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Abstract. We consider an ideal chain whose ends are fixed without fluctuation at different points, possibly
by optical tweezers. We derive a two-point probability distribution of a corresponding random walk and
explicitly calculate the scattering function. We find that the contour plot of the resulting function shows
a kind of normal butterfly pattern, contaminated by wavy texture. These results are compared with some
representative previous models.

PACS. 82.35.Lr Physical properties of polymers – 82.37.Rs Single molecule manipulation of proteins and
other biological molecules – 05.40.Fb Random walks and Levy flights

1 Introduction

There have been many studies on the correlation in a poly-
mer chain with constraints since the ’70s, largely due to
the development of the neutron scattering technique on
labeled species. For example, they have studied exper-
imentally a polymer elongated in stretched bulk [1] or
film [2], or in a shear flow [3], and a polymer chain ex-
tended in macroscopically deformed rubber [4] or gel [5].
Here, we discuss the correlation in a polymer chain whose
ends are fixed without fluctuation; such a situation could
be realized and observed in the near future, possibly by
well-developed techniques on optical tweezing and single
molecular observation [6].

Early works on correlation or scattering function of a
chain with external constraints are mainly considered in
the context of a chain in networks. Benoit et al. considered
a chain which deforms affinely [7], and non-affine cases are
treated by Pearson [8], which is generalized by Warner and
Edwards [9]. In addition to these works for ideal chains,
a scaling theory for a stretched self-avoiding chain was
constructed [10,11]. Later, for example, theories for the so-
called abnormal butterfly pattern of the structure factor
observed for stretched swollen gels were developed [12,13].

However, a fundamental situation where an ideal chain
is fixed without fluctuation at both ends, which includes
the actively studied ring polymers [14–17] as a special
case, has not been discussed thoroughly [18,19], although
it might be possible in principle to realize such a situation.
Here, we derive the probability necessary for the calcula-
tion of a pair correlation function of a Gaussian chain with
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the ends fixed to R without fluctuation, and explicitly cal-
culate the scattering function. The results are compared
with previous results developed in the context of a chain
in networks. We discuss their possible connections to the
scattering from slide-ring gel, which is a new type of gel
whose cross-links are neither a chemical nor physical link
but a link made by connecting two rings where through
each ring one chain passes and each ring is slidable along
the chain [20].

2 Probability distribution

2.1 Heuristic derivation and justification

Imagine an ideal chain in three-dimensional space, consist-
ing of N “monomers” of size a (the Kuhn length); a shape
of the chain corresponds to a N step random walk where
each step is represented by a vector whose magnitude is a.
Our aim is to obtain an explicit form for the conditional
probability P (Rmn|R) that the displacement vector from
the n-th to the m-th monomer is Rmn = rm − rn, under
the condition that the end-to-end distance is fixed to R =
(Rx, Ry, Rz). By generalizing the strategy employed in [16]
for a ring polymer, we can express this probability as

P (Rmn|R) =
P|m−n|(Rmn)PN−|m−n|(Rmn,R)

PN (R)
. (1)

Here, PN (R) is the probability that the end-to-end vector
of a unconstrained free polymer is R:

PN (R) =
∏

i=x,y,z

√

αN
π
e−αNR

2
i , (2)
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Fig. 1. Configuration of a polymer chain: (a) n < m and
(b) n > m.
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Fig. 2. Definition of vectors correspondig to Figure 1(a).

where α−1
N = 2Na2/3, while P|m−n|(Rmn) is the proba-

bility for a |m−n| step random walk (with step length a)
from the n-th to them-th monomer with the displacement
Rmn:

P|m−n|(Rmn) =
∏

i=x,y,z

√

α|m−n|

π
e−α|m−n|R

2
nm,i , (3)

where α−1
|m−n| = 2|m− n|a2/3.

The meaning of the probability PN−|m−n|(Rmn,R) in
equation (1) is slightly different depending on whether
n is larger than m or not (see Fig. 1). For n < m,
PN−|m−n|(Rmn,R) is the probability of the following se-
ries of three walks from rn to rm: 1) the first walk from
the n-th to the 0th monomer by n random steps with step
length a, 2) the second walk from the 0th to the N -th
monomer by a single fixed step vector R, and 3) the third
walk from the N -th to the m-th monomer by N −m ran-
dom steps with step length a. The displacement vector for
walk 1) is a while that for walk 3) is b (see Fig. 2). Since
walk 2) is not a random walk (R is a fixed vector), the
successive walk from 1) to 3) is equivalent to making a
single random walk of N −m + n steps with step length
a over the distance a + b = Rmn −R.

For m < n, PN−|m−n|(Rmn,R) is the probability of
the following series of three walks from rm to rn: 1) the
first walk from the m-th to the 0th monomer by m steps
with step length a, 2) the second walk from the 0th to
the N -th monomer by a single step represented by R, and
3) the third walk from the N -th to the n-th monomer by
N − n steps with step length a. Similar to the above, this

is equivalent to making a random walk of N −n+m steps
with step length a over the distance Rnm −R.

Thus, we obtain

PN−|m−n|(Rmn,R) = (4)

∏

i=x,y,z

√

αN−|m−n|

π
e−αN−|m−n|(Rmn,i−ζRi)

2

, (5)

where ζ = 1 for n < m and ζ = −1 for n > m. Here,

α−1
N−|m−n| = 2(N − |m− n|)a2/3. (6)

Substituting equations (2–5) into equation (1), we ob-
tain after some calculation

P (Rmn|R) =
∏

i=x,y,z

√

αNmn
π

e−αNmn(Rmn,i−R
(0)
mn)2 , (7)

where ζ-dependence in equation (5) disappears. Here,

α−1
Nmn = 2µa2/3, (8)

µ =
|m− n|(N − |m− n|)

N
, (9)

R(0)
mn =

m− n

N
Ri. (10)

This is one of the important results of our paper. We
stress here in advance that equations (11) and (12) below
confirm that our probability derived here has the desired
property: a chain whose ends are fixed without fluctuation.
We remark that, in the limit R→ 0, equation (7) reduces
to the known expression for a ring polymer. [14–16].

We can calculate the average of the vector Rmn with
the probability P (Rmn|R) (see Eq. (10)):

〈Rmn〉 =
m− n

N
R. (11)

This guarantees that the average of the end-to-end vector
takes the expected value, that is, 〈RN0〉 = R. In addition,
〈Rnm〉 deforms “affinely” with 〈RN0〉(= R); 〈Rnm〉 gets
smaller as |m− n| decreases.

The average of ∆Rmn ·∆Rmn = ∆R2
mn with the prob-

ability P (Rmn|R), where ∆Rmn = Rmn −R
(0)
mn, can be

also calculated (see Eqs. (8) and (9)):

〈

∆R2
mn

〉

= |m− n|a2

(

1− |m− n|
N

)

. (12)

This guarantees that the fluctuation of the end-to-end vec-
tor 〈∆R2

N0〉 is zero: we fix RN0 to R without fluctuations
in our problem. When |m−n| 6= N , the fluctuation is not
zero: the finite fluctuation 〈∆R2

mn〉 approaches the value
without constraints, |m − n|a2, as |m − n| gets smaller.
Here, 〈∆R2

mn〉 deforms “non-affinely” with 〈∆R2
N0〉(= 0).

We can calculate the radius of gyration Rg of this chain
by the probability (7):

R2
gL =

Na2

36

(

1 +
3R2

Na2

)

, R2
gT =

Na2

36
,

R2
g =

Na2

12

(

1 +
R2

Na2

)

. (13)
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Here, subscripts L and T indicate the components parallel
and perpendicular to the fixed vector R. R2

g reduces to
that for a ring polymer in the limit R = 0 [16] as expected.
Note that the transverse component R2

gT coincides with
that of a ring polymer: if a chain whose ends are fixed
is projected onto a plane perpendicular to the end-to-end
vector R, the chain should look like a ring polymer. This
leads to one of the marked differences form the results
obtained in the context of networks as mentioned below.

Yamakawa obtained in a general and sophisticated way
the one-point probability Pn(Sn|R) of the displacement
vector from the center-of-mass to the n-th monomer be-
ing Sn when the end-to-end vector is fixed to R (exactly
the same constraint as ours). This one-point probability
Pn(Sn|R) can allow us to calculate one-point functions
such as the radius of gyration given in equation (13) [18].
Unfortunately, however, this does not make it possible
to calculate two-point functions such as the scattering
function (e.g., 〈Snm · Snm〉 includes a two-point term
proportional to 〈Sn · Sm〉 etc.). This is because we can-
not construct a two-point probability Pnm(Snm|R) with
Snm = Sn−Sm as a simple multiple of the one-point prob-
abilities, Pn(Sn|R)Pm(Sm|R), since the events implied by
Pn(Sn|R) and Pm(Sm|R) are not independent.

2.2 Comparison with previous results

Benoit et al. considered a chain in network deforming
affinely with macroscopic deformation where the fluctu-
ation is also affine [7]; we call his model in the follow-
ing the affine-network (AN) model. Pearson took into ac-
count a certain non-affine property in the fluctuation [8]
and Warner and Edwards generalized his result [9], whose
weak cross-link limit reproduces Pearson’s result. We com-
pare below our fixed-end (FE) results with the AN model
and with the non-affine–network (NAN) model. The dense
cross-link limit of Warner and Edwards model is also men-
tioned in the context of the scattering function in Sec-
tion 3.1.

As we see shortly below, the end points of a chain
necessarily fluctuate in the AN model and the average of
the end-to-end vector is always zero in the NAN model.
Both physical assumptions are incompatible with our con-
straint: the end-to-end vector of a chain is fixed to a non-
zero vector without fluctuation. The AN and NAN models
are appreciated mainly for a chain in deformed networks.
In such a situation, it is known to be reasonable to assume
that end points are fluctuating as in the AN model and
to incorporate the non-affine nature of a chain as in the
NAN model. Accordingly, they have been used to describe
a chain in stretched rubbers or gels.

In all the three models, the distribution of Rmn is given
by a Gaussian distribution,

P (Rmn) =
∏

i=x,y,z

exp
(

− (Rnm,i−〈Rmn,i〉)
2

2〈∆R2
mn,i〉

)

√

2π
〈

∆R2
mn,i

〉

, (14)

Table 1. The average and the standard deviation of Rmn in
the three models.

〈Rmn〉
〈

∆R2
mn,i

〉

FE m−n
N

R
|m−n|a2

3

(

1− |m−n|
N

)

AN (m− n)b |m−n|a2

3
λ2
i

NAN 0
|m−n|a2

3
+

(λ2
i−1)(m−n)2a2

6N

Table 2. The average and the standard deviation of the end-
to-end vector RN0 in the three models.

〈RN0〉
〈

∆R2
N0,i

〉

FE R 0

AN Nb Na2λ2
i /3

NAN 0 Na2 λ
2
i+1

6

where the average and standard deviation of Rmn and
those of the end-to-end-vector RN0 are given in Tables 1
and 2, respectively.

Here, b is a parameter in the AN model (specifying
the average end-to-end vector as in Tab. 2) and λx =
λy = λT and λz = λL are the longitudinal and transverse
components of a tensor which describes the extension of
the fluctuation of the end-to-end vector in the AN and
NAN models. More precisely,

〈

∆R2
N0,i

〉

λ
〈

∆R2
N0,i

〉

0

=

{

λ2
i , AN model,
λ2
i+1
2 , NAN model,

(15)

where 〈∆R2
N0,i〉0 is the average under no stretch, i.e.,

λT = λL = 1. In this case, λ2 ≡ λ2
x + λ2

y + λ2
z = 3,

which is the minimum of λ2 under the incompressibility
condition: λLλ

2
T = 1.

A similar ratio for the n-to-m vector is given by

〈

∆R2
mn,i

〉

λ
〈

∆R2
mn,i

〉

0

=

{

λ2
i , AN model,

1 +
(λ2

i−1)|m−n|

2N , NAN model.
(16)

In the AN model, the right-hand side is independent of m
and n: this exactly expresses that the fluctuation deforms
affinely in the AN model. On the contrary, this is not the
case in the NAN model: the NAN model is non-affine.

The average and fluctuation of the end-to-end vector
given in Table 2 clarify the difference in constraints be-
tween the models: as desired, the end-to-end vector is fixed
to R without fluctuation in our model, while this is not
the case with the other models. We can fix the average
to R in the AN model if we set b = R/N (as we do
in the following for comparison) but the fluctuation can-
not be set to zero with a non-trivial physical meaning: if
we did set λ = 0 in the model, the distribution function
in equation (14) would become a delta function. In the
NAN model the average is zero and cannot be fixed to R;



226 The European Physical Journal E

Table 3. The average of eiq·Rmn in the three models.

FE exp
(

iqLR
m−n
N

)

exp
(

− (qa)2|m−n|
6

+ (qa)2(m−n)2

6N

)

AN exp (iqLb(m− n)) exp
(

− (qλa)
2|m−n|
6

)

NAN exp

(

− (qa)2|m−n|
6

− ((λ2
L−1)q2L+(λ2

T−1)q2T )a
2(m−n)2

12N

)

this model reduces to a chain without constraints when
λT = λL = 1. We clearly see that we cannot describe the
correlation of a single chain where the end-to-end vector
is fixed to R without fluctuation by the other models.

3 Scattering function

3.1 Analytical expression

The scattering function is defined by

S(q) =
1

N2

N
∑

n,m=1

〈

eiq·Rmn
〉

, (17)

where the pair correlation function

g(r) =
1

N

N
∑

n,m=1

〈δ(r−Rmn)〉 , (18)

or the average probability of finding a second monomer
at a distance r from a first monomer (the first and the
second can be the same), is the direct Fourier transform
of NS(q). In principle, this quantity could be calculated
from real-space snapshots of a polymer.

In the present model, the average of the quantity
eiq·Rmn with the probability (7) can be cast into the fol-
lowing form:

〈

eiq·Rmn
〉

=

∫

dRmnP (Rmn|R)eiq·Rmn (19)

= eiq·R(m−n)/Ne−q·qµa2/6. (20)

The quantities 〈eiq·Rmn〉 in equation (17) of the three
models are compared in Table 3. Here, qλ is the mag-
nitude of a vector q transformed by a diagonal ten-
sor whose non-zero elements are given by (λT , λT , λL):
qλ = (λT qx, λT qy, λLqz). The dense cross-link limit of the
Warner-Edwards model is given by replacing (m− n)2 of
the NAN model in Table 3 by a constant independent of
m and n.

As seen in Table 3, 〈eiq·Rmn〉 of the FE model
and of the AN model (with b = R/N) have the fac-
tor exp(iqLR

m−n
N ) representing a certain wave character

while such a wavy factor is not present in the NAN model
(the exponent in the NAN model is always real). This
distinction (or considering a Gaussian distribution with
non-zero mean) is important: the resulting scattering pat-
tern shows wavy texture in the FE and AN models while

the pattern are “monotonous (without such wavy charac-
ters)” in the NAN model, as we see below. This distinction
has not been made clearly in the literature: equations (29)
and (30) of reference [8] and the comment to equation (14)
of reference [9] do not care much about the existence of
this factor present in the AN model.

The quantity µ in equation (20) is invariant under the
interchange of m and n. This guarantees that S(q) is real,
and we get

S(q) = 2Re [S0(q)] , (21)

where (N À 1),

S0(q) =

∫ N

0

dm

N

∫ m

0

dn

N
eiq·R(m−n)/Ne−q·qµa2/6. (22)

If we introduce quantities renormalized by the radius

of gyration of a chain without constraints, R
(0)
g = Na2/6,

as follows:

R̃ = R/R(0)
g , (23)

q̃ = qR(0)
g =

(

q2
T + q2

L

)1/2
R(0)
g , (24)

q̃L = qLR
(0)
g , (25)

the scattering function is given by

S(q) =
1

2q̃2
Re
[

1− eiq̃LR̃ + 2Qe−(Q∗)2S1(q)
]

, (26)

where

S1(q) =

∫ Q

−Q∗

dwew
2

=

√
π

2
[erfi(Q) + erfi (Q∗)] (27)

with

Q =
q̃2 + iq̃LR̃

2q̃
. (28)

In the above, the complex error function is defined as

erfi(z) =
2√
π

∫ z

0

dw exp(w2), (29)

where the complex integral is path-independent due to the
regularity of the integrand.

When R = 0, the scattering function for a ring poly-
mer is reproduced [14,15]:

S(q) =
2e−q̃

2/4 erfi (q̃/2)

q̃
. (30)

3.2 Behavior at small and large scales

S(qT ) and S(qL) at large scales (small q) and small scales
(large q) are summarized in Tables 4 and 5, respectively,
for comparison (b = R/N). The expressions at small
scales can be obtained by a method similar to derive the
asymptotic expansion of the complementary error func-
tion [21] while those at large scales by expanding the ex-
ponential in terms of q in equation (17) and evaluating
the first and the second moments [22].
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Table 4. Scattering function at large scales.

S(qT ) S(qL)

FE 1− q̃2
T /6 1− q̃2L

6

(

1 + R̃2

2

)

AN 1− 1
3
(λT q̃T )

2 1− 1
3
q̃2
L

(

λ2
L + R̃2

4

)

NAN 1− q̃2⊥
12

(

λ2
T + 3

)

1− q̃2L
12

(

λ2
L + 3

)

Table 5. Scattering function at small scales.

S(qT ) S(qL)

FE 2/q̃2
T 2/q̃2

L

AN 2
(λT q̃T )2

2

(λLq̃L)2+R̃2

NAN 2
q̃2
T

(

1− λ2
T

q̃2
T

)

2
q̃2
L

(

1− λ2
L

q̃2
L

)

At large scales, S(qL) decays faster than S(qT ) upon
stretch in all the three models (under the incompressibil-
ity condition for network models): The more stretch the
faster the decay; this suggests the so-called normal but-
terfly pattern when S(q) is plotted on the (qT , qL)-plane:
the circular contour shapes for the non-stretched case is
compressed along the stretched direction qL. Physically,
this can be understood as follows: the coefficient of q2

T or
q2
L corresponds to the radius of gyration of the chain in
that direction [22] so that, when stretched, the coefficient
becomes larger in that direction, implying faster decay.

It may be useful to compare the FE model with the
AN model at λL = λT = 1; In this case, the fluctuation
of the AN mode is the physically allowed minimum un-
der the incompressible condition of the network (as stated
above, we cannot make the AN model fluctuation-less with
a non-trivial physical meaning). In the transverse case,
S(qT ) at large scales behaves as that of a ring polymer
in the FE model and as that of a linear polymer (without
constraints) in the AN model; S(qT ) in the AN model de-
cays faster than S(qT ) in the FE model at large scales,
which can be again understood as above noting that the
coefficient of q2

T corresponds to the size of the chain in
the transverse direction: a ring polymer is “smaller” than
a linear polymer without constraints when the monomer
numbers and sizes are the same. At small scales, S(qT ) of
both models behave as that of a linear chain without con-
straints (see Table 1 with λL = λT = 1 and |m−n| ¿ N).

In the longitudinal case, although S(qL) at small scales
in the FE model is independent of the fixed vector R, it is
not the case in the AN model: in the FE model monomers
do not feel constraints at small scales while in the AN
model they deforms affinely (feeling the constraints at any
scales).

3.3 Numerical behavior

We compare the transverse component S(qT ) as a func-
tion of qT and the longitudinal component S(qL) as a

function of qL at R̃ = 3 in Figure 3 and at R̃ = 6 in Fig-
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Fig. 3. The scattering function S(q) of the FE model as a
function of q = qT (solid curve) or q = qL (dashed curve) when
the distance between the ends is fixed at R = 3, where q and R

are normalized by the radius of gyration of a linear chain R
(0)
g

(this normalization is always employed in Figs. 4-12 below).
The solid and dashed curves correspond to the transverse and
longitudinal component, respectively.
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Fig. 4. The scattering function S(q) of the FE model as a func-
tion of q = qT (solid curve) or q = qL (dashed curve) at R = 6.

ure 4, in the cases of the FE model. In addition to the
above-mentioned faster decay of S(qL) in the stretched
direction qL, we see a wavy feature of S(qL). This is the
result of considering a Gaussian distribution with a non-
zero mean, which leads to the factor exp(iqLR

m−n
N ) in

Table 3 or the factor iq̃LR̃ in equations (26) and (27): the
wavelength of the wave is of the order of 2π/R.

The three-dimensional and the contour plots of S(q)
on the (qT , qL)-plane are shown in Figures 5 and 6, re-
spectively. We notice a normal butterfly pattern in the
sense that the contour shapes tend to be compressed in the
stretched direction qL. There are a number of differences
from the butterfly pattern of gels [12,13]: 1) a two-lobe fea-
ture in the gel butterfly pattern is less visible (this feature
comes from the singularity of S(q) in gel models at q = 0:
there is a gap between limqT→0 S(qT ) and limqL→0 S(qL)).
2) A wavy texture at intermediate q is visible in the FE
model, which is not present in the conventional butterfly
models. Note also that we consider here rather strongly
stretched cases (R̃ > 1). When weakly stretched, contour
shapes are simple ellipses similar to those in Figure 12
below.
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Fixed Model: R = 5
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Fig. 5. The scattering function S(q) of the FE model on the
(qT , qL)-plane at R = 5.
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Fig. 6. The contour plot of S(q) of the FE model on the
(qT , qL)-plane at R = 5. The highest contour shown here is
limited to S(q) = 0.3.
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Fig. 7. The scattering function S(q) of the AN model with the
minimum fluctuation (λT = λL = 1) as a function of q = qT
(solid curve) or q = qL (dashed curve) at R = 3.

In Figures 7 to 10 we show the plots of the AN
model with the minimum fluctuation (λL = λT = 1)
corresponding to those of the FE model in Figures 3 to 6,
respectively. We see that the wavy texture is less signifi-
cant in the AN model than in the FE model. Because of
this, the two-lobe feature on the contour plot in the AN
model (Fig. 10) is more visible than in the FE model (al-
though S(q) at q = 0 is not singular in these two models).
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Fig. 8. The scattering function S(q) of the AN model with the
minimum fluctuation (λT = λL = 1) as a function of q = qT
(solid curve) or q = qL (dashed curve) at R = 6.
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Fig. 9. The scattering function S(q) of the AN model with
the minimum fluctuation on the (qT , qL)-plane at R = 5.
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Fig. 10. The contour plot of S(q) of the AN model with the
minimum fluctuation on the (qT , qL)-plane at R = 5. The high-
est contour shown here is again limited to S(q) = 0.3.

In Figures 11 and 12 we show the three-dimensional
and the contour plots of S(q) of the NAN model on the
(qT , qL)-plane. We set λL = 5 and λT = 1/

√
λL (in-

compressible network). Although we cannot quantitatively
compare these plots with those of the FE and AN mod-
els because the average of the end-to-end vector of the
NAN model is zero, we remark that the two-lobe feature
is completely absent in the NAN model.
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NAN Model: λL = 5
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Fig. 11. The scattering function S(q) of the NAN model with
λL = 5 and λT = 1/

√
λL on the (qT , qL)-plane at R = 5.
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Fig. 12. The contour plot of S(q) of the NAN model with
λL = 5 and λT = 1/

√
λL on the (qT , qL)-plane at R = 5.

4 Conclusion

We derived a two-point probability distribution
P (Rmn|R) in equation (7) for a chain whose ends
are fixed without fluctuation. We find that the average
of Rmn behaves “affinely” as in equation (11) while
the standard deviation behaves “non-affinely” as in
equation (12), which are consistent with the original
constraint. The resulting scattering function shows a kind
of normal butterfly pattern: the contour shape on the
(qT , qL)-plane is compressed in the longitudinal direction.
Notably, the pattern is textured with a wavy character.

We compared our results with some previous models
and clarified the meaning of the previous models in terms
of the average and the standard deviation of Rmn of a
Gaussian model as in Tables 1 and 2: the AN model nec-
essarily has a finite magnitude of fluctuation at both ends
although the average end-to-end distance is fixed, while
the average end-to-end distance is zero and both ends are
fluctuating in the NAN model. We cannot describe a chain
whose ends are fixed without fluctuation by the AN and
NAN models.

We comment on a possible connection of these models
with the recently obtained scattering function of stretched
slip-ring gels [20]. When such a gel is stretched, the inho-
mogeneity in the cross-link density, which is the origin of
the abnormal butterfly pattern (the contour shape is elon-

gated in the longitudinal direction), becomes weak and
each chain looks as if its average end-to-end distance was
fixed but with a weak fluctuation: from our interpretation,
the latter situation would be described (especially when
the chain is in θ-solvent or in melt) by the AN model, or,
in some cases, by the FE model.

Recently, Sommer and Saalwächer studied segmental
order in end-linked polymer networks [23]. In their study,
they consider a chain polymer with its ends fixed and un-
der this constraint they calculated numerically a tensor
order parameter. It is shown that this quantity measur-
able via NMR can markedly distinguish swollen chains and
chains in gel from ideal chains. In this context, it would
be worthwhile studying the tensor order parameter by us-
ing the analytical distribution for the end-fixed ideal chain
obtained in this work. This point will be examined in the
near future.

K.O. thanks Katsumi Hagita and Tetsuo Deguchi for getting
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tively. This work is supported by research grants KAKENHI
(MEXT, Japan).
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