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Crack-Tip Stress Concentration and Mesh Size in Networks
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We consider two-dimensional networks with different mesh sizes but with the same bulk elasticity. We
introduce a small (pseudo-) line crack in each network and numerically calculate the force distribution
when the networks are (strongly) stretched in the direction perpendicular to the line crack. Even in highly
deformed networks, we find that there exist strain-dependent scaling relations between the maximum
stress (appearing at the crack tip) and the mesh size: the larger the mesh size, the smaller the stress
concentration, and, thus, the stronger the network. Our finding might suggest a way of reinforcement of

materials with voids under a given amount of solid.
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When there is a crack in materials, the stress is enhanced
near the crack tip,” which is one of the principal factors
governing the strength; to appreciate this, just take a piece of
paper and apply a tensile force with hands: the paper hardly
breaks unless you are very strong; it easily breaks, however,
after you introduce a short line crack, ideally by a sharp
knife, in the middle of the paper in the direction perpendic-
ular to the tensile force: the crack expands from the tip
because of the enhanced crack tip stress. Accordingly,
control over the tip stress concentration” is among other
ideas to seek strong composites or structured materials,>®
often, by mimicking natural materials such as nacre’'" or
double network gels.'>!® Here we demonstrate an important
feature of stress concentration, implying a guideline to
create tough structured materials: in materials with voids
the stress concentration could be reduced by making the
void size larger. This strategy also leads to make the
materials light and economical in the sense that from a given
amount of solid we could produce more amount of the
bulk material with voids as the void size is increased for
toughening.'¥

To model a structure with voids, we consider a coarse-
grained model: N x N points, initially arranged in a two-
dimensional square lattice, with each point connected to the
four nearest neighbors with a spring of length [/ [Fig. 1(a)].
The energy of the system is given by
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where X;; represents the coordinate of each points and X

ij
is that of the nearest neighbor points of Xj;:
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Here, the spring constant k(i,j,s) is set to a constant k
everywhere except at the boundary (i.e., i or/and j are either
1 or N).
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Fig. 1. Tllustration of the present models for materials with voids for a
small N and m (N = 20, m = 2): (a) the original network system and (b)
another system with the double mesh size. In (b), a bundle of two serial
connections of two original springs in (a) are used to connect the points,
to obtain the identical bulk elasticity. Crack size (a = 6/) is the same
in the two systems.

When this system of size L = (N — 1)/ is extended in the y
direction by the amount AL, each spring of length [ is
extended by AL/(N — 1) = le with the strain ¢ defined as
AL/L. The force F acting on springs in parallel with the y
axis (corresponding s = 2 and 4) is homogeneous (F = kl¢),
while that in perpendicular to the y axis (corresponding
s =1 and 3) is zero. The “stress” o defined as force “per
spring”, i.e., F'/1, satisfies the Hooke’s relation o = ke. Note
here that our two-dimensional model can be viewed as a
two-dimensional section of a three-dimensional body like a
plain strain problem in the theory of elasticity.

The force distribution under stretch is no longer as simple
as above when a line crack is introduced. Here, we introduce
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a pseudo line crack by cutting » bonds in the middle (y = 0),
i.e., by setting k(i,j,s) to zero at corresponding points
(j=N/2fors=2and j=N/2+ 1 for s =4 for even N).
Here, the crack length a and the void size d are identified
with (n 4 1)/ and [, respectively. We stretch the network
in the y direction so that the strains at upper and lower
ends, initially located at y = 4L /2, are *¢, and obtain the
equilibrium force distribution via numerical calculations:
we solve the coupled N x N equations of motions,

Xy, U
dt B 8X,:,~a ’

3)

where o is the x or y component of the X;; vector; after
a sufficient time ¢ with an appropriate damping constant 7,
the dynamics can be relaxed to a unique state, which is
identified with the minimum energy state of the system
under the constraints. We confirmed that n changes only
the dynamical process to reach the equilibrium state: our
results given in this paper are essentially insensitive to the
parameter 1.

Typical equilibrium positions of points are shown in
Fig. 2. Note that this network model is nonlinear when
e ~ 1. A typical distribution of forces F working on each
spring at mechanical equilibrium under stretch is shown in
Fig. 3: the distribution shows the maximum Fy; at the crack
tip as expected. We note here that strains in our calculations
below are rather large as in Fig. 2 because (1) large strain
calculations probe the nontrivial (nonlinear) region of the
model and (2) smaller strain calculations with high precision
become difficult.
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Fig. 2. Equilibrium positions of 200 x 200-point network with a crack
(a =20l) when stretched to 3L in the y direction. Positions are
represented by small dots. A magnified view around the crack is shown
at the bottom.
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Fig. 3. Force concentration around the crack tip: forces acting on the

spring located at y = 0 are plotted as a function of x with x = 0 being the
center of the sample. In this case, the remote force (at x/l >~ N /2 = 100)
is enhanced nearly six times near the crack tip; the tip force (the cross
located at x/I ~ 10 and F/kl ~ 25) defines the maximum force Fy.
Here, the crack size a, strain &, and system size N are 40/, 4.0, and 200,
respectively.

We next consider a network system consisting of N/m x
N/m points connected by new springs of length m/, each of
which is a bundle of m serial connections of m original
springs [Fig. 1(b)]: the total number of the original springs
in both systems is both 2N(N — 1). This implies that the bulk
elasticity is identical with each other as explained just
below. This preparation of networks corresponds to consid-
ering two porous systems made from the same amount of the
solid but with different void sizes, d = [ and ml.

The bulk elasticity of the network is identified as follows.
When the new spring of length ml is extended by & the
original spring is stretched by §/m (with strain ¢ = §/ml) so
that the elastic energy per new spring consisting of m?
original spring is given by U; = k(§/m)*/2 - m?, which
leads to the elastic energy per unit volume (or area) u =
U, /(ml)* = ke*/2, irrespective of m.'>

For a given N (=200) and various void sizes d = ml
(m = 2,5,10), we calculate the maximum force F; among
forces acting on a “new spring (a bundle of m serial
connections of m original springs)”, as a function of the
mesh size d. Typical example of change of Fyy with d for a
given strain (¢ = 1.0) and for different crack sizes (a = 101,
20/, and 40I) are given in Fig. 4.

When the same plot are made on renormalized axes,
om/0o (om = Fy/d and og = ke) and d*/a, the points are
collapsed onto a single master curve when d*/a < 1 as in
Fig. 5. Here, d* is a cut-off length, which could be the
smallest length scale in the x direction in our simulation;
such a length is always found to appear at the tip as the
difference between the x-coordinates of the tip and its
nearest point, as illustrated in Fig. 6. We confirmed that the
cut-off scale d* thus selected monotonously increases with d
and results in a better data collapse than d.

Figure 5 and similar plots for different strains we have
calculated all suggest a universal scaling form when a > d*,

M (d—) (@ d )
(o) a

The independence of this relation on the system size L
comes from the condition, L > a, well satisfied in our
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Fig. 4. Change of the maximum force Fy at the tip with void sizes d for a

given stress ¢ = 1.0 and a given system size (N = 200). Three crack
sizes, a = 101, 20/, and 40!/, are examined.
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Fig. 5. The same plot with Fig. 4 but with renormalized quantities.

The data for ¢ = 1.0 are collapsed onto a solid curve, or eq. (4) with
v = —0.45 (see Table I), when d*/a <« 1. The maximum stress in the
system becomes smaller as the void size gets larger, following the scaling
law indicated in the text.

Fig. 6. The cut-off length d* is identified with the smallest length scale
appearing in the numerical calculation: the x-coordinate difference
between the tip and its nearest neighbor.

simulation. The exponent v seems to weakly depend on a
given strain, approaching v = —1/2 as strain gets smaller,
as indicated in Fig. 7 and summarized in Table I.
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Fig. 7. Relation between oy and d* for three smallest values of d*/a at

different strains from ¢ = 0.2 to 4.0 for a given crack length a = 20l. The
points for ¢ = 0.2, 0.5, 2.0, and 4.0 are shifted by 1.0, 0.5, —0.5, and —1.0
upwards, respectively, to avoid overlap. The slope slightly depends on
strain as stipulated in Table 1.

Table I. Weak dependence of the exponent v on strain €, determined from
Fig. 7.
& 0.2 0.5 1.0 2.0 4.0
—v 0.50 0.47 0.45 0.42 0.41

Equation (4), confirmed in our numerical calculations,
indicates that the larger the void size, the smaller the stress
concentration. How large can be the void size? For example,
the maximum mesh size of a net for filtering is determined
by the size of particles to be filtered. Similarly, the void size
is always restricted from the above, in practical situations.

The above result might be surprising at first sight in the
light of the Griffith’s conclusion:'® small flaws should be
removed to make materials strong. However, we should
remind that the Griffith’s flaws imply sharp line cracks, in
which case a large crack weakens the material; in our
models, the sharpness of the line crack tip is dulled by the
void scale; if we regard the mesh size as an effective radius
of curvature of a crack tip (although without strict
Jjustification) the above result is intuitively understandable
at least for a linear elastic body because of classic analytical
expressions obtained by Inglis.” What the above result
suggests is that this intuition could remain essentially correct
even in a highly deformed regime, which is nontrivial.

In other words, eq. (4) could be expected'® from the well-
known stress field near the fracture tip for a linear-elastic

body:
1/2
o0 (“) : 5)

(o)) r

where r is the distance from the tip. This stress field,
mathematically diverging at the tip, should be cut off in
practice at a scale where the continuum view breaks down.
Identifying this scale with a cut off length d*, we obtain
eq. (4) with v= —1/2 [The correctness of this view (at
v = —1/2) is indirectly supported by refs. 17, 18]. In our
simulation, the exponents are not exactly one half, because
(1) our system is linear-elastic only in the small strain limit
and (2) there is a finite size effect, or a/L,, is not exactly zero
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in our system.'> This and preliminary calculations for even
strongly nonlinear system (where the exponent in eq. (1) is
changed from two) suggest that even in highly nonlinear-
elastic region eq. (4) still holds with a negative v.

From the above argument the exponent v defined for
a discrete system as in eq. (4) can be identified with the
singular exponent B of the stress concentration defined,
for the corresponding continuum system (the system in the
continuum limit), by the equation, o(r) ~ ’. We should
note, however, that it is impossible to extract a meaningful
scaling exponent g directly from the quasi-critical behavior
in a discrete system, as shown in Fig. 3, because the tip
stress is finite: we might select the position of a fictitious
tip where the stress is regarded as diverging although
the stress is the maximum at a different point, i.e., at the
position of the real tip, and, in addition, the exponent
depends on the choice. On the contrary, the determination
of v does not depend on such choice and the exponent v
is expected to describe the singularity of the stress field
near the tip in the corresponding continuum system, i.e.,
B =.

In conclusion, we have demonstrated that in highly
deformed two-dimensional networks the stress concentration
around a pseudo-line crack is reduced with the increase in
the mesh size via numerical calculation: the tip stress and a
cut-off scale d* (which monotonously increases with the
mesh size) are found to satisfy the scaling relation eq. (4),
with v close to one-half but weakly depending on the strain,
or on the degree of nonlinearity of the network. Note here
that our model is composed of linear springs as in eq. (1)
which is nonlinear in the positions of points because the
expression contains the absolute value of the coordinate
difference. We have checked that even if we replace d*
with the mesh size d itself a similar scaling relation is
approximately valid: even if we change the horizontal axis
d*/a of Figs. 5 and 7 into d/a, in Fig. 5 the points collapse
on to a single curve fairly well (though the former choice is
clearly better) and in Fig. 7 three points at the same strain
are well on a straight line (suggesting an approximate power
law) but with a little smaller slope. In other words, the larger
the mesh size (i.e., d itself) the smaller the stress concen-
tration. This issue might be of relevance in some way to
many structured materials which posses by definition a cut-

off length for a continuum view: for example, in the case
of gels, the cross-link density of the network could be a
controlling parameter of the strength. On the contrary, in
some very soft foams (cellular solids), it is found that the
fracture energy is virtually independent of the geometrical
parameters such as d.'”) Bridging the gap between these
two seemingly different behaviors, for example, would be
an important problem to more closely connect our simple
model calculations to real materials.
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