate the inversion serig$.21) at i=0, we obtain the well-known approximation
Yiog=€ A¥123—1 (for example, see Ref. 12At w;,5=0, this approximation reduces to the
Kirkwood’s superposition approximation,

N123=N1NoN3(1+h1p)(1+hyg) (14 hgy). (6.29

If we truncate the series dat=1 and further neglect the-dependent terms iBw® (with
w1,3=0), we get the first order approximation given in Ref. 24,

. (6.295

N123=N1NN3(1+hyp) (1+hyg) (14 hsﬂexl{f d4nghyshgohys

Equation(6.295 with h-bonds in the exponential replaced byonds had also been studieske,
for example, Refs. 21-23

Thus, in our formulation, the zero-th order approximation reproduces the superposition ap-
proximation and the first order approximation, which is the solution of the equatiniained from

Eq. (6.11)],
BW1p3= —In(1+ y159) + f d4nghyshgohys+ f d4nghyy(1+hyo)(1+hyg) ya03
+ f d4ngh(1+hyp) (1+hyg) yayst f d4nghag(1+hy)(1+hg0) ya12
+ f dan,(1+hyy) (1+hg) (14 N4g) (Yar2Yaost Yaz1Yarst Ya13va2s)

+ f d4n,(1+hy) (1+ha) (14 hg3) Yar2Ya23Ya31, (6.26

contains more information than the first approximation in Ref. 24. Solving our first order approxi-
mation is practically an interesting problem, which is reserved for a future work. Further system-
atic improvement of the approximation is obtained if we calcuaé?, sw®), ..., by theinver-

sion method.

VII. DISCUSSION

In this paper, we applied the inversion method to a classical system and renormalized liquid
theory in terms of one-, two-, and three-particle densities in the presence of the three-body
potential. Our approach here complements the previously known re-summation techniques. We
showed that the entropy functional can be expressed by up to three-particle densities and gave
lower order diagrams of the entropy explicitly. We also pointed out that the stationary conditions
for the entropy leads to a set of self-consistent equations. In a certain case, the self-consistent
equation can be a base for a systematic advancement of the Kirkwood’s superposition approxi-
mation.

Some of the results presented here are mere repetition or only a slight extension of the
well-known results as suggested frequently in the text. We could not avoid mixing up known and
unknown results to explain our approach explicitly. Here, we appreciate and clarify to what extent
these results can be considered original. In Section Il, the introductibg ahd its relation to the
entropy seems a rather novel viewpoint. In Sections IlI-V, all the results are at least implied in the
previous literaturésee, for example, Ref. 19However, we pointed out that, if one introduces the
pseudo 2-bonds, the diagrams(fandT,, in the presence of the 3-body potential can be written
economically and we gave the diagrams(ap to) the fourth orderQ(¥), etc) explicitly; other-
wise the number of diagrams is too many to be included in a paper—this may be one reason the
fourth order diagramsin the presence of the 3-body potentiahve not been given explicitly in
the literature. In addition, the derivation bf, based on the inversion method has originality and
complements the previously known ways. The results in Sec. VI are the renormalization in terms
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of one-, two-, and three-particle densities. In that the entropy does not include more-than-three-
particle densities, this explicit diagrammatic result may be original. The result reduces to some
previously known approximations in special cases.

The present work can be related to the work by $téfl the following way. In the second
article in Ref. 19, he gave diagrammatic rules for some correlation functions in terms af,
andf, (wheres=3) in his notation. In the special case where there are no more-than-three-body
potentials, his result can be regarded as the diagrammatic rule in terms of one- and two-patrticle
densities and the three-body potent{dlotice here that hi$; is ourt;;, .) This corresponds to the
description byI',, which is still a functional of the three-body potential,; (or f3), in our
language: the theory is renormalized up to the two-particle densities. In the present work, though
it is limited to the special cas@vithout m-body potential wheren=4), we further changed the
variablew;;, (or f3) of the theory to the three-particle densii{?) or Yijk - This is accomplished
by use ofI';, which is a functional ofp(®, and then the theory is renormalized up to the
three-particle density. For example;(123) in Eqg.(3.12 of the second article in Ref. 1@vhich
is expressed in terms @Y, hij , andt;j), coincides with the second term on the left-hand side
of Eq. (6.20 of this article(which is expressed in terms pf%), hij , andy;j), when renormalized
up to the three-particle densities by changing the variable tigno v;j .
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APPENDIX A: USEFUL FORMULAE FOR THE INVERSION FROM ONE-PARTICLE
POTENTIAL TO ONE-PARTICLE DENSITY

In this appendix, we present useful formulae for the inversion process. B&lotii ' stands

for *n{[u®)/su (10,)5[1 é(f)---éﬁ fg):

¢(0)/ — —Bo11 <l)

(A1)
¢O" 5 (=B)2841/610 cla (A2)
O 5 (=B)3611:612:613 <1> (A3)
sV — (1)——? — Béyy ?—0 (A4)
SO s (L B)2 (611812 O—e +b O—9 +bir O—O +éiy 0—0 )
(A5)
3 - ( A )+ ( /\ )+ ( A V+( ¢ )y, (8

where

1,
AN NN N
1 1 1 r

Downloaded 07 Jul 2011 to 133.65.185.80. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



J. Math. Phys., Vol. 39, No. 4, April 1998 Ko Okumura 2101

1 1
(f\, Y = —8( /\ 481 /\ ) (A9
d

(A9)

(A10)

APPENDIX B: USEFUL FORMULAE FOR THE INVERSION FROM TWO-PARTICLE
POTENTIAL TO TWO-PARTICLE DENSITY

In this appendix, we present useful formulae for the inversion process. Bglotii ' stands
for sh{J[v @]/ sv (10,)5v (29)' -6 (k‘?’ :

) B
¢ —— > (14 h19) (811 8290 + 812 F217) (B1)
8\
d’(O)H( ) (14 h19) (811 G20 + 0120 621/ ) (S13 G2 + S14 S23r) (B2
oV (14 hy1a)'(
1 2
where
, B
(1+hgy) =3 (1+hq:2/) (811 82 + 6120 6p17) (B4)

( /\ )l:—§(1+h1'2')(511' r— +612 " +é21/ ™ +6220 O—— )
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