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Abstract

Experimentally it is established that the fourth-order anharmonicity plays significant roles in many molecules. In
high resolution spectroscopy, it is known that a picture of local (anharmonic) modes with harmonic couplings between
modes gives rise to a quartic Darling-Dennison coupling between normal modes. It has been shown that this order of
anharmonicity can be selectively studied via seventh-order off-resonant spectroscopy, which probes the three-time re-
sponse function (J. Chem. Phys. 106 (1997) 1687). In this paper, we further explore the effect of the fourth-order an-
harmonicity in the seventh-order signal, or in the three-time response function (which can be complementary
investigated via third-order infrared spectroscopy), when the anharmonicity causes mode mixing; we obtain a fairly
compact analytical result and numerically present the signal from CH stretch vibrations in methylene chloride as two-
dimensional (2D) contour maps. It is found that purely kinetic coupling between anharmonic local oscillators can give
rise to cross-peaks in the 2D spectra. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

The two-dimensional (2D) laser spectroscopy
has recently been explored by many groups. This
laser analogue of the NMR spectroscopy has long
been overdue; the experimental and theoretical
sophistication has reached the level required to the
realization.

One of the pioneering works for the optical
analogue was the work [1] on the fifth-order off-
resonant processes, where a possible discrimina-
tion of inhomogeneity from homogeneity in liquid
spectroscopy was demonstrated. This work moti-
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vated a few groups to overcome experimental
difficulties toward the detection of the fifth-order
signal [2-4]. Possible important origins of the
signals in the fifth-order spectroscopy, i.e. anhar-
monicity (in potential) and nonlinearity (in
polarizability), were pointed out in Refs. [5,6].
Anharmonicity and nonlinearity then became key
ideas in experimental interpretations of the fifth-
order Raman spectroscopy. This picture was tes-
ted with the aid of ab initio calculation [7] and
anharmonicity was further examined in Refs. [8,9].
Another issue brought up next was the mode
coupling [10,11] in the frequency domain. After
some discussions of the cascading effect [12-14],
new experimental results [15-18] on the low fre-
quency modes of liquid CS, are ready for com-
parison to molecular level calculations [19-22].
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In parallel with this high level of activity in 2D
Raman spectroscopy, researchers have explored
the 2D spectroscopy in a broader context (second
harmonic generation [23], resonant spectroscopy
[24-27], CW spectroscopy [28-31], THz spectro-
scopy [32], combination of infrared and optical
sources [33] etc.). The possibility of structural
analysis by the optical 2D spectroscopy has been
investigated theoretically [34] and has also been
explored experimentally [35] by direct analogy to
2D NMR correlation spectroscopy (COSY) [36].
The theoretical demonstration has been examined
by ab initio calculation [37], where effects of non-
linear system-bath coupling upon the fifth- and
seventh-order Raman experiments have been in-
vestigated [38,39]. Echo phenomena in 2D Raman
spectra have been revisited [40,41], and are related
to investigations of the 2D line shape in resonant
photon echoes [27,42,43].

In this article, we explore a new direction to-
ward even higher order spectroscopy. It has been
shown that the fifth-, seventh-, ninth-order off-
resonant Raman spectroscopy has an enhanced
sensitivity to third-, fourth-, fifth-order anharmo-
nicity, respectively [6]. In this paper, we further
examine the seventh-order spectroscopy and dem-
onstrate its connection to the Darling-Dennison
(D-D) anharmonic coupling, which typically re-
sults from a harmonic coupling of anharmonic
oscillators.

Note here that the three-time response function
detected via seventh-order Raman spectroscopy
and thus studied in the present paper can be com-
plementary observed through third-order infrared
spectroscopy, as suggested in Ref. [33]. In addi-
tion, if we use optical laser in combination with
infrared laser, the three-time response function can
be investigated via either third-, fourth-, fifth-,
sixth-, or seventh-order spectroscopy. In this sense,
we should keep in mind that the present theory is
not limited to the seventh-order spectroscopy.

Thus, seventh-order 2D Raman is complemen-
tary to third-order 2D infrared, and both should
provide direct information about quartic anhar-
monic coupling between harmonic normal modes.
By analogy to 2D NMR [36], the dipole—dipole
coupling interaction between identical bonds
has been proposed as a structural diagnostic

[34,35,37]. It is therefore important to understand
mechanical coupling (which includes potential
coupling and kinetic coupling) between identical
bonds quantitatively. Normal modes automati-
cally incorporate any quadratic coupling between
bonds exactly, so this 1:1 coupling is not reflected
in 2D cross-peaks. (Here and hereafter, ““i:j cou-
pling” refers to an interaction where one mode
loses i quanta whereas another mode gains j
quanta.) 2:2 effective quartic couplings are thus
one of the lowest order resonant couplings be-
tween identical bonds with the potential to appear
in the 2D cross-peak spectrum. Since the work of
Darling and Dennison on the overtone spectra of
H,O [44], the importance of 2:2 resonant coupling
has been recognized in high resolution spectro-
scopy [45-49]. The zero-order picture which
emerged from these studies assumes each identical
bond has the same anharmonic “local mode” po-
tential and that the dominant coupling between
bonds arises from the kinetic energy [45,50]. Here,
the kinetic energy coupling between bonds refers
to the coupling resulting from the requirement that
the center of mass remain fixed during vibration
[51] and is the only coupling between bonds in a
valence force field [47,52]. ' In this way, the an-
harmonic nature of the individual bonds gives rise
to a systematic pattern of anharmonic couplings
between normal modes which depends on the
atomic masses and molecular geometry [45]. It is
therefore conceivable that such couplings may be
structurally informative in condensed phase 2D
spectroscopy.

Careful investigations of this local mode model
by high resolution spectroscopy have revealed that
the third-order effect of cubic anharmonicity and
the second-order effect of quartic anharmonicity
usually make comparable contributions to the ef-
fective quartic coupling [45,53]. Early work by
Pliva [54] and the considerable success of the vi-
bron model developed by lachello, Levine and co-
workers [55-57] indicates that bonds in many

! This potential coupling also generates higher order anhar-
monic interactions because the harmonic Cartesian potential
coupling becomes anharmonic in curvilinear bond length/angle
coordinates.
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molecules can be well described by simple, uni-
versal potentials. (Morse oscillators for stretching
vibrations, symmetrical anharmonic bending po-
tentials.) Departures from this basic model, such
as potential coupling between bonds, are consid-
ered to be higher order effects. For simplicity, the
model considered here includes only the lowest
order effect of bond anharmonicity on absolute
value seventh-order Raman spectra. (The anhar-
monic potential investigated in this paper is quite
general as introduced in Eq. (2) below; it 1ncludes
say, the ninth-order anharmonicity coefﬁment gl ) k
However, up to the leading order (in g s) the
three-time response function 1s 1nsens1t1ve to
such anharmonic coefficients, g,, ks except for
g,jk,) This is sufficient to demonstrate that this
seventh-order 2D spectra reflect especially the
quartic anharmonicity and that the relative inten-
sities of the cross-peaks are sensitive to the sys-
tematic coupling pattern generated by kinetic
coupling between identical anharmonic local os-
cillators.

Our argument presented below is based on the
Brownian oscillator model [58]. As pointed out in
Refs. [13,59,60], for the intermolecular low-fre-
quency modes of liquid, this model might be re-
garded as a pragmatic one. For the intramolecular
modes of liquids, however, this model is well de-
fined and can give molecular-level understanding.

2. The three-time response function for anharmonic
systems

It was suggested in Ref. [1] that the fifth-order
signal is proportional to a?a, where a; is the ith
coefficient of the expansion of the molecular po-
larizability o(Q) in terms of some nuclear coordi-
nate Q, ie., « = ap + a0 + a,0* + - - -. It implied
that detection of the signal might be difficult if the
nonlinearity a, in polarizability was small and
there is an indication from an instantaneous nor-
mal mode (INM) calculation of the polarizability-
weighted density of states that a, is small [59,60].
However, it was shown in Refs. [5,6] that even
though the nonlinearity is small, the signal might
be detected with less difficulty if the third-order
anharmonicity 4; in the potential is not small

(because of the contribution proportional to ajls);
the total fifth-order signal results from interference
between the nonlinearity and the anharmonicity.
Here, /; is the ith coefficient of the expansion of the
potential energy of the vibrational mode, V(Q),
ie, V=721b0"4+ 130"+ 2,0+ -

In the present analysis, we calculate seventh-
order signal proportional to ajs. Thus, even if the
polarizability nonlinearity is small, one might be
able to measure the signal if the quartic anhar-
monicity A4 is not small. Note here that, as written
in Section 1, it is experimentally confirmed that the
effective fourth-order anharmonic potential cou-
pling has been regarded as important in some
cases.

The pulse configuration of the seventh-order
off-resonant signal is given in Fig. 1. The optical
observable for femtosecond pulse sequences is pro-
portional to the three-time response function [58],

R(T, Db, T3) = (%) ([l T + T + T3),(Th + T»)],

(T1)]; 2(0)])-

The complete seventh-order response has seven
time dimensions, but four off-resonant electronic
time dimensions have been suppressed in the re-
sponse function because they are limited to times
of the order 1/(we, — w1) Where we, and wy, are the
electronic absorption and laser frequencies, re-
spectively.

We assume that the system can be characterized
by several modes represented by the coordinates
0, frequencies Q;, damping constants (=FWHM)
I i=1,2,...). The potential of the system is
assumed to be

V(Q) = Tu(Q) + Vau(0Q),

where the harmonic and anharmonic contributions
are given by

1
0)=3> Q0 (M

gz(jk

4)
Han(0) = 3220000+ 3 %2 0,0,0,0,+ .

ij.k ijk,l

2)
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Fig. 1. Pulse configuration for the seventh-order spectroscopy. We set 7> = 0 in this paper; the time-domain signal R(7}, T» = 0; T3) is

Fourier transformed with respect to 7 and T; to the frequency-domain quantity /(w;, ®;), where the signal is given by its absolute

value.

In the system with the linear polarizability,

2=+ 3 g,

we have
N
(1) (1)1
R(T\, T, T;) = (%) > a Vool R,
ikl
where

Ry = ([[[0(T1 + T + T3), O;(Th + )], O (Th)], Qi (0)]).

This can be reduced to the following expression
within the approximation where only the first or-
der (in terms of anharmonic coefficients g)’s)
contribution is included;

T\ +Th+T3
P = / A "Di(Ti + Ty + T3, 1)
T

+7 ikl

x Dj(t,0)Dx(t, )Dy (1, Ty + Ty).

This is the essential result of this paper, and can be
regarded as a generalization of Eq. (3.4) of Ref. [6].
The fifth-order version of this result was first
presented in Refs. [11,6] and then reproduced
through other ways of calculations [33,61].

In the above, S is the vertex symmetry factor,
which is defined by

1 (i,j, k,1) = a permutation of (a,b,c,d),
2! (i, j,k, 1) = a permutation of (a,a, b, c),
Sy =< 3! (i,],k, 1) = a permutation of (a,a,a,b),
4! (iajv k> Z) = ((l, a,a, a)a
212! (i, j,k,1) = a perumtation of (a,a,b,b),

where a, b, ¢, d designate all different modes. For
example, we have

2.4 2%

igkl

Zgg‘?[sijkl - 1

for both the anharmonic potentials
4

Hn(0) = £ 0,

and

Vau(Q) 2

= 551210

The propagator is defined by

D) = 001 =9) e Psinlg 1=
J

where 6(¢) is the Heavyside step function and

2
[ =1/ —T;/4

Note that {; can be imaginary for Q; < I';/2. In
the above M; is an effective mass.
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The frequency-domain signal to be discussed
below is the absolute value of the 2D Fourier
transform of the impulse response at 7> = 0 (i.e.,
(o1, 03) = [[(w1, w3)]),

i((,l)],w3):/ dT]/ dT3eiwlTl+iw3T3
0 0
X R(le TZ = 0) T3)

Here, we have set 7, = 0; this time configuration is
the Raman echo type, but does not distinguish
rephasing (echo) and nonrephasing (virtual echo)
Raman coherence paths.
By noting the reduction formula,
3 H s : 1 &t+e3+ésq
sin x; sin x, sin x3 sin x4 = — (=)=
£,63,64=%1
X oS (x] + &2X2 + &3X3 + €4Xs),
we can obtain an analytical expression for

I(w;, ;) as given in Appendix A.

3. Spontaneous manifestation of the Darling—Denn-
ison coupling

The bilinearly coupled identical oscillators (lo-
cal modes) can be diagonalized, i.e.,
h = 10*(x] +x3) + Axix,
= 3(” = A0 + §(e” + A) 03
=320 +320;,
where, with d = A/(2w),
Q~w-—d,

QH~w+d.

In the above the normal modes have been intro-
duced as

O1 = (v —x2), 0> = (x1 +x2).

When the local modes have quartic self-interac-
tions, the D-D coupling appears for the normal
modes, i.e.,

Van = 5 (0t ) 4)
= Vsq + Vop, (5)

where the self-quartic and D-D couplings are
given by

oo = 5o (0F + 0.

Vo = ﬁ@fgg.
Harmonic potential coupling between modes is
not necessary since identical bonds are usually
coupled through the kinetic energy operator in
center of mass coordinates [51]. Any nonzero
coupling (whether potential or kinetic) is sufficient
to completely mix identical bond oscillators into
symmetric and anti-symmetric normal modes. It is
usually found that kinetic coupling dominates, but
the potential coupling is not negligible [47]. The
quadratic coupling strength alters the normal co-
ordinates for similar bond oscillators attached to
different functional groups, but does not generate
2D cross-peaks in the absence of higher order
coupling in any case. Since the origin of the cou-
pling is irrelevant for calculation of the 2D spec-
trum in the model used here, potential coupling is
assumed. The origin of the coupling does matter
for a priori prediction of the coupling strength.

4. Single-mode case

In this section, we present numerical results for
a single-mode case to provide the basis for un-
derstanding the mode coupled case presented in
the next section.

We specifically consider a mode at frequency
Q, =600 cm™' with the damping constant (or
FWHM) I'1 =20 cm™!. In this case,

I(o,w3) x F(1111),

where the function F(1111) is the abbreviation of
F(, Iy, TGG, ¢, T) given in Appendix A.
The logarithm of the absolute value of the right-
hand side is shown in Fig. 2.

The complex 2D spectrum has a symmetry
(o), w3) = I(—w;, —w;)" required by the real time
domain impulse response from which it is derived.
The absolute value display has a twofold rota-
tional symmetry about the origin. There are four
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Fig. 2. 2D signal for a single mode system with a mode char-
acterized by the parameters (Q; = 600, I'j = 20) in the unit
cm~!. The logarithm of the absolute value of the Fourier-
transformed quantity 7(w;, ws) is plotted.

types of peaks in Fig. 2. These are illuminated by

the analytical result. The function F(1111) can be
expressed as,

F1111) =

(6, —i(3w; + w3)]

Off resonance, the 2D spectrum has disper-
sion line shapes. For example, the line w; = Q)
exhibits a real dispersion line shape (3w;+
Q1)/(16I',Q}(0? — Q7)) far off the resonance at
w; = Q. The physical significance of these dis-
persion line shapes is not yet clear. Frequency-
resolved third-order Raman line shapes have long
been known to have a dispersion component
around the Raman resonance [62] which is re-
quired by nonlinear causality [63]. However, the
procedure for the scan and Fourier transform have
a strong in influence on the 2D line shape
[36,42,64] and it is possible to introduce artificial
dispersion line shapes by Fourier transformation
[65]. This can become a nasty problem in 2D
spectroscopy because a broad dispersion line shape
resulting from the first Fourier transformation can
be placed on top of the absorption mode spectrum
by the second Fourier transform. A better dis-
play might significantly improve 2D Raman reso-
lution.

s==+1

The two symmetry-related peaks at +(Q;, Q) are
nonrephasing (the frequencies have the same sign)
with imaginary amplitude +i®,/(8T?) in the zero
damping limit; the two rephasing peaks at
+(Q;,—Q,) have equal and opposite frequencies
but twofold smaller imaginary amplitude
+iQ,/(16I'%) in the same limit; the peaks at
+(Q,3Q,) have sixfold weaker imaginary ampli-
tude +iQ, /(48I7) in the limit because the 3 quanta
damping is three times larger than for the re-
phasing peaks; and those at +(Q;,—3Q;) with a
far weaker real amplitude —1/(48I";) in the limit.
These real amplitude peaks are closely connected
to damping as can be seen by the vanishing reso-
nant F(1111) numerator in the zero damping
limit. Off-diagonal peaks with opposite real/imag-
inary character to the diagonal peaks also occur in
2D NMR [36].

? [T A =i = sE)IN = i3 = sG)]BI = i(ws = s36)]}

The position of the peaks can be understood
from double-sided Feynman diagrams (see Fig. 3).
The black dot stands for an interaction with the
laser field through oc(IU, implying one-quantum
transition for the mode. The cross stands for the
anharmonic transition (Q}), which implies zero-,
two-, or four-quantum transition for the mode.
The diagrams in which some of the black dots and
the cross are moved down also contribute the
signal. As explained in Ref. [6], the cross can be
placed only during T3; there are 32 diagrams to be
considered and two examples are shown in Fig. 3.
In the present case 75 is assumed to be zero.

If we look at the upper diagram, the factor
e 7 is associated with the period 7). This sug-
gests the pole at w; = +£Q,. Considering all the
other possible diagrams, we see that the pole
should be at w; = £Q.
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Fig. 3. Double-sided Feynman diagrams for the single-mode system with the fourth-order anharmonic interaction. We set 7, = 0 in
this paper. The upper line represents time evolution of the left-hand side wave function (ket) whereas the lower represents the right-
hand side (bra). We assume the system is initially in the ground state denoted by zero. The black dot stands for the laser interaction

which changes the oscillator state from i to i + 1 or vice versa.

In the lower diagram, the factor [,* dre %'x
e (B0 is associated for the period T3. This
suggests the poles at w; = £Q; and £3Q,. After
considering all the other possible diagrams, we see
that the pole should be at w; = £Q,, +3Q,

5. Two-mode case

In this section, we present numerical results for
a two-mode system and demonstrate how the
symmetry of the peak positions can reveal
the coupling mechanism, e.g., the cross-peak is the
signature for the D-D coupling while not for the
S—Q coupling.

The system dealt with in this section is charac-
terized by two identical local modes with self-
quartic interactions. Due to the harmonic coupling,
the two identical degrees of freedom (local mode
picture) can also be treated in terms of two normal
coordinates at two different frequencies instead
(normal mode picture), which are, in this example,
Q, =400 and Q, = 600 cm~'. The FWHM is 20
for the two modes.

To emphasize the relation between the peak
symmetry and the coupling mechanism, we de-
picted the signals in Fig. 4 for the following three
cases: (a) Vau = Vsq, (b) Van = Vop, and () Van =
Van(= Vsq + Vob).

The top plot (a) for the system with only the
S-Q coupling shows the absolute value of the

quantity,
i A4\
I{w,m;) x g <M1C1>F(1111)
M\
+<MECZ> F(2222)

The factor o' /(M(;)* corresponds to the oscilla-
tor strength in the third-order signal, where M; is
the effective mass for the mode introduced in Eq.
(3). Here and hereafter, we set this to be inde-
pendent of mode species, i.e. (o /(M;(;))* = 1 for
simplicity. This expression has poles at

w) = :|:Ql, or :|:Qz,
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Fig. 4. 2D signal for a model system with two modes charac-
terized by the parameters (Q; =400, @, = 600, I'y = I'» = 20)
in the unit cm™' (log plots): (a) the contribution from the self—
quartic interactions, (b) the contribution from the D-D inter-
action, (c) the full signal.

w3 = i917i927i3917 or :t3Q2

As expected from these positions of poles and
from the discussion in the previous section, the
plot shows diagonal and second-overtone peaks
where the overtone peaks in the second and the
fourth quadrants are small; there should be no
cross-peaks. The physical interpretation is in par-
allel with that in the previous section (see also the
discussion for (b) below).

The midplot (b) is for the system with only the
D-D coupling, where we see some cross-peaks. By
examining the analytical expression in the fre-
quency domain given in Appendix A, we found
that I(w;, w;) has poles at

W] = :th, or :th,

w3 :in,iQQ,i(ZQl in), or =+ (Ql iZQZ),
and thus there should be cross-peaks. The relative
intensities among peaks can also be understood by
examining the damping constant and the residue
associated with each pole as we did in the previous
section. We emphasize here that the diagonal
peaks in the second and the fourth quadrants are
extremely small.

The physical origin for these peaks can be un-
derstood by considering analytical factors associ-
ated with double-sided Feynman diagrams. As
examples, two diagrams are shown in Fig. 5. In
these diagrams quantum states for the modes 1
and 2 are denoted (n;,n,) and we assume that the
system is initially in the ground state (0,0). The
black dot stands for an interaction with the laser
field through oc(ll) or acgl), implying one-quantum
transition for either 1 or 2 mode. The cross stands
for the anharmonic transition (Q3Q3), which im-
plies zero- or two-quantum transition for both
modes. The diagrams in which some of the black
dots and the cross are moved down also contribute
the signal. As explained in Ref. [6], the cross can be
placed only during 73; there are 32 diagrams to be
considered without discriminating quantum states
denoted by (n;, n;).

The factor e 7 is associated with the state
(1,0) appearing in the period 7; of Fig. 5(a) and
this factor leads to the pole at w; = £Q;. As in
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Fig. 5. Double-sided Feynman diagrams for the system with the anharmonic interaction Vag = Vpp, where 7, = 0.

Fig. 5(b), there are also contributions from the
state (0,1) in the T period, which lead to the poles
at w; = £Q,. In this way, we see that the pole
should be at w; = +Q, or £Q,.

In similar manner, considering the factor asso-
ciated with the T3 period in Fig. 5(a), we find that
there should be the poles at w; = +Q;. With the T3
period of Fig. 5(b), the factor [ drel®2+2)x
e (11 is associated; this factor leads to the poles
at w3 = 0, and +(2Q, + Q,). After considering
all the other possible diagrams, we see that the
pole should be at w; = £Q,, £0Q,, +(2Q; + ,), or
+(Q) £20,).

In summary, (i) the off-diagonal cross-peaks
arise directly from the D-D coupling, (ii) the di-
agonal peaks in the second and the fourth quad-
rants arise directly from the S—Q coupling and (iii)
the diagonal peaks in the first and the third
quadrants come from both couplings. As the re-
sult, we can assign each peak for the full potential
system in Fig. 4(c) where I(w;, w;) is given by the
sum of those in (a) and (b); the weak diagonal
peaks in the first and third quadrants is the result

of negative interference of the D-D and S-Q
couplings.

6. Signal from methylene chloride

We present below signals calculated by using
some experimental parameters for methylene
chloride [47,50]. The CH stretch vibrations in
methylene halides are infrared and Raman active.
These two local modes in methylene chloride can
be parameterized as
o = 3143.3,

d =3I,

g h Y
g M = —316(5 x,m),

-1

(6)

in the unit cm~'. Here, M is the effective mass of
the two identical local modes, i.e., M| = M, = M.
Room temperature liquid line widths are about 36
cm~! (FWHM) for the (0,0) to (1,1) infrared
transition in all methylene halides, i.e., we employ
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Iy=1,=36.

(In the following numerical results, we set that the
oscillator strength (o!" /(M;(,))* = 1 for simplicity,
although, in principle, it is possible to obtain this
ratio from the high resolution experimental data.)

Fig. 6 shows the overall signal for the methylene
chloride case. The previous numerical plots are all
log plots while plots in Figs. 6-8 are nonlog plots,
i.e., the absolute value of I(w;,w;) is directly
shown; we concentrate on strong peaks and ignore
relatively small first and third overtone peaks.
Since the mode frequencies are larger compared to
FWHM TI; and the separation d, we cannot obtain
details from this plot except for the positions of
four broad peaks. In this case, magnification of
each broad peaks reveals new features; the broad
peaks in the first and the second quadrants are
magnified in Figs. 7 and 8, respectively.

The magnified plots in Figs. 7 and 8 show
similar features to those observed in Fig. 4, as
expected, i.e., the diagonal peaks in the second and
the fourth quadrants and the cross-peaks are di-
rectly from the S-Q coupling and from the D-D
coupling, respectively, while the diagonal peaks in
the first and the third quadrants come from both
the couplings. These results show that interpreta-
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tions given in the previous section can be invoked
also in this real typical example.

7. Discussion

Even by the one-dimensional (1D) spectro-
scopy, we can sometimes observe anharmonicity of
liquids as peak splittings [50,66], which indicate the
existence of anharmonicity or nonlinearity. To
determine the coupling mechanism or the form of
the coupling Hamiltonian, however, more infor-
mation is often required. In 2D spectroscopy, we
clearly have more information. For example, we
can consider symmetry of peak patterns. Owing to
this, we can clearly differentiate the D-D and S-Q
coupling in our demonstration by noting the cross-
and diagonal-peaks.

In 1D spectroscopy, these coupling mechanism
can be extracted from the fundamental and over-
tone spectra [45,50]. The 2D spectrum provides
access to the levels observed in the overtone
spectrum at frequencies near the fundamental by
successive single quantum transitions, which may
confer an advantage in cases where the overtone
is forbidden by symmetry, intrinsically weak, or
obscured by other transitions. This feature of 2D
spectroscopy may allow more extensive testing of
local mode models for a variety of low frequency
vibrations in large molecules, but a separation into
absorption and dispersion mode spectra will be
needed to gain any advantage over conventional
double resonance methods.

It is possible that predictions of the kinetic en-
ergy coupling between bonds from structural in-
formation might ultimately be inverted to extract
structural information from mechanical couplings
in 2D spectra if the anharmonic bond potentials
can be assumed known with sufficient accuracy.
The simple model presented here considers only
the lowest order effect of anharmonicity, but
demonstrates that the systematic pattern of cou-
plings is reflected in a systematic pattern of peaks
in the 2D spectrum. More detailed investigation of
local mode models (which include anharmonic
frequency shifts of the peaks, anharmonic inten-
sity borrowing through nonresonant interactions,
Morse oscillator relationships between cubic and
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quartic local mode anharmonicity, and kinetic
coupling for a variety of geometries) are desirable
to determine whether such a strategy may become
feasible. The extent to which such mechanical
couplings may interfere with the dipole-dipole
couplings (already explored at short range for
nearly identical oscillators) merits investigation.

The contributions from the different orders of
anharmonicity can be disentangled in higher order
spectroscopy, since higher order spectroscopy
possesses the selectivity in the order of anhar-
monicity; the third-order anharmonicity can be
investigated by fifth-order spectroscopy while
fourth-order anharmonicity can be investigated by
seventh-order spectroscopy [6]. For example, in the
seventh-order spectroscopy, the Fermi resonance
(the third-order anharmonicity) plays no role in
the lowest order theory of the seventh-order signal
and we can concentrate only on the D-D interac-
tion, while both contributions are sometimes al-
lowed in lower order spectroscopy.

The above consideration implies the need for
the further development of the theory of nonlin-
ear multi-dimensional spectroscopy based on the
Brownian oscillator model especially for the
molecular-level understanding of intramolecular
modes.
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Appendix A

For the system with Vag = Vpp, the signal is
given through

I, 03) = £(1122) + £(1212) + £(1221)
+£(2112) + £(2121) + £(2211),

while

I, o) = f(1111) + £(2222),

for the system with Vay = Vsq. For the system with
Van = Van, (w1, ®3) is given by the sum of the
above two expressions.

Here, the function f'is defined by

B h 4F(Ci7ri;Cj7Fj;Ck»Fk;é’larl)
Sijkt) = <7> MM;MM GG ,

where

F(, TG Ty G T §, 1)

1
= gZGs(Q-,Fﬁ Cprﬁ G T Ciyy)-

The summation is taken over the following set;

(Sl,SZ,S3,S4) =

Here, the function G, is defined as

(Iy3a — i3)[(I'> — 001 )(I'y — iw3) + $:0,0] + Gsa[(T — i01)( — (T — iw3)s$:0)]

:Sl

in-Aid for Scientific Research (B) (12440171)
both from the Japanese Ministry of Education,
Science, Sports and Culture. D.M.J. thanks the
NSF, Packard, and Sloan Foundations for sup-
port.

Hs:il[{rl - i(w3 - SCI)}{FZ - i(wl - SCz)}{F234 - i((u3 - S§234)}] ,

where

Iy =T+ T3+ Ty,

(ozg = 8205 + 5305 + 5404
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