
www.elsevier.com/locate/cplett

Chemical Physics Letters 439 (2007) 369–373
Single molecular statistics of an optically tweezed polymer:
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Abstract

The statistics of a polymer chain has been conventionally investigated mainly by scattering. Instead, we theoretically examine the pos-
sibility of obtaining the statistics from single molecular observation. Motivated by this we discuss the statistical distribution of an ideal
linear chain with its ends constrained, which could be directly obtained in principle by an experiment on an optically tweezed single mol-
ecule. We also derive the scattering function pertinent to the situation. Our consideration could open a way to experimentally study the
statistics of a linear polymer chain with the ends fixed to obtain that of a ring polymer in lower dimension.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

The central method to investigate the correlation of
polymer chains has been scattering experiments. There,
the quantities in the momentum space such as the structure
factor are easy to access, which can be efficiently used to
obtain the real space information [1].

Recently, single molecular observation of large chain
molecules such as DNA and optical tweezing of such mol-
ecules have become feasible for us [2–6]. Contrary to the
scattering, the recent single molecular observation is basi-
cally a real space method. We consider below the possibil-
ity to directly obtain the distribution function of the
polymer statistics by the single molecular observation. In
connection with this we discuss the probability distribution
and scattering function of a polymer with its ends con-
strained by two optical tweezers.

2. Convenient observable in single molecular observation

We consider a chain molecule which can be regarded as
composed of N monomers, where the distance between the
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adjacent two monomers corresponds to a Kuhn length a.
We mark any two monomers of the chain in a certain
way, possibly by introducing fluorescent dyes. The two
marked monomers are called mth and nth monomers. In
the single molecular observation of this polymer, we can
directly observe thermal fluctuation of a chain molecule
by a series of snapshots. From such M snapshots, we
obtain the probability of the vector from the nth to mth
monomers, or the n-to-m vector Rmn = rm � rn, to be r:

gmnðrÞ ¼
1

M

XM

k¼1

dð3Þ r� RðkÞmn

� �
ð1Þ

where d(3) is the three-dimensional delta function of Dirac.
Here, RðkÞmn is Rmn of the kth snapshot.

Since we can expect that the long time average is equal
to the statistical average, we can express the above quantity
by the distribution function, Pmn(Rmn), that the n-to-m vec-
tor to be Rmn.

gmnðrÞ ¼
Z

dRmnd
ð3Þðr� RmnÞP mnðRmnÞ ¼ P mnðrÞ ð2Þ

From Eqs. (1) and (2), we conclude that we can determine
the distribution Pmn(r), which governs the statistics of the
polymer chain, by the single molecular experiment
described above: We can directly obtain the distribution
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Fig. 1. Random walk with the end-to-end distance fixed to R0.
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function Pmn(r) for a chain with or without the excluded vol-

ume that the n-to-m vector to be r in experiments.

To obtain the quantity in Eq. (1) experimentally, we
need to know three dimensional configuration for each
snapshots. Experimentally, two-dimensional projection to
a certain plane of such three-dimensional configuration is
far easier to access. Even from such two-dimensional
experiments, we can obtain one-dimensional probability
by measuring RðkÞmn;i of each snapshot:

gmn;iðriÞ ¼
1

M

XM

k¼1

d ri � RðkÞmn;i

� �
ð3Þ

where i can be x,y, or z and d(r) is the Dirac’s delta func-
tion in one dimension. Here and hereafter, xi denotes the
i component of a vector x.

The quantity is also important especially when the dis-
tribution function Pmn(r) can be factorized as

P mnðrÞ ¼
Y

i¼x;y;z

P mn;iðriÞ ð4Þ

This is because in such a case the quantity Pmn,i(ri) can be
directly observed via single molecular observation due to
the relation (the one-dimensional counterpart of Eq. (2)):

gmn;iðriÞ ¼ P mn;iðriÞ ð5Þ

When the statistics of a polymer can be cast into the
Gaussian distribution of the form

P mn;iðriÞ ¼
exp � ðri� Rmn;ih iÞ2

2 DR2
mn;ih i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p DR2

mn;i

D Er ð6Þ

the single molecular observation quantifying gmn,i(ri) in Eq.
(3) directly probing this quantity.

3. Statistics of a tweezed polymer

With a pair of optical tweezers, we can fix the two ends
of a linear chain, possibly virtually without fluctuation.
This constraint suppresses the translational Brownian
motion of the molecule, which would be an advantage in
experiment because of no need to track the molecule mov-
ing around in the field of microscope.

In this section, we discuss the statistics of a linear chain
with such constraint. First we deal with a polymer with its
ends fixed completely without fluctuation, which is fol-
lowed by the discussion on a polymer with its end fixed
but not completely without fluctuation. In this section,
we limit ourselves to an ideal chain where the excluded vol-
ume effect is neglected, although the experiment suggested
in the previous section is not restricted to an ideal chain.

3.1. Polymer chain with its ends fixed without fluctuation

Recently, we discuss the distribution of the n-to-m vec-
tor of a linear ideal chain to be r when the end-to-end dis-
tance is fixed to R0 without fluctuation (Fig. 1) [7] by
generalizing the strategy for a ring polymer described in [8]:

P ð0ÞmnðrjR0Þ ¼
Y

i¼x;y;z

P ð0Þmn;iðriÞ ð7Þ

where P ð0Þmn;iðriÞ is given by the right-hand side of Eq. (6)
with

Rmn;ih i ¼ m� n
N

R0;i ð8Þ

DR2
mn;i

D E
¼ jm� nja2

3
1� jm� nj

N

� �
ð9Þ

Note that, from Eqs. (8) and (9), we have ÆRN0æ = R0 and
hDR2

N0i �
P

i¼x;y;zhDR2
mn;ii ¼ 0: the end-to-end vector RN0

is fixed to R0 without fluctuation, as desired. The constraint
discussed here is similar in spirit to but incompatible with
the works [9–11] appreciated in the context of a polymer
chain in networks. Details of the comparison with previous
works are given in [7].

The distribution Pmn(rjR0) in Eq. (7) could be directly
checked through the two dimensional single molecular
observation, thanks to Eqs. (3) and (5). The features of this
distribution are as follows. Eq. (8) states that the average of
the n-to-m vector Rmn scales ‘affinely’ with the end-to-end
vector R0, or the 0-to-N vector: the average of Rmn is pro-
portional to m � n. On the contrary, Eq. (9) predicts that
the average of DR2

mn scales ‘non-affinely’ with DR2
N0: the

variance becomes zero when m � n approaches N (the
end-to-end vector is fixed without fluctuation), but scales
as m � n when m � n gets smaller or changes ‘affinely’ with
Na2, the variance of the end-to-end vector of an uncon-
strained linear chain: at small distances the monomers do

not feel any constraint while at large scales they feel the

constraint.

In the following, we briefly derive the one-dimensional
version of Eqs. (7)–(9) in two ways different from and com-
plementary to the arguments in [7]. One way, which is an
extension of the arguments for a ring polymer in [12] to a
fixed-end polymer, is based on the characteristic function
[13] and the other is on the conditional probability. We
consider below a one-dimensional N step random walk
from x = x0 to x = xN where the end-to-end distance
xN � x0 is fixed to X. In the first case of the characteristic
function each step length ui = xi � xi � 1 (i = 1, . . . ,N) is
determined by a Gaussian probability of variance a2

(� e�u2
i =2a2

) while in the second case of the conditional
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Fig. 2. Random walk in one dimension with the end-to-end distance fixed
to X from x = x0 to x = xN for n < m.
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probability each step randomly selects either +a or �a as in
Fig. 2. Though the two models are different, the resulting
probability distribution for the n-to-m vectors are the same
as we see below.

3.1.1. Characteristic function

By using the Dirac’s delta function, the Gaussian distri-
bution of the step vectors ui under the desired constraint
can be written as

P ðuÞ � dðu1 þ u2 þ � � � þ uN � X Þe�ðu2
1
þu2

2
þ���u2

N Þ=2a2 ð10Þ
The characteristic function is here defined by

/ðkÞ ¼ eiðk1u1þk2u2þ���þkN uN Þ
	 


ð11Þ

where the average is taken by the distribution, P(u). After a
straightforward calculation we obtain

/ðkÞ ¼ e
�a2

2 k2
1
þk2

2
þ���k2

N�
1
N k1þk2þ���þkNþiX

a2

� �2
� �

ð12Þ
From this expression, we find the average and variance
(m > n) to recover one-dimensional version of Eqs. (8)
and (9).

3.1.2. Conditional probability

The distribution PðX mn j X Þ of the distance xm � xn to
be Xmn under the fixed end condition is given by the condi-
tional probability

P ðX mnjX Þ ¼
P jm�njðX mnÞeP N�jm�njðX mn;X Þ

P N ðX Þ
ð13Þ

where PM(x) is the standard Gaussian probability of a ran-
dom walk: P MðxÞ ¼ exp � x2

2Ma2

� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pMa2
p

. Here, the
probability eP N�jm�njðX mn;X Þ is the quantity to be calculated
as follows for m > n (a similar derivation is possible also for
n > m). We consider a one dimensional n-step random walk
from x = xn, xn�1, . . . to x = x0, followed by a fixed step
+X to x = xN, which is completed by another (N � m)-step
random walk from x = xN,xN�1 , . . . to x = xm: each step in
the two random walks selects randomly either +a or �a.
When the distance xm � xn is constrained to a fixed value
Xmn, every walk consisting of the above two independent
random walks (i.e., n-step and (N � m)-step walks) plus a
fixed step +X should satisfy the following two equations:
(1) M+ + M� = n + (N�m) and (2) aM+ � aM� + X =
Xmn where M+ and M� represent the total numbers of
‘+a’-step and ‘�a’-step in the walk, respectively. If we
count the number of distinct ways to realize these equa-
tions, we obtain, for N � m + n, M+, M� � 1,

eP N�mþnðX mn;X Þ ¼
exp � ðX mn�X Þ2

2 N�mþnð Þa2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðN � mþ nÞa2

p ð14Þ

Substituting Eq. (14) into Eq. (13), we obtain one-dimen-
sional version Eqs. (8) and (9).

3.2. Polymer chain with its ends fixed with fluctuation

The optical trapping would imply small fluctuations
around a fixed point. If such fluctuations could not be neg-
ligible, the distribution of the end points r0 and rN could be
expressed as

P ðr0; rN Þ ¼
exp � ðr0�aÞ2

2r2
0
=3

� �
2pr2

0=3ð Þ3=2
�
exp � ðrN�bÞ2

2r2
N =3

� �
2pr2

N=3ð Þ3=2
ð15Þ

where a, b and r0, rN are the average and the standard
deviation of the trapped end points of the 0th and Nth seg-
ments, respectively.

With using Eqs. (7) and (15), the distribution of the n-to-
m vector to be r when the end points are fixed by optical
tweezers by an average distance R could be calculated as

P ðf Þmn ðrjRÞ ¼
Z

dr0

Z
drN P ðr0; rN ÞP ð0ÞmnðrjR0Þ ð16Þ

with

R0 ¼ rN � r0 ð17Þ
and

R ¼ b� a ð18Þ
Then, P ðf Þmn ðr j RÞ is given in the form

P ðf Þmn ðrjRÞ ¼
Y

i¼x;y;z

P ðf Þmn;iðriÞ ð19Þ

where P ðf Þmn;iðriÞ is given by the right-hand side of Eq. (6)
with

Rmn;ih i ¼ m� n
N

Ri ¼
m� n

N
ðbi � aiÞ ð20Þ

DR2
mn;i

D E
¼ jm� nja2

3
þ m� n

N

� �2 r2
0 þ r2

N � Na2

3
ð21Þ

Comparing Eqs. (9) and (21), we notice that the fluctuation
of the optical tweezer could be neglected only when the
fluctuations are much smaller than the fluctuation of the
linear chain:

r2
0; r

2
N � Na2 ð22Þ

As the fluctuation gets larger and r2
0 þ r2

N � Na2 ap-
proaches zero, hDR2

mn;ii recovers the ‘affine’ property. When
the fluctuation is very large (r2

0; r
2
N > Na2), hDR2

mn;ii is
expected to behave in a rather abnormal way although
such a situation is probably difficult to be observed by
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experiments: hDR2
mn;ii scales as ðm�n

N Þ
2ðr2

0 þ r2
N Þ. The exper-

imental confirmation of these distinctive regimes and/or
the turnover among them would be a challenging future
problem.

In what follows, we also derive the scattering function
for an ideal chain where its ends are fixed by optical twee-
zers with possible fluctuations. Although it is not a direct
observable in real-space experiments, the corresponding
quantity in the wave-number space could be useful (this
is just as if one might often analyze time-dependent data
in the frequency space to extract the character of the origi-
nal data) so that we here derive the scattering function for
completeness: this quantity could be obtained in principle
from experiment once one obtains experimentally the
real-space observable P ðf Þmn ðr j RÞ. The scattering function
is defined by

SðqÞ ¼ 1

N 2

XN

m;n¼1

heiq�Rmni ¼ Re S0ðqÞ½ � ð23Þ

where

S0ðqÞ ¼
2

N 2

Z N

0

dm
Z m

0

dnheiq�Rmni ð24Þ

For the Gaussian distribution of the form in Eq. (6), we
can directly show

heiq�Rmni ¼ eiq�hRmni � e�1
6q�qhDR2

mni ð25Þ

Substituting ÆRmnæ and hDR2
mni for the constraint in ques-

tion, given in Eqs. (20) and (21) into this, we obtain

heiq�Rmni ¼ ei~qLeRð�m��nÞ � e�~q2fð�m��nÞ�cð�m��nÞ2g ð26Þ

where q and qL is the magnitude of the momentum vector q

and its projection to the R direction, respectively, and c is
defined as

c ¼ 1� r2
0

Na2
� r2

N

Na2
ð27Þ

In the above, n and m are normalize by N (�n ¼ n=N and
�m ¼ m=N ) and the momentum and position vectors are
normalized by Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Na2=6

p
:

~q ¼ qRg; ~qL ¼ qLRg ð28Þ
~R ¼ R=Rg ð29Þ

Setting t ¼ �m� �n and changing the integration variables
from ð�m; �nÞ to ð�m; tÞ in Eq. (24) and then changing the or-
der of integrations over �m and t, we obtain

S0ðqÞ ¼ 2

Z 1

0

d�m
Z �m

0

dtF ðtÞ ¼ 2

Z 1

0

dtð1� tÞF ðtÞ ð30Þ

where

F ðtÞ ¼ ei~qLeR�t � e�~q2ðt�ct2Þ ¼ e�Q2
�e

~q2c t�Q�
~q
ffiffi
c
p

� �2

; ð31Þ
where Q� is defined as

Q� ¼
~q2 � i~qL

~R
2
ffiffiffi
c
p

~q
: ð32Þ

With using Qþ ¼ 1� Q�=ð~q
ffiffiffi
c
p
Þ, or

Qþ ¼
ð2c� 1Þ~q2 þ i~qL

~R
2
ffiffiffi
c
p

~q
; ð33Þ

we further calculate Eq. (30):

S0ðqÞ=2 ¼ e�Q2
�

	
Z 1

0

Qþ
~q
ffiffiffi
c
p � t � Q�

~q
ffiffiffi
c
p

� �� �
e

~q2c t�Q�
~q
ffiffi
c
p

� �2

dt; ð34Þ

to obtain the final result:

SðqÞ ¼Re
e�Q2

�

c~q2
ðeQ2

� � eQ2
þÞþ2Qþ erfiðQþÞþ erfiðQ�Þ

 �n o" #
;

ð35Þ

which reduces to the expression, Eq. (26), in [7], when c = 1
(r2

0 ¼ 0; r2
N ¼ 0). Here, we have introduced the imaginary

error function as

erfiðQÞ ¼ 2ffiffiffi
p
p

Z Q

0

dz expðz2Þ
4. Statistics of a ring polymer

If a chain in three dimension whose ends are fixed is pro-
jected onto a plane perpendicular to the end-to-end vector
R0, the chain should look like a ring polymer (which has
been actively studied [15]) in the two-dimensional space;
likewise the statistics of a linear chain fixed at the both ends
in two dimension corresponds to that of a ring polymer in
one dimension: Instead of synthesizing a ring polymer, we
could study a linear chain polymer via optical tweezers
and single molecular observation to investigate the correla-
tion of a ring polymer. For example, when R0 points the z

direction, the snapshots on the xy plane is important for
the investigation for a ring polymer. From the gmn,x(rx)
measurement from the snapshots on the xy plane for an
ideal linear polymer in h solvent with its ends fixed to
(0,0,R0), we obtain P ð0Þmn;xðrxÞ � f ðrxÞ (or equivalent
P ð0Þmn;yðryÞÞ. Then, we obtain the distribution of a ring poly-
mer as f(rx)f(ry)f(rz) to be compared with the result first
obtained in [14], which is a special case (R0 = 0) of Eq. (6)
with Eqs. (8) and (9).

For a ring polymer with excluded volume, although the
factorization property would be lost, the statistics of a ring
polymer in two dimension can be investigated via the xy

snapshots, if we find the probability of the projection of
Rmn onto the xy plane to be r (a vector on the xy plane),
or the quantity gmn,x (rx)gmn,y (ry) through the xy snapshots.
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5. Conclusion

In this letter, we theoretically discuss a possible way of
studying the statistics of a chain via single molecular obser-
vation with optical tweezers for a chain with or without the

excluded volume. We calculate some observables suitable
for an optically tweezed ideal chain. First, we show that
two different one-dimensional models of a linear chain with
its end fixed lead to the same probability for the n-to-m vec-
tor. Second, we calculate the n-to-m probability and scat-
tering function when a linear chain is constrained with a
certain fluctuation at both ends. Third, we point out that
the statistics of a linear chain fixed at the both ends corre-
sponds to that of a ring polymer in lower dimensions.
There should be a lot of difficulties in performing and inter-
preting the experiments considered theoretically and
naively here, which includes, for example, the current low
resolution of the standard real space observation and pos-
sible differences between the single molecular statistics and
the conventional statistics. We modestly wish that our sim-
ple ideas would be realized in the near future thanks to
efforts with technological developments.
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