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           Introduction 
 In nature, there are strong and tough biological materials that 

often possess remarkable hierarchical structures.  1   –   4   Examples 

of such natural materials include nacre, the exoskeleton 

of crustaceans, and spider webs. Using these examples, we 

emphasize the role of simple models for structures, which 

yield physical insights and often reveal useful scaling laws. 

 A scaling law gives an important physical quantity as 

a product of the powers of other physical parameters, as in 

 Equations 1  and  2  given later in the text. Scaling laws are 

useful as guiding principles for various applications such as 

industrial development of reinforced materials, although they 

are mathematically exact only in the limit in which a number 

of physical parameters,  X ,  Y ,  . . . , are much larger or smaller 

than certain values. Such a limit is often expressed as a set of 

inequalities, such as  X >> X0  and  Y << Y0 . 

 In general, when a scaling law is obtained, its validity can 

be established through “data collapse.” A clear example is 

shown in   Figure 1  e: The original three scattered curves on the 

left fall onto a single curve on the right as a result of replotting 

the same data on new axes. The quantities used for the new  x

and  y -axes are obtained by rescaling the quantities used for 

the original  x  and  y  axes in a way specifi ed by the underlying 

scaling law shown in  Figure 1e . ( Figure 1d  demonstrates 

another example of the data collapse.) Theoretically, scaling 

laws become exact only in a limit as stated previously. 

However, scaling laws are frequently valid in a practical sense 

over wide parameter ranges far beyond the theoretical restric-

tion. Accordingly, scaling laws could be guiding principles 

for the development of various products in industries, such 

as new reinforced materials.     

 To understand strength and/or toughness of materials for 

reinforcement, it is important to know the locations at which 

the stress fi eld is locally enhanced when an external load is 

applied. Stress is concentrated at the tips of cracks or flaws, 

and such a concentrated tip stress can trigger failure of mate-

rials. Accordingly, it is indispensable to know how stress is 

concentrated, in particular when a simple line crack is present, 

as shown later in this article.   

 Nacre 
 Nacre is a strong biological material and possesses a mag-

nifi cent hierarchical structure. It has been actively studied  5   –   8 

together with, for example, bone,  9   –   11   and has inspired a num-

ber of artifi cial materials.  12   –   17   In nacre, the layered structure 

is composed of hard plates of aragonite and soft layers of 

proteins  5   (see  Figure 1a ). Although soft layers are much thin-

ner than hard layers, the fracture surface energy of nacre is a 

few thousand times as high as that of a monolith of hard arag-

onite.  18   A number of different mechanisms for the toughness 
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and strength of nacre have been pointed out on the basis of 

experimental observations: Soft layers are elongated in a step-

wise way when stretched;  19   thin compressive layers between 

hard layers lead to a remarkable strength;  20   layer interfaces 

are rather rough;  21   mineral bridges are found between layers;  22   

and the surface of hard plates are wavy.  23   Numerous theoreti-

cal studies have also been attempted, including studies using 

(1) elastic models  20   based on analytical solutions  24 , 25   and scaling 

arguments,  26 , 27   (2) viscoelastic models,  28   (3) micromechanical 

models,  29   and (4) numerical models such as fi nite-element 

models,  23 , 30 , 31   a fuse network model,  32   and a model with a 

periodic Young’s modulus.  33   

 The model discussed in Reference  24  is a simple layered 

structure of hard and soft plates, mimicking the structure of 

nacre as shown in  Figure 1b . The model is based on the elastic 

moduli for soft and hard layers,  E  h  and  E  s , respectively, and 

the thicknesses for soft and hard layers,  d  h  and  d  s , respectively. 

These parameters satisfy the following relations:  E  h   >> E  s  

  

 Figure 1.      (a) Scanning electron microscope image of the section of nacre. The thickness of hard layers is approximately 0.5 μm. Because 

the soft layers are extremely thin (approximately 25 nm), they cannot be seen. (b) Illustration of a simplifi ed model of nacre with a crack 

and structure parameters in the model. The left-hand illustration is drawn on the scale of layered structure, while the right-hand is drawn 

on the sample scale. (c) Stress distribution under the presence of a line crack in a plate of nacre (left) and a monolith of the hard element of 

nacre (right) with an intensity scale (middle), obtained by fi nite element calculations. Stress concentration near the crack tips is signifi cantly 

reduced in nacre. (d) The top plot shows stress distribution around the right crack tip (b) of a horizontal line crack. Stress values are more 

reduced for smaller  ε  (the case  ε  =  ε  0  corresponds to real nacre). The bottom plot shows collapse of the same data by rescaling of the axes, 

confi rming the validity of the scaling law shown in the panel. (e) Crack shape near the tip (left) and collapse of the data (right), confi rming 

the scaling law shown in the panel. The plots show that the deformation is more enhanced for smaller  ε  0 . (a) Courtesy of Prof. Dinesh Katti. 

(c–e) Created from data in Reference  37 .    
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and  d  h   >> d  s . The elastic energy of this simple model can 

be constructed in the limit of small  ε  under the existence of 

a line crack perpendicular to the layers, where  ε  is defi ned 

as  ε  = ( E  s  /E  h )( d/d  s ) with  d = d  h   + d  s . Reasonable values of the 

parameters are  d  h  = 0.5 µm,  d  s   = d  h /20,  E  h  = 50 GPa, and 

 E  s  = 1 MPa (the soft layers are like gels  34  ); for this set of 

parameters,  ε  is signifi cantly small ( ε   ∼  10 −4 ). When the sam-

ple is stretched in the  y  direction, on the basis of the elastic 

energy in the small  ε  limit, the dominant component of defor-

mation fi eld  u   i   and stress fi eld  σ   ij   are shown to be  u   y   and  σ   yy   

(termed  σ   y   in the following), with the other components being 

negligibly small in comparison. 

 In addition, the dominant component of the deformation 

fi eld  u   y   was shown to be governed by an anisotropic Laplace 

equation.  24   The equation for  u   y   can be analytically solved 

under boundary conditions. For example, the conditions that 

describe a line crack of length 2 a  propagating in the  r  direc-

tion, as illustrated in  Figure 1b ,  24 , 35   are specifi ed in the fol-

lowing way: The stress  σ   y   is zero at the surface of the crack 

(i.e., at  y  = 0 and − a  <  r  <  a ), the deformation  u   y   is zero at 

 y  = 0 from symmetry, except for the region − a  <  r  <  a  in which 

the crack is located. The fi xed grip condition is specifi ed by 

the requirements that the deformation  u   y   is set to  u   y   =  u  0  and 

 −u  0  at the top and bottom edges (i.e.,  y  =  L /2 and − L /2 where 

 L  is the height of the sample as defi ned in  Figure 1b ). With 

these boundary conditions, a complete analytical solution for 

 u   y   is obtained via a special conformal mapping augmented 

by a transformation for avoiding the singularity that appears 

on the  y  = 0 axis. 

 The analytical solution of the stress fi eld  σ   y   is obtained 

from that of  u   y  . Near the crack tip (| r | <<  ε  1/2  L ), the analytical 

solutions give the following scaling laws for the deforma-

tion and stress fi elds at  y  = 0 +  (the symbol 0 +  implies the limit 

 y  → 0 from a positive  y ):

 1/2

0 /( ) for 0,
y
u u r L r≈ ε <  (1) 

   and

 1/2

0 / for 0,σ ≈ σ ε >
y

L r r  (2) 

 where  L  is the sample height and  σ  0  is a characteristic size 

of the stress at the top and bottom edges (at  y  =  L /2 and − L /2). 

The above scaling laws predict that, compared with a mono-

lith of aragonite, stress concentration is reduced by the 

factor  ε  1/4  and deformation is enhanced by the factor  ε  −1/4 . 

Theoretically, these scaling laws are valid under the follow-

ing conditions:

 1 21, .W/ε << << << ε << <<d r L a  (3) 

   The reduction in stress concentration predicted previously  24   

has been confi rmed by numerical calculations,  36 , 37   as shown 

in  Figure 1c . In addition, numerical results provide physical 

insights, as suggested in  Figure 1d–e : As  ε  gets smaller, as in 

nacre, soft layers are stretched all the more and, correspond-

ingly, the deformation of the hard layers is reduced. As a 

result, the stress near the crack tip, which is governed by 

the hard layers, is reduced.  36 , 38   

 Finite element calculations  37   revealed that the simple scaling 

laws derived in Reference  24  are robust. Namely, the laws are 

valid over wide parameter ranges far beyond the theoretical 

requirements by a clear “data collapse.” In  Figure 1e , the scat-

tered curves on the left are collapsed onto a single master curve, 

as seen on the right.  Figure 1d  also demonstrates a data collapse. 

 Some of the collapsed data include the data obtained in 

cases that break the required conditions, which suggests the 

robustness of the scaling laws. In fact, many conditions speci-

fi ed in  Equation 3  are required for the scaling laws to be valid 

theoretically, but, in the simulations, the conditions  d << r <<  

 ε  1/2  L << a << W  are signifi cantly relaxed (e.g.,  W/a  = 3 for all 

cases of  ε ) and the condition  ε  1 /  2   L << a  is violated in the case 

 ε  = 65 ε  0  with  ε  0  = 6500 (the case of  ε  =  ε  0  corresponds to real 

nacre); nonetheless, agreements between theory and simulation 

are remarkable. 

 In Reference  24 , a scaling law for the fracture energy of 

the model nacre, a measure of fracture toughness, is also 

derived under the condition given in  Equation 3  on the basis 

of  Equations 1  and  2 :

 1 2

c 0 h
( ) ,− /≈ ε /G d a G  (4) 

 where the large enhancement factor for the fracture energy, 

which is expressed as

 1/2

0 h s s h 0( ) ( ),ε / = / / /d a E E d d d a  (5) 

 is consistent with experimental values.  18   Here,  G  h  is the frac-

ture energy of the monolith of brittle aragonite ( G  h  ≈ 1 J m –2 ) 

and a typical defect size in hard layers  a  0  is of the order of the 

thickness of soft layer  d  s  ( a  0  ≈ 0 . 5 / 20 µm = 0.025 µm), which 

lead to the following conclusion:  G  c  is a few 1000 J m –2 . 

 In summary, concerning the simple model of nacre, scal-

ing laws for the crack tip stress and the crack shape given in 

 Equations 1  and  2  are obtained analytically and confi rmed 

by numerical calculations via clear data collapse. In fact, 

another scaling law for the maximum stress that appears at 

the crack,

 1 2

0 for 0,/σ ≈ σ ε / >
M

L d r  (6) 

 is derived and confi rmed by numerical calculations.  37 , 39 , 40   

On the bases of the three established scaling laws,  Equation 4  

is derived, which has been indirectly confi rmed but has yet 

to be directly or experimentally confi rmed. Ranges of the 

validity of scaling laws thus proposed are theoretically limited 

by the conditions in  Equation 3 , which are also enumerated 

in  Figure 1 . However, numerical calculations again suggest 

that the scaling laws are practically valid over wide parameter 

ranges far beyond the theoretical restriction. 
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  Equation 4  leads to some guiding principles for reinforcing 

soft-hard layer composites, which suggest that the structure 

of nacre is rather optimized. For example, large values of  d/a  0  

( ∼  d  h  /d  s ) and  E  h  /E  s  as observed in nacre are advantageous for 

toughening, as predicted by  Equation 4 .   

 Exoskeleton of crustaceans 
 The exoskeleton of crustaceans is composed of inner and outer 

layers known as the endocuticle and exocuticle, respectively.  41   

Both layers possess a remarkable helical structure (  Figure 2  a) 

but with different helical pitches: bundles of chitin-protein 

fi bers are embedded in a calcium carbonate matrix with the 

bundles forming a chiral structure. This structure is universal 

in crustaceans,  42   but its mechanical properties have been stud-

ied only recently,  43 , 44   including studies using artifi cial biomin-

eralization to mimic the chiral structure.  45   –   47       

 By noting that the fi ber bundles are softer than the matrix, the 

helical structure has been mapped into a layered structure of soft 

and hard layers of equal thickness, where each layer is a compos-

ite of fi ber bundles and matrix (as illustrated in  Figure 2b ).  48   For 

example, when the sample is stretched in the  y  direction, as in 

 Figure 2a–b , in the layers numbered 0, 6, 12, and 18, which are 

a composite of fi bers and matrix, fi ber direction is parallel to the 

stretch direction, rendering these layers stronger than the layers 

numbered 3, 9, and 15, in which the fi ber direction is perpendicu-

lar to the stretch direction. In other words, the elastic modulus 

periodically changes along the  z -axis when the sample is stretched 

in the  y  direction. As a result, on the length scale of the spiral 

pitch, the structure can be approximately regarded as a layered 

structure as in the right-hand illustration in  Figure 2b . 

 This structure is similar to the structure of nacre except 

for (1) the thickness of soft and hard layers are approxi-

mately the same ( d ≈ d  s   ≈ d  h ), and (2)  E  h  and  E  s  are deter-

mined to be functions of the elastic moduli of the matrix 

and bundle,  E  m  and  E  b , and the volume fractions of the 

matrix and bundles,  φ  m  and  φ  b  (for different approaches to 

the periodically changing elastic modulus, see References 

 33  and  49   –   52 ). The volume fractions can be conveniently 

parameterized by introducing a small parameter  δ  where 

 φ  m  = (1 +  δ ) / 2 and  φ  b  = (1  −   δ ) / 2, because  φ  m  is approxi-

mately equal to  φ  b  in living lobsters, and the volume frac-

tions satisfy the relation  φ  m  +  φ  b  = 1. 

 For this simplifi ed layered structure of the exoskeleton, all 

four scaling laws,  Equations 1 ,  2 ,  4 , and  6 , established for the 

nacre model, can be exploited if the small parameter  ε  in these 

scaling laws is replaced with  ε  = [(1 +  δ )(1 −  δ ) E  m / E  b ]−1 

for the exoskeleton in order to refl ect the substructure of fi ber 

bundles and matrix. This is possible because the laws derived 

for nacre are valid as long as the conditions given in  Equation 3  

are satisfi ed. The enhancement factor  ε   −  1  / 2 ( d/a  0 ) for the fracture 

energy in  Equation 4  can be expressed as:

 1 2

0 m b 0 m b( ) (1 )(1 ) / ( ) for ./ε / ≈ + δ − δ / >d a E E d a E E  (7) 

   In addition, when  Equation 4  is applied to the exoskel-

eton,  G  h  is the fracture energy in the toughest direction of 

a parallel composite in which fi ber bundles are oriented par-

allel to each other throughout the matrix rather than helically. 

The fracture strength and toughness of this parallel composite 

is direction-dependent and is strongest when under tension in 

the direction of the bundles. 

 The enhancement factor for the fracture energy given 

in  Equation 7  for the exoskeleton is estimated to be a few 

1000, which is similar to nacre. This is because in the case of 

the exoskeleton, the period of the structure  d  (≈2 d  s  as  d  s  ≈  d  h ) 

corresponds to the helical pitch  p  (≈50 µm) and  a  0  to the 

bundle diameter (≈0 . 5 µm). Here, rather rough approxima-

tions have been utilized for the elastic moduli: The elastic 

  

 Figure 2.      (a) Illustration of the spiral structure of cuticle layers in the exoskeleton of lobsters, generated by Mathematica 10 software. The layers 

are numbered from 0 to 18. (b) Original spiral structure (left), and its simplifi ed layered structure (right) when the sample is stretched in the 

specifi ed direction. The layer numbers correspond to those in (a). (c) Scanning electron microscope image of outer and inner spiral 

structures (exocuticle and endocuticle) with different spiral pitches, observed in the exoskeleton of lobsters. (c) Reproduced with permission 

from Reference  41 . © 2009 Wiley.    
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modulus of the matrix (amorphous calcium carbonate) is 

approximately 50 GPa, and that of the bundles (a composite 

of chitin fi bers and proteins) is around 1 GPa. 

 By comparing the two enhancement factors in  Equations 5  

and  7 , some differences are noticed in the strategy used for 

increasing the corresponding enhancement factor for the fracture 

energy. In nacre, the factor  h s/E E   , dominates over the other 

factors, whereas the factor  d/a  0  dominates in the exoskeleton. 

In other words, the combination of extremely soft and hard is 

exploited in nacre, whereas in the exoskeleton case, the substruc-

tures (i.e., the bundles and matrix) are effectively used to adjust 

helical pitches to enlarge the factor  d/a  0  and achieve roughly 

the same order of fracture toughness. Adjusting the helical 

pitch has another advantage, which is discussed later. 

 In the case of the exoskeleton, confi rmation of the four 

scaling laws (for the stress and deformation fi elds, the maxi-

mum stress, and the fracture energy) by experiment or simula-

tion is still under way, however,  Equation 4  and  Equation 7  

support the fact that the following features observed in the 

exoskeleton are mechanically advantageous. These features 

can be regarded as guiding principles for toughening, as also 

supported by theory: (1) The combination of soft and hard 

elements (i.e.,  E  b   < E  m ); (2) the helical structure, because of 

which the fracture energy becomes even larger than that in 

the toughest direction of the parallel structure; (3) the equal 

volume fractions of the matrix and bundle, which correspond 

to a sharp peak in the enhancement factor in  Equation 7  when 

 δ  is zero (i.e., when  φ  m  =  φ  b ); and (4) the exocuticle with a 

small helical pitch covers the endocuticle with a large heli-

cal pitch, contributing to the reinforcement of the structure in 

the following manner: A helical structure with a long pitch  d  

cannot be protected against small cracks because  Equation 7  

is valid for a crack whose size  a  is larger than  d,  as suggested 

in  Equation 3 . Thus, the exocuticle protects the inside from 

smaller cracks (but with a lower toughness than the endocuticle), 

while the endocuticle protects the inside from larger cracks 

(with a higher toughness than the exocuticle).   

 Spider webs 
 Spider silks are high-performance polymeric fi bers and thus 

have been actively studied over the years  53 , 54   in terms of their 

entropic elasticity,  55   water coating,  56   breaking strength,  57   gene 

family,  58   liquid-crystalline structure,  59   micellar structure,  60 , 61   

hierarchical structure,  62   and torsional relaxation.  63   The mechani-

cal advantages of spider webs have yet to be explored, except 

for studies on structural vibration,  64 , 65   tensile pre-stress,  66   detailed 

fi nite-element modeling,  65 , 67   and nonlinear response.  68   –   70   

 A simple model of orb spider webs is composed of stiff 

radial and soft spiral threads and is under a global strain,  71   

as in real spider webs  67   (see   Figure 3  a–b). It is convenient 

to introduce a specifi c spring constant as the spring constant 

multiplied by the length of the spring (the spring constant is 

inversely proportional to the length). This quantity can be 

expressed as the elastic modulus multiplied by the section area 

  

 Figure 3.      (a–b) Force distribution in a simple model of spider webs under tension. The ratio of radial thread and spiral thread spring 

constants (multiplied by the length) of (a) and (b) are  K/k  = 1 and 10, respectively. The maximum force  F  M  that appears at the edge radial 

thread is smaller in (b), which suggests that real webs (corresponding to [b]) are stronger than artifi cial webs in which  K  is comparable to  k . 

(c) Summary of parameters in the model spider web. (d–f) The maximum force  F  M  as a function of  K/k , the number of radial threads  N , and 

the number of spiral threads  M , respectively. The three plots show that higher  K/k  values are mechanically advantageous. (a–b) and (d–f) 

Created from data in Reference  71 .    
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of a thread to compare the relative stiffness of the threads. The 

specifi c spring constants for the radial and soft threads are 

denoted  K  and  k , respectively. Typical values of the diameter, 

elastic modulus, and initial tension of radial threads are 3.9 µm, 

1 GPa, and 0.13 mN, respectively, and those of spiral threads 

are 2.4 µm, 0.8 GPa, and 10 µN, respectively.  67   These numbers 

are consistent with other typical values shown in  Figure 3c .     

 As demonstrated in  Figure 3a and b , the model web is 

stronger, that is, a maximum force  F  M  appearing in a web is 

smaller, when the stiffness contrast  K/k  is larger than one; 

as in real webs. Here, the maximum force  F  M  is considered 

to be a measure of strength, because in general, materials 

start failing at the position where a strong local force acts. 

 The simple model of spider webs further reveals sur-

prising conclusions, although the model predicts no scal-

ing laws. The stiffness ratio  K/k  seems to be optimized in 

real webs from a number of mechanical viewpoints, giving 

high adaptability to spiders: (1) In  Figure 3d , the maximum 

force  F  M  sharply drops in a range of small  K/k  but changes 

little when  K/k  is larger than around 14, which is a typical 

value of the stiffness difference in real webs.  67   Considering 

the diffi culty for spiders to create two types of thread whose 

mechanical properties are quite different, the typical value 

of the stiffness difference of 14 may be regarded as a result 

of optimization. (2) The weak dependence of the maximum 

force  F  M  on the number of radial threads  N  and that of spiral 

threads  M  for large  K/k  ( Figure 3e–f , respectively) suggests 

spiders can be highly fl exible to improve their chances of 

survival. Spiders can spin webs by freely selecting the 

number of spiral and radial threads, according to the spa-

tial and biological environments, for example, to a typical 

branch spacing of trees or to a typical size of prey. (3) This 

model also explains how spider webs function well even if 

some parts of spiral threads are missing. Remarkably, stress 

concentration is absent in spider webs.   

 Conclusion 
 A key feature in the reinforcement on the three biological 

materials discussed here, nacre, the crustacean’s exoskeleton, 

and spider webs, is the combination of soft and hard elements. 

Simple models reveal that the structures are optimized in a num-

ber of mechanical senses, and simple scaling laws or simple 

physical understandings provide guiding principles for develop-

ing tough materials mimicking the biological structures. It is pos-

sible that such a naive model is oversimplifi ed and fails to capture 

the reality of the original material. Even in such a case, simple 

guiding principles obtained from a biologically inspired study are 

useful in their own right and could lead to the development 

of an artifi cial material that is even stronger than the original 

biological material. This fact further justifi es the importance 

of studies on complex systems via simple models. 

 An extreme example of soft-hard composites is porous 

materials with voids corresponding to the soft element. In fact, 

there are many porous and strong materials in nature, such 

as the stereom of holothurians (e.g., the soft bone of sea 

cucumbers),  72   the skeleton of a certain sponge,  73   and the frus-

tules (hard cell walls) of diatoms.  74   Accordingly, studies on 

reinforcement with voids would be an interesting direction of 

research.  75 , 76   Nonlinear extension of the simple models would 

also play an important role in the future study of biological 

materials and biomaterials.  39 , 40 , 77   

 Approaches via a simple model, often using scaling laws, 

are promising and have been accepted, especially in fi elds 

in which engineering or material scientists meet physicists, 

for example, in polymer science,  76 , 78   wetting,  79 , 80   and granular 

physics.  81 , 82   This review will be useful for disseminating 

the perspective of physicists for complex systems in fi elds in 

which such simple approaches have yet to be used, including 

fi elds concerning fracture and toughness of materials.     
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