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We investigated a model of a nematic–isotropic (NI) transition, whose mean-field approximation
coincides with Maier–Saupe (MS) theory, by Fukuda’s inversion method (IM), which is based on the
Legendre transformation and is similar to a method of symmetry-breaking potential. The first-order
approximation of this nonperturbative method neglects fluctuations and reproduces the MS theory,
predicting a weakly discontinuous phase transition at the MS transition temperature TMS. The second-
order IM approximation allows us to include fluctuations, which suppress the phase transition.
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1. Introduction

The nematic–isotropic (NI) transitions of liquid crystals
are usually observed as weak first-order transitions and are
often discussed using Maier–Saupe (MS) theory.1) The order
parameter S is the average of ŜSi for an elongated molecule,
defined by

ŜSi ¼
3 cos2 �i � 1

2
: ð1Þ

Here, �i is the angle between the direction of the order and
that of the long axis of the molecule i. This theory is a mean-
field theory in the sense that all fluctuations are neglected; if
we start from an attractive Hamiltonian,

h ¼ �
1

2

X
i; j

uijŜSiŜSj; ð2Þ

and then neglect fluctuations, ŜSj � S, for all the molecules,
we arrive at the MS Hamiltonian [note that ŜSiŜSj ¼ ŜSiSþ
ŜSiðŜSj � SÞ]:

hMS ¼ �
1

2

X
i; j

uijŜSiS ¼ �N
u

2
ŜSS: ð3Þ

This mean-field theory predicts a first-order transition. Here
and here after, we consider only the nearest-neighbor (NN)
interactions on a lattice of N sites: uij is nonzero only when
the pair (i; j) is an NN pair, and the nonzero value is u0

(� u=z) so that the double summation over i and j in the
second expression in eq. (3) in fact contains only Nz terms
where z is the number of NNs per molecule.

In the present work, we begin with the Hamiltonian in
eq. (2), and include the effects of fluctuations by Fukuda’s
inversion method (IM) developed in field theory,2) which is
similar to a method of symmetry-breaking potential (see
below). This method is useful for improving mean-field
theory nonperturbatively; even though the calculation is
performed perturbatively (i.e., in a systematic way), each
order of the method includes an infinite number of Feynman
diagrams, or corresponds to a nonperturbative contribution,
while the first-order calculation reproduces the mean-field

theory. It has been applied to a number of problems of
continuous phase transitions such as symmetry breaking in
high-energy physics3) as well as in condensed-matter physics
including ferromagnetism and superconductivity.4) In par-
ticular, calculations beyond the mean-field approximation
are explicitly considered in the itinerant electron system.5)

The present study is an application of the method for
studying fluctuations neglected in mean-field theory to a
discontinuous transition. We note here that the mathematical
and diagrammatic structure of the method can be used to
reformulate simple liquid theory and to renormalize the
theory in terms of a three-body density.6)

The advantage of applying the Legendre transformation
to thermodynamic functions is well-known in statistical
physics. Nakano and Hattori indicated that this technique
is also powerful in considering the free energy of the order
parameter in phase transitions by introducing a symmetry-
breaking potential.7) In particle physics, essentially the
same technique based on the Legendre transformation led
to the method of effective action (or effective potential),8)

frequently used to discuss symmetry-breaking problems
in field theory where the statistical average is replaced by
the vacuum expectation. The IM is a practically useful
technique based on the same technique as the effective
action. The IM offers an explicit and general procedure for
calculating the free energy (or the effective action) as a
function of the order parameter, even though the graph rules
are unknown. Historically, the development of IM was
principally carried out in the context of field theory,
unfortunately without the work by Nakano et al. noticed.

Thus, the present study can be regarded as an application
of the method of symmetry-breaking potential. In this
respect, we note here that Kimura applied this method to a
more realistic system of nematic liquid crystal molecules
and reproduced the MS theory as a limiting case9) (see also
ref. 10 for the smectic case). Although the Hamiltonian (thus
the expansion parameter) is different, the present work can
be regarded as an extension of Kimura’s work, in order
to study the physical effects of the higher-order correc-
tions in the same approximation scheme by using a simpler
Hamiltonian, where we find a considerable effect: it changes
the nature of the transition.
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2. Inversion Method for the MS Hamiltonian

In this method, we first modify the Hamiltonian by
introducing sources Ji or symmetry-breaking potentials,
which are later set to zero to return to the original theory:

hJ ¼ h�
X
i

JiŜSi ð4Þ

¼ �
1

2

XNN

i; j

uijŜSiŜSj �
X
i

JiŜSi: ð5Þ

where
PNN

i; j is the double summation over NN pairs
corresponding to Nz terms. In our notation, the double
counting of each pair by the summation is compensated by
the factor 1/2 in front of the summation. The free energy as
a function of J, FJ ¼ � log Tr e�hJ , can be written as

FJ ¼ � log Tr exp
X
i; j

uij

2
ŜSiŜSj þ

X
i

JiŜSi

" #
ð6Þ

�
X1
n¼0

FðnÞJ ð7Þ

� N fJ ; ð8Þ

where Tr implies the summation over the solid angle for
all molecules [see just below eq. (9) for details]. In the
above, we used kT � 1=� as the unit of energy; if this unit is
not used, uij and Ji should be replaced by �uij and �Ji,
respectively (we use, for example, the reduced temperature
t, defined as t � kT=u in Fig. 1 below). In addition, FðnÞJ
stands for the nth-order contribution in terms of the coupling
coefficient u0 (the nonzero value of uij), and fJ is the free
energy per site.

This nth order (in u0 or u) of the free energy FðnÞJ can be
calculated perturbatively. The 0th order is readily obtained
from eq. (6) by setting uij ¼ 0 (h ¼ 0):

�Fð0ÞJ ¼
X
i

log tri e
JiŜSi

�
X
i

M0ðJiÞ ð9Þ

where tri denotes the integral, 2�
R 1

0
dt with t ¼ cos �i.

The higher orders can be systematically obtained by a
diagrammatic technique, as in the high-temperature expan-
sion of local spin systems.11) The first-order energy is
calculated as

� Fð1ÞJ ¼
u0

2

XNN

i; j

M1ðJiÞM1ðJjÞ; ð10Þ

The moment MnðJiÞ is defined as MnðJiÞ � dnM0ðJiÞ=dJni ; the
first-order moment is given by

M1ðJÞ ¼
tr ŜSeJŜS

tr eJŜS
� hŜSiJ ; ð11Þ

while the higher-order moments (i � 2) are given by

MnðJÞ ¼ hðŜS� hŜSiJÞniJ : ð12Þ

In terms of diagrams, the free energy series is expressed as

− FJ = + + + + · · · . ð13Þ

Namely, we can recover the analytical expression of each
diagram as follows.
(1) Assign labels (i1; i2; . . .) to black circles.
(2) Associate a factor MnðJik Þ with a black circle ik

connected to n lines.
(3) Associate a factor uikik0 with a line connecting circles ik

and ik0 .
(4) Multiply all the factors thus obtained and take

summations over i1; i2; . . . and divide the expression
by the symmetry factor.

In fact, we can immediately recover eq. (9) from the first
diagram in eq. (13) because the symmetry factor is one for
this diagram. For the second diagram, we first obtain

1

2

X
i; j

uijM1ðJiÞM1ðJjÞ; ð14Þ

since the symmetry factor here is 2. This expression reduces
to right-hand side of eq. (10) because our model considers
only NN interactions. As the last example, we give the
analytical expression for the fourth diagram:

1

2

X
i; j;k

uikujkM1ðJiÞM1ðJjÞM2ðJkÞ: ð15Þ

The order parameter in the presence of J is given by
Si ¼ �@FJ=@Ji:

Si ¼ Sð0Þi ½J� þ Sð1Þi ½J� þ � � � : ð16Þ

Here, SðnÞ½J� is the nth order of the coupling constant u in the
perturbative calculation, which is given by

SðnÞi ½J� ¼ �
@FðnÞJ
@Ji

: ð17Þ

For example, we obtain, from eq. (9),

Sð0Þi ½J� ¼ M1ðJiÞ; ð18Þ

and, from eq. (10),

Sð1Þi ½J� ¼ u0M2ðJiÞ
XNN

j

M1ðJjÞ; ð19Þ

where
PNN

j implies the summation over z nearest-neighbors
(to the i site). In terms of diagrams, the series is expressed as

Si = + + + · · · . ð20Þ

The rules for recovering the analytical expression of each
diagram are now as follows:
(1) Assign labels (i1; i2; . . .) to black circles, and assign the

label i [the subscript of Si in the left-hand side of
eq. (20)] to the (only one) open circle.

(2) Associate a factor MnðJik Þ with a black circle ik
connected to n lines, and assign a factor Mnþ1ðJiÞ with
the open circle i connected to n lines. Note that a short
horizontal bar attached to the left side of the open
circle indicates the label i and is not counted as line.

(3) Associate a factor uikik0 with a line connecting circles ik
and ik0 .

(4) Multiply all the factors thus obtained and take
summations over i1; i2; . . . and divide the expression
by the symmetry factor. Note that the open circle
implies no summation.

As an example, we give the analytical expression for the
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third diagram in eq. (20):

Sð2Þi ½J� ¼
1

2

X
j

u2
ijM3ðJiÞM2ðJjÞ ð21Þ

¼
u2

0

2
M3ðJiÞ

XNN

j

M2ðJjÞ: ð22Þ

Equations (16) or (20), which can be obtained as above, is
called an original series, and this can be inverted in terms of
J to obtain an inversion series:

Ji ¼ Jð0Þi ½S� þ Jð1Þi ½S� þ � � � ð23Þ

To obtain this series explicitly, we substitute eq. (23) into all
J’s in the right-hand side of eq. (16) and expand around
J ¼ Jð0Þ collecting the same-order terms in u. Then, we
require that the equation should hold at every order of u. We
can thus obtain the following formulae:

Si ¼ Sð0Þi ½J
ð0Þ� ¼ M1ðJð0Þi Þ ð24ÞX

j

@Sð0Þi ½Jð0Þ�
@Jð0Þj

Jð1Þj þ Sð1Þi ½J
ð0Þ� ¼ 0 ð25Þ

X
j

@Sð0Þi ½Jð0Þ�
@Jð0Þj

Jð2Þj þ
1

2

X
jk

@2Sð0Þi ½Jð0Þ�
@Jð0Þj @J

ð0Þ
k

Jð1Þj Jð1Þk

þ
X
j

@Sð1Þi ½Jð0Þ�
@Jð0Þj

Jð1Þj þ Sð2Þi ½J
ð0Þ� ¼ 0; ð26Þ

and so on. Here, this inversion is carried out while regarding
Si in the right-hand side of eq. (16) as the 0th order of u (or
independent of u). The reason for this will be explained
below.

From eq. (24), Jð0Þ is given as the inverse function of
Sð0Þi ½Jð0Þ�, while, from the higher-order formula, JðiÞ½Jð0Þ�
(i � 1) can be obtained as a function of Jð0Þ. For example,
from eq. (25), Jð1Þi is calculated as

Jð1Þi ¼ �u0

XNN

j

M1ðJð0Þj Þ ¼ �u0

XNN

j

Sj; ð27Þ

where the last equality follows from eq. (24). From eq. (26),
Jð2Þi ½Jð0Þ� is calculated as

Jð2Þi ½J
ð0Þ� ¼ �

1

2
u2

0M3ðJð0Þi Þ
XNN

j

M2ðJð0Þj Þ
M2ðJð0Þi Þ

: ð28Þ

Here, there is no summation over i. In this way, we can
calculate the inversion series given in eq. (23) up to the
desired order, say, n ¼ m, as a function of Jð0Þ.

Finally, we return to the original theory by setting J ¼ 0.
This is carried out first by setting all Ji equal (Ji ¼ J) to
make Si independent of i (Si ¼ S) and then by setting J ¼ 0.
After these operations, eq. (23) becomes the following
equation for S in the mth-order approximation of the
inversion method (mth order IM):

Jð0ÞðSÞ þ Jð1ÞðSÞ þ Jð2ÞðSÞ þ � � � þ JðmÞðSÞ ¼ 0; ð29Þ

where Jð0ÞðSÞ is formally obtained from eq. (24):

Jð0ÞðSÞ ¼ M�1
1 ðSÞ or S ¼ M1ðJð0ÞðSÞÞ: ð30Þ

In the mth-order IM, the closed equation (29) for S is solved
using eq. (30). In practice, the inverse function M�1

1 can be

explicitly obtained numerically.
The first-order IM approximation, i.e., eq. (29) with

m ¼ 1, results in solving Jð0ÞðSÞ ¼ �Jð1ÞðSÞ, which reduces
to M�1

1 ðSÞ ¼ uS because of eqs. (27) (or Jð1Þ ¼ �uS) and
(30); in this special case we do not need to know the explicit
form of Jð0ÞðSÞ; instead, we obtain

S ¼ M1ðuSÞ: ð31Þ

This closed or self-consistent equation for S which deter-
mines the order parameter S exactly reproduces the result of
MS theory [see eq. (11)]. Note that the usual first-order
approximation in terms of u [i.e., S ¼ M1ðJÞ þ uM2ðJÞM1ðJÞ,
from eq. (16)] predicts only the trivial result, S ¼ 0, because
we set J ¼ 0 at the end and we can show that M1ð0Þ ¼ 0.
In general, we can see that the mth-order IM approximation
is improved compared with the usual (or bare) mth-order
perturbation because of nonperturbative corrections. In
terms of Feynman diagrams, the mth-order IM approxima-
tion contains an infinite number of original diagrams,
whereas the simple mth-order calculation includes only a
finite number.

In the second-order IM approximation, the closed equa-
tion for S, eq. (29), can be explicitly written as

Jð0ÞðSÞ � uS�
u2

2z
M3ðJð0ÞðSÞÞ ¼ 0: ð32Þ

We solved this closed equation for S numerically for z ¼ 6

[three-dimensional (3D) cubic lattice] as a function of u

or the inverse temperature, by using Jð0ÞðSÞ which is also
obtained numerically from eq. (24). The result is shown in
Fig. 1. We see that fluctuations generally decrease the order
in the region below the MS transition temperature TMS,
where 1=t ¼ u=kTMS ¼� 4:5; compared at the same temper-
ature, the nematic order is smaller when the fluctuation is
present. However, near and above TMS, or on the left of
1=t ¼� 4:5, no discontinuity can be seen; the discontinuous
transition predicted at the mean-field level is modified to a
continuous turnover to the disordered phase (S ¼ 0). In other
words, the phase transition disappears and the nematic order
persists at all finite temperatures.
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1/Temperature (1/t=u/kT)
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Fig. 1. Nematic order as a function of the inverse of the reduced

temperature t � kT=u. The solid line represents the result of the second-

order IM approximation, while the dashed line corresponds to that of the

classical MS theory. In the MS theory, the discontinuous transition occurs

near the reduced inverse temperature u=kTMS ¼ 4:5, while the transition

disappears in the second-order IM approximation.

J. Phys. Soc. Jpn., Vol. 76, No. 11 N. SATO and K. OKUMURA

114008-3



To confirm this result from a different viewpoint, we
consider the Legendre transformation of the original free
energy. The free energy FJ defined in eq. (6) is a function of
the independent variables J and u, and then the free energy,
defined by

FS ¼ N fS ¼ FJ þ
X
i

JiSi; ð33Þ

is independent of J and is a function of S and u with
satisfying the relation, Ji ¼ @FS=@Si. This implies the fol-
lowing: if we solve the relation Si ¼ @FJ=@Ji in terms of J

assuming that S and u are independent to obtain J ¼ J½S�
and insert this expression for J into all J appearing in
FJ þ JiSi, then this combination is automatically written in
terms of only S and u. This is why the inversion is carried
out in the above [see the description following eq. (26)] by
regarding Si in the right-hand side of eq. (16) as the 0th
order of u (or independent of u).

Corresponding to the inversion series in eq. (23), the free-
energy series is given by

FS ¼
X
n¼0

FðnÞS ; ð34Þ

where the nth order of the free energy FðnÞS can be
constructed by the integration of the following relation if
the explicit form of JðnÞi is known, which is true for the case
of n 6¼ 0:

JðnÞi ¼ @F
ðnÞ
S =@Si: ð35Þ

The 0th order of the free energy can be calculated, even if
the explicit analytical form of Jð0Þi is not available, by the
formula

Fð0ÞS ¼ Fð0ÞJ þ
X
i

Jð0Þi Si: ð36Þ

This formula can be proved by integration by parts of the
relation, Fð0ÞS ¼

R
Jð0ÞðdS=dJð0ÞÞdJð0Þ (ignoring subscript i),

obtained from eq. (35), together with eq. (17). In fact,
differentiating eq. (36) with respect to Jð0Þi leads to 0 ¼
@Fð0ÞS =@J

ð0Þ
i þ Si, which is equivalent to the inversion formula

in eq. (24).
In this way, the free-energy series per site in our model

(after setting Jð0Þi ¼ Jð0Þ and thus Si ¼ S) can be calculated
explicitly as

fS ¼ f ð0ÞS þ f ð1ÞS þ f ð2ÞS þ � � � ; ð37Þ

where

f ð0ÞS ¼ � ln tr eJ
ð0ÞŜS þ Jð0ÞS ð38Þ

f ð1ÞS ¼ �
u

2
hŜSi2Jð0Þ ¼ �

u

2
S2 ð39Þ

f ð2ÞS ¼ �
u2

4z
hðŜS� SÞ2i2Jð0Þ : ð40Þ

In terms of diagrams, the free-energy series is given as

− fS + J (0) S = + + + · · · , ð41Þ

where only the irreducible diagrams remain (the fourth
diagram in eq. (13) does not contribute). The rules for
recovering the analytical expression of each diagram are

the same as those for eq. (13), except that we have to divide
the final expression by N because fS is the energy per site
and that we have to replace all J by Jð0Þ [i.e., the factor
MnðJik Þ for a black circle ik connected to n lines is replaced
by the factor MnðJð0Þik

Þ]. Thus, all the diagrams are functions
not of J but of Jð0ÞðSÞ, making each diagram a function of S.
In fact, from the diagram rules we obtain, from the first
diagram,

1

N

X
i

M0ðJð0Þi Þ; ð42Þ

which reduces to the first term in eq. (38) because of the
definition of M0 given in eq. (9). For the second diagram, we
first obtain eq. (14) divided by N but with M1ðJiÞM1ðJjÞ
replaced by M1ðJð0Þi ÞM1ðJð0Þj Þ, which reduces to eq. (39)
using eq. (30). By the same rules, the third diagram can be
recovered as

1

4N

X
i; j

u2
ijM2ðJð0Þi ÞM2ðJð0Þj Þ

which reduces to eq. (40) by eqs. (12), (11), and (30).
The mth-order IM approximation for the free energy

is defined by fS ¼
Pm

n¼0 f ðnÞS with eqs. (24) or (30). In
particular, the first-order IM free energy is given from
eq. (37) as

fMS ¼ log
tr 1

tr euSŜS
þ uS2=2 ð43Þ

by putting fMS ¼ 0 at S ¼ 0. The energy in eq. (43) is the
well-known free energy obtained in MS theory. Actually, if
we set J ¼ 0 in the relation J ¼ @ fMS=@S with fMS given in
eq. (43), we can recover eq. (31) as desired.

In the second-order IM approximation, the free energy is
given by fIM ¼ f ð0ÞS þ f ð1ÞS þ f ð2ÞS with eqs. (38)–(40). Again,
if we put J ¼ 0 in J ¼ @ fIM=@S for this fIM, we obtain
eq. (32) as expected.

The free energy as a function of S is plotted in Figs. 2 and
3, where the numerical values of Jð0Þ are again employed.
These plots are consistent with the results in Fig. 1; we see
that the global minimums of the free energy in Figs. 2 and 3
agree with the values of order parameter S at the corre-
sponding temperatures in Fig. 1.
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Fig. 2. Free energy as a function of nematic order at u ¼ 4:6. The solid

line represents the result of the second-order IM approximation, while the

dashed line shows that of the classical MS theory.
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3. Conclusion and Discussion

We studied the effect of fluctuations on the mean-field
result by the inversion method (or the method of symmetry-
breaking potential) in a model of a discontinuous transition.
We found that the model, whose mean-field approximation
predicts a first-order transition, is changed into a continuous
turnover to the disordered phase when fluctuations are
included. This might be related to the weakly discontinuous
nature of nematic–isotropic transitions in liquid crystals.
However, we have to be rather careful in interpreting the
present result in the context of understanding the N–I
transition of liquid crystals: (1) There is a possibility that
the next-order or even higher-order calculations might
predict discontinuous transitions again which is suppressed
in the second-order IM approximation.12) (2) The Hamil-
tonian in eq. (2) breaks the rotational symmetry, which
has been pointed out to be important in describing the
N–I transition in real systems. In the MS model, Ypma
and Vertogen applied a generalized Bethe approximation
to show the disappearance of the N–I phase transition13)

and Priest gave arguments to support its disappearance
in the n-site cluster expansion14) proposing to study rota-
tionally invariant analogues of the original (mean-field) MS
model.

In terms of understanding the mathematical nature of the
inversion method, to proceed to the next order of our
calculation would be worthwhile, which would require a
separate publication. Furthermore, direct renormalization
group (RG)15) studies would be desirable on the lattice
MS model, particularly in the context of understanding the
mathematical aspects of IM for discontinuous transitions.
Such a study is not currently available, although RG studies
exist on closely related models such as the Landau–
de Gennes Q models.16–18) For such a purpose, we could
start from an exact functional integral representation of
the lattice MS Hamiltonian via a Hubbard–Stratonovich
transformation19) or by defining an appropriate projection
operator to perform a real-space RG transformation directly
on the lattice MS Hamiltonian.
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Fig. 3. Free energy as a function of nematic order at u ¼ 5:0.
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