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Strong materials and a solid method of estimating their toughness are important for manufacturing materials valuable
for human life, such as rubber and plastic. Such strong materials often exhibit a complex response to external force,
which resists description by simple scaling laws. In addition, even for simple nonlinear materials, no theoretical or
experimental reports have been available on a clear scaling law between fracture stress and crack size, which would, if
available, provide a solid test for toughness. Here, we perform experiments on thin sheet samples to make important
length scales well-separated. This practically suppresses all the finite-size effects so that we succeed in finding a clear
scaling law for fracture (that between failure stress and crack size) by studying nonlinear polymer sheets. This leads to
plausible estimates of the fracture toughness. Remarkably, we experimentally find the scaling law even though the
nonlinearity in force response is not so simple as described by power laws. The fracture scaling can be explained by a
theory developed here for simple nonlinear materials and we expect that this theory will be valid for many other
materials with a complex nonlinearity, as demonstrated here. This clarifies the advantage of testing thin sheets. The
scaling law established here can be regarded as a nonlinear extension of the Griffith’s formula and holds also for thick
samples: the nonlinear Griffith’s formula is also applicable to three-dimensional bulk objects.
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1. Introduction

Fracture mechanics aims to predict conditions under
which materials fail. It is extremely important in various
fields, not only in physical sciences but also in more applied
fields such as the manufacture of rubber and plastic
products.1) For example, one of the key concepts, i.e., stress
concentration, is frequently indispensable for understanding
the toughness of natural composites.2–4) Nonlinearity in
fracture is a ubiquitous and important issue, for example, as
in studies on crack patterns,5–10) on rapid,11–14) slow15) and
delayed fractures,16,17) and on the fracture of various types of
heterogeneous materials.18–21)

In this paper, we revisit a static aspect of nonlinearity in
fracture. This issue was explored to result in theoretical
schemes such as the HRR theory (developed by Hutchinson,
Rice, and Rosengren22,23)), J-integral, and crack-tip opening
displacement.1,24) However, experimentally, simple scaling
laws between failure stress and crack size have never been
discussed for real complex materials. Accordingly, the
experimental determination of fracture surface energy, a
measure of fracture toughness, of nonlinear materials is
highly non-trivial in practice.1) Here, we exclude from our
experiments finite-size effects by making the characteristic
length scales, i.e., size and thickness of samples and crack
sizes, well-separated to simplify the problem. As a result, we
find a clear and simple scaling law for the stress at the onset
of crack propagation in real nonlinear plastic materials,
remarkably, even though the materials are nontrivially
nonlinear, namely, the stress–strain relation cannot be
expressed as clear power laws. We demonstrate and justify
that we can treat such practical and complex nonlinear
plastic materials with a simple and generalized Griffith’s
fracture criterion. As a result, we provide direct access to the
fracture surface energy of nonlinear materials. This could

lead to a new fundamental tool for developing strong
materials.

2. Experiment

To study the fracture of materials in a simplified situation
under a plane stress condition, we developed a simple
experimental setup.25) This setup allows us to determine
the stress–strain curves of a thin-sheet sample of about
50� 50 cm2 area and failure stresses of such a sample with
macroscopic line cracks of millimeter to centimeter sizes.
We can clamp a sheet in between a fixed pair of plates
(bottom) and another movable pair of plates (top), while the
latter pair is moved upwards via a wire (and a force gauge)
by a motor at a fixed speed of about 0.1mm/s. By
simultaneously measuring tensile forces via a force gauge
and extensions of a sheet without cracks, we obtain a stress–
strain curve. Failure stresses are measured by introducing a
sharp line crack of length (2a) from 3mm to 5 cm at the
center with a knife and by measuring the force when the
initial crack starts to expand. Note that the sample size is
well separated from the crack size and both are separated
from the sample thickness (approximately 0.01mm). We
tested two types of polyethylene sheet cut out from a
commercial plastic bag: (A) one with a thickness of 0.03mm
(Marubeni Plax) and (B) another with a thickness of
0.015mm (Fukusuke Kogyo). This setting practically
suppresses finite-size effects.

3. Results

The experimental stress–strain curves for the samples
are given in Fig. 1. As shown in the insets (log–log plots),
the curves approach a power law (i.e., a straight line) in a
large-strain region. The range is, however, relatively narrow
or the scaling is not clear (especially in sample B).
Nonetheless, if we plot failure the stress �f as a function
of the (half ) crack length a in Fig. 2, the curve exhibits a
clear scaling law well over one order of magnitude in terms�E-mail: okumura@phys.ocha.jp
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of crack length. Note that it is difficult to further extend the
present experimental range of crack lengths (3mm to 5 cm)
to obtain the desired results. Small line cracks are difficult
to make using a knife with high precision. Larger cracks
introduce unwanted finite-size effects because the crack size
becomes comparable to the dimensions of the sheet: in such
a case, the simple theory we developed below becomes
invalid.

4. Scaling Arguments

To understand the clear scaling behavior in Fig. 2,
we consider a classic relation between the stress � and the
strain ":

� ¼ E" " � "0

k"1=n " � "0

�
; ð1Þ

where E and k are the linear and nonlinear moduli
independent of ", respectively. Here and hereafter, we

neglect the tensorial nature of the stress field to focus on
scaling laws: � and " are the characteristic sizes of the stress
and strain tensors, respectively. Under this relation, when the
strain " exceeds the crossover stress "0, the stress � scales
nonlinearly as the strain " with the nonlinear exponent 1=n.

The energy density defined by

w ¼
Z "

0

� d"; ð2Þ

exhibits the scaling relation,

w ¼ �nþ1

�
; ð3Þ
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Fig. 1. Stress–strain relations obtained from sheet samples, A (a) and B

(b). The results of three separate measurements (first, second, and third) are

shown to clarify the good reproducibility. The solid lines in the inset stand

for the slope 1=nex, as discussed below.
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Fig. 2. Failure stress as a function of (half) crack length and the log–log

plot obtained from samples, A (a) and B (b). The solid line and curve fit the

data using eq. (5).

N. SONÉ et al.J. Phys. Soc. Jpn. 81 (2012) 074604 FULL PAPERS

074604-2 #2012 The Physical Society of Japan



if the upper limit of integration, ", in eq. (2) is sufficiently
larger than the crossover stress "0. Here, � is given by

� ¼ 1þ 1

n

� �
kn: ð4Þ

Now we extend Griffith’s energy balance concept at the
critical point of failure26,27) to nonlinear materials satisfying
eq. (3). A (thick or thin) plate of such a material has a line
crack (size a) where the size of the plate is much larger than
a. This plate is subject to the remote tensile stress �0 applied
in the direction perpendicular to the line crack (Fig. 3). To
open the crack, two surfaces (area 2a per unit thickness)
should be created. This requires an energy of 4�a. Here, � is
the fracture surface energy per unit area. Owing to the
opening of the crack, the nonlinear elastic energy is reduced
(in total) compared with the system without cracks. The
amount of energy reduction can be estimated as a
characteristic nonlinear elastic energy (which is �nþ1

0 =� per
unit volume) localized in a volume (approximately a2 per
unit thickness) because the only length scale available in
this problem is the (half ) crack length a. Note here that the
stress �0 is the only available size of the stress (i.e., remote
stress). By balancing the reduction energy �nþ1

0 a2=� with
the energy loss 4�a, at the failure stress �f (i.e., �0 ¼ �f ),
we obtain a generalized Griffith formula for the failure
stress:

�f ¼ ��

�a

� �1=ðnþ1Þ
: ð5Þ

Here, the numerical coefficient is chosen for convenience so
that eq. (5) reduces to the standard Griffith’s failure formula
under the plane stress condition at n ¼ 1. Note that the plate
in the above argument can be thin or thick. The relation in
eq. (5) is valid not only for sheet samples but also for bulk
objects, at the level of scaling laws. For bulk materials, the
numerical coefficient � in eq. (5) should be replaced with
�ð1� �2Þ where � is Poisson’s ratio, for the relation to
reduce to the Griffith formula under the plane strain
condition at n ¼ 1.

5. Comparison between Experiment and Theory

The experimental relation between �f and a shown in
Fig. 2 is consistent with eq. (5): the data on the log–log plot
are clearly on a straight line over the entire experimental
range of �f . The slope of the line gives an experimental
estimate nex of the inverse exponent n: we obtain nex ¼ 6:04
and 4.14 for samples A and B, respectively.

The clear power laws demonstrated in Fig. 2 might imply
that the relation in eq. (1) with n ¼ nex is valid and that all
the observed strains at the critical point of failure exceed the
crossover strain "0. This is reasonably well confirmed in the
log–log plot in Fig. 1(a) for each sample A: in the log–log
plot, the data are represented well by a straight line with a
slope 1=nex (this slope is indicated by the solid line) in a high
stress range (approximately 5–8MPa) or in the experimental
range of failure strain (approximately 0.05–0.3). For each
sample B, in contrast, the straight-line feature in the
experimental range of failure strain (0.025–0.15) is less
clear [see the log–log plot in Fig. 1(b)]. However, as we see
below, eq. (3) is well satisfied for each sample B as well as
for each sample A. Note that eq. (5) requires eq. (3) but not
necessarily eq. (1).

To confirm eq. (3) for both samples, we show Fig. 4,
where wex and �nexþ1 are compared at the experimental
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Fig. 4. Energy density wexð�Þ vs �nþ1 with n ¼ nex when � is at the

experimentally observed failure stresses for samples, A (a) and B (b). The

axes in the top and bottom plots are normalized by �1 ¼ 8:04MPa and

�2 ¼ 24:8MPa, respectively. The straight line fits the data using eq. (3).
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Fig. 3. Plate of nonlinear material with a crack of size a subject to a

remote stress �0. The plate is assumed to be much larger than the crack

size. The stress and strain are relaxed as a whole around the crack compared

with the remote homogeneous value of �0, as indicated by the gray

scale.
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failure stress, � ¼ �f (�f is that appearing in Fig. 2). For a
given �f , the energy density wex is obtained by integrating
one of the three (first, second, and third) experimental �–"
curves in Fig. 1 from 0 to "f . Here, the upper limit "f is the
strain on the curve when the stress is �f . Accordingly we
have three values of wex for each �f . If eq. (3) is satisfied,
the ratio wex=�

nexþ1
f for every �f is a constant, or the points

on the wex–�
nexþ1
f plot are on a straight line. This is well

demonstrated in Fig. 4. The constant or the slope of the
straight line gives the proportional constant 1=� in eq. (3).
In this way we can determine the experimental value of �,
i.e., �ex.

6. Estimation of Fracture Energy

With the use of the �ex thus obtained, we estimate the
fracture energy � from eq. (5) for samples A and B as 4.2
and 5.5 kN/m, respectively. Here, we assume the numerical
factor in eq. (5) to be ��1=ðnþ1Þ which is exact in the limit
n ¼ 1. The fracture energy thus obtained is high if we
consider only the energy of breaking of chemical bonds (a
few N/m). The fracture energy thus obtained reflects extra
work for plastic deformation.

In this way, we demonstrate examples in which, even if
the stress–strain curve does not exhibit a clear power law
over a wide range, a clear scaling relation in eq. (5) can be
satisfied over a wide range if eq. (3) is well satisfied. In
addition, in such a case, we can estimate the fracture energy.

7. Justification of the Nonlinear Griffith Criterion

We can justify the above derivation of eq. (5) using two
other arguments when eq. (3) is satisfied. The first argument
is based on the J-integral.28) The second is based on the
HRR crack tip singularity.22,23)

The J-integral is given as a release rate of elastic energy,
i.e., a derivative with respect to the crack length of the
elastic potential energy: J ¼ �d�=da with

� ¼
ZZ
D

w dx dy�
Z
C

T � u ds ð6Þ

where D is the area of the plate and C is the periphery of D
(see Fig. 3). The dot product of the traction force (per area)
T and the deformation u is integrated along s, i.e., along the
path C. Here, the a-dependent part of � scales as �w0a

2

with w0 ¼ �nþ1
0 =� because, when a crack exists, the first

double integral is reduced from the value without cracks by
the amount w0a

2 at the level of scaling law. In addition, the
second line integral is independent of a under a fixed grip
condition. Thus, we obtain J ¼ �d�=da � w0a. The same
conclusion can be drawn from the standard form,

J ¼
Z
�

w dy� Ti
@ui
@x

ds

� �
ð7Þ

where � is a counterclockwise path around a fracture. When
we chose the path � ¼ Iþ IIþ IIIþ IVþ V, as in Fig. 3,
the sum of the integral w dy along III and (Iþ V) scales as
w0a, while along II and IV the integral is zero because dy,
Tx, and @uy=@x are all zero. At the critical point of failure the
relation J � w0a thus obtained in two ways reduces to
eq. (5) with �0 ¼ �f in eq. (3) and J ¼ 2� (� is the critical
value of J ). This concludes the justification of eq. (5) based
on the J-integral.

The consistency with the HRR stress singularity is
confirmed as follows. Dimensionally, the stress field �ðrÞ
at a distance from the tip r should be expressed as

�ðrÞ ¼ �0ða=rÞ� ð8Þ
near the tip (r � a) with an unknown exponent �. This is
because the dimensional quantities available to describe the
boundary conditions for this field are only �0 and a (because
the plate is much larger than a). Note that this form of �ðrÞ
recovers to �0 at r � a, as desired. Here, we expect that a
simplification occurs in the limit r � a at the critical point
of failure (�0 ¼ �f ): �ðrÞ at r � a is independent of a when
�0 ¼ �f . This is because, on such a small scale, the
expression may not depend on a large scale a (compared
with r). Namely, we replace �0 in eq. (8) with �f in eq. (5)
and require the expression to be independent of a. We thus
determine the exponent � to be 1=ðnþ 1Þ and recover the
HRR relation �ðrÞ ’ �0ða=rÞ1=ðnþ1Þ at (r � a). This con-
cludes the justification based on the HRR theory.

8. Conclusions

We have found a clear scaling relation between failure
stress and crack length in nonlinear elastic–plastic materials.
This simplification results because finite-size effects are
practically suppressed: the thickness and dimensions of
samples (approximately 0.01mm and 50 cm, respectively),
and crack sizes (approximately a few cm) are all well
separated. Unexpectedly, we find that this scaling relation
holds over a wide range even if the stress–strain curve is not
well represented by eq. (1). Even in such a case, if eq. (3) is
well satisfied, as demonstrated in Fig. 4, we can obtain the
fracture surface energy. In other words, the important thing
is the scaling property of the energy-stress curve, not of the
stress–strain curve, and the former scaling can be expected
more easily than the latter: even if the stress–strain relation
is not in the form of eq. (1), it often approaches a scaling
behavior reasonably well in a high-stress range so that
eq. (3) tends to hold well because of the integration in
eq. (2). Thus, we expect that this simplification scenario
could be widely applicable to many complex and nonlinear
materials. In such a case, testing sheet samples (for crack
sizes at which failure stress is in the high-stress range) can
be useful for determining fracture surface energy even if the
stress–strain curve is not in the form of eq. (1). Although this
scenario has been demonstrated here for two different
samples, it should be desirable to carry out experiments
on different classes of materials to confirm the universality
of our results, which requires a separate study. We stress
here, as stated before, that the nonlinear version of the
Griffith formula, eq. (5), confirmed here should be appro-
priate for thick samples, i.e., for three-dimensional bulk
materials.

The nonlinear strain–stress relation discussed in this paper
can describe a form of plasticity, known as ‘‘deformation
plasticity’’, provided that no unloading occurs. Accordingly,
we have developed the above arguments as if we were
dealing with a nonlinear elastic model: the discussions above
can be regarded for a simple nonlinear material but can also
be valid for certain elastic–plastic materials. This is another
reason why the theory is in agreement with the results of the
experiment on nonlinear plastic materials.
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