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The 4-body bound-state equation is derived by use of on-shell expansion of the effective action.
Derivation is based on the second derivative of the effective action which makes the graphical rule
much easier. The essential tool is the sum-up rule of the graphs which is equivalent to the Legendre
transformation. This rule can be widely used for any operator that has external point(s). Applied
to the 1,2,3-body channels our method gives another way of deriving the known bound-state
equations. The obtained equations hold whether the vacuum state is condensed or not.

§1. Introduction

The bound state problem in relativistic field theory has long been discussed
starting from the bosonic Bethe-Salpeter (BS) equation for the 2-body bound state
(Refs. 1)). Since then many authors discussed the solution and the formal properties
of the bound-state equation (for example, see Refs. 2)). The 3-bedy bound-state
equation has been obtained (Refs. 3), 4)) in the relativistic field theory. It will not be
necessary to emphasize here the importance of generalizing BS equation for N-body
channel. Indeed the Nth-order Bethe-Salpeter kernel was defined as a generalization
of lower-order kernels (Ref. 5)) and its grahical properties have been studied by
several authors (Refs. 6),7)). But the derivation of the bound state equation for
N-body channel is another subject.

N-body bound sate equation for general N has been recently obtained by use of
the on-shell expansion of the effective action. However the arguments of Ref. 8) are
limited to the case where the vacuum state is not a condensed one.

The purpose of this paper is to extend the on-shell expansion to derive 1, 2, 3 and
4-body bound-state equation in a way that they are valid whether the vacuum state is
a non-perturbative one or not. By non-perturbative vacuum we mean the case that
the true vacuum is a condensed state. A newly obtained result is the 4-body bound-
state equation which can be used to determine the bound state excited above the
condensed vacuum. (This will help us to understand what problem has to be solved
in deriving the rules for the graphical expression of the N-body BS kernel (N >4) for
the system whose vacuum is a condensed state.) The physical importance of the above
problem is clear since we encounter the condensed vacuum in various systems;
ferromagnet, superconductivity or quark-gluon system descrlbed by quantum
* chromodynamics (QCD).

In the on-shell expansion the bound state equation is obtained by the second
derivative of the effective action (Ref. 9)). Our result indeed reproduces the second
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derivative of effective action (up to the 4th one) obtained by De Dominicis and Martin
(Ref. 10)). Their result has some exceptional graphs but ours does not contain them
because they disappear when we take the second derivative. Their derivation of the
4th effective action has much combinatorial complexity. Several authors have tried
to reduce the complexity and to make the proof simpler by using equations of motion
for the Legendre transforms (Ref. 11)) or Spencer’s t-derivative (Refs. 12), 6), 7)).
Here instead we establish the sum-up rule which plays the central role in this paper.
By the word sum-up, we mean that some small part of a larger graph is considered as
generated by the corresponding full vertices and a class of graphs is summed up into
_ a single simpler graph. For vacuum graphs, or for the effective action itself, sum-up
rule does not hold, but for the second derivative of the effective: action, the proof
works since it is represented by the graphs with external lines. Recall that the
second derivative is sufficient for the derivation of the bound-state equation. This
rule also eliminates the complexity of the proof. The essential point is that the
sum-up rule corresponds to the Legendre transformation required to define the
effective action and leads to the concept of 4-particle-irreducibility of the graph.

Here we recall the definition of the effective action. The effective action I’ of
field theory is given by the generating functional W of the Green’s functions through
the Legendre transformation (Ref. 13)). It is useful especially in the studies of
spontaneous symmetry breaking (Ref. 14)). Moreover, it has been found that the
effective action tells us all the physical -quantities of a system considered quite
systematically through the method of the on shell expansion; the stationary require-
ment to I” determines the ground state, the lowest expansion of it around the station-
ary solution gives the bound-state equations, or the particle mode (Ref. 9)), and the
higher order expansions correspond to the scattering amplitude among the particles
(Refs. 15), 16)).

To exemplify the above method more specifically, we define W[J], the generating
functional for the Green’s functions.. Let us take a single component scalar field ¢(x)
and introduce

exp( 4V ]> f[a’co]exp(%&) , (1-1)
SJ:I[w]+J§Nl/d4xl”'-fd4xj%]j(xl, o, 25) () o(x;5)

El[sﬂ]ﬂé%wj. (1-2)

The symbol f[de] stands for the path integration and 7[ ¢] is the classical action of the
system considered. We have employed the symbolic notation by suppressmg the
space-time integration. This is used throughout the paper.

The i-th effective action, I3[ @], is the i-fold Legendre transform of W[J]. Let us
define the i-body Green’s function ¢, and I3,

Ve 1 swlJ] _ 4 0WlJ] .
¢z, 22, -, )= L T I Yt (1-3)
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L= W+ 3Ty | (1-4)

Then the following equations are easily verified:

Ji=il gg (<)) (1-5)
¢i=—i!‘;]]3=—z'.%—y. (i>J) (1-6)

Note in the above formulae that the space-time variables are included in the indices
(7 and 7). Note also that I')’s are functionals of ¢; and /. where j<{ and £>¢, that
is, Iy=I 1, -+, ¢z, Jisr, -+, Jn]. The stationary solution ¢ to 6I'/0¢:=0 determines
the vacuum and zero eigenvalue equation (Ref. 9))

&y ) _ ' .
3 53¢, ) 1%=0 1-7)
or equivalently, as is proved in Appendix A,
82 ) _ o
(Shaim WA =0 | (1-8)

is nothing but the mode-determining equation in the N-body channel, i.e., N-body BS
equation in our case. Here X; implies the integral [12-:/d*x: and (--+)o signifies that
it is evaluated at the solution ¢ which can be either the perturbative or the
non-perturbative condensed vacuum.

In case the ground state is a perturbative one, ¢ can be expanded in the
coupling constant so that the diagrammatical expansion of the kernel (8%/8¢n0dn)o
is available. If, on the other hand, the theory realizes the non-perturbative vacuum,
#:” has no perturbative expansion in the coupling constant but the rule for
(82I'/8pnOPn)o can be obtained in our case since the full vertices ¢: are our independent
variables. _

In § 2, the model is specified for simplicity but the arguments below can be easily
generalized to any models. The 4-body BS equation is derived in § 3 carrying out the
4-fold Legendre transformation step by step by using the sum-up rule. The 1,2, and
3-BS equations are also derived as a check in § 4 making use of the results of § 3.
Appendix A contains the derivation of the formal N-body BS equation from effective
action. In Appendix B some of the details of the sum-up rule are given, and in
Appendix C an interesting relationship between two classes of graphs is presented
which is utilized in § 3.

§ 2. Specification

For simplicity® we will discuss the model described by the action

*) All the derivation below will be carried out for the bosonic field but the generalization to other fields
including fermions is straightforward if we use the Grassmann algebra.
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+ 2 [ ae [d a2 o) o(w)

Eflqo—%qo(ﬂ +mz—]z)¢+é%]j¢". (2-1)

Interactions will be taken into account by setting artificially introduced external
source J equal to A, the physical coupling constant, after all calculations. So, in the
case of A¢*-theory, for example, we set

8T
Ji=iksg,

to determine ¢;® or the ground state. The equation for determining the value of ¢
is already known,® so we can formally proceed to get BS equation based on this
solution ¢;.

Because W[J] is a class of all connected vacuum graphs built with vertex Ja.(%
=1,2, -, N) vertices and bare propagators, ¢:"=2%(0+m?—Jz)7', ¢. is a class of all
graphs with 7 external lines. Note here that W[/] is not the generating functional
for commected Green’s functions. The connected i-body Green’s functions ¢.° are
defined as a class of all possible connected graphs that appear as an element of ¢..
There is clearly a relation,

2/151',4 . (2' 2)

$:=p+polynomial of ¢° where j<i. (especially ¢1=¢:°) (2-3)

Here polynomial of ¢;° represents the disconnected parts. We can therefore regard
I; as a functional of ¢;° and J. where j<i and k>, thatis, [;=IF[$:1°, -+, ¢, Jie1, ==,
Il |

Using Eq. (2:3), we can verify

oINS _ O8Iw 1 s
8¢x° Sy NIV (2-4)
2 c 27

0pn°0pn°  Opnddn

In each line the first(second) expression implies that the derivative is taken regarding
65(6)(G=1,2,---, N—1) as constant. Keeping Eq. (2:4) in mind, it is easy to see that
0pn° :[ 71 8w ]‘1 .
0w 11005, N Rl N (2:6)
where on the left-hand side the derivative is taken for fixed ¢(=1,2, -, N—1) and
on the right-hand side we regard ¢,°(=1,2, ---, N—1) as constant. Recall here that

the right-hand side of Eq. (2+6) is written in terms of ¢:°, ¢.°, -, ¢»°. Equation (2-6)
enables us to study the second derivative of effective action by examining the graphi-

*) The graphical expression for 8I3/84: or Ji(j<4) in terms of ¢-vertex is given in Ref. 10).
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cal rule of the first derivative of connected Green’s function with respect to ]N.)
§3. 4-body BS equation

We first discuss the second derivative of the 4th effective action (N=4)* by
examining ¢.°. The reason why ¢.° is taken is that we are interested in the 4-body
BS equation. But the argument given in the following can be applied to any operator
other than ¢.° if the operator has external point(s). The result is given in Eq. (3:12)
below. After this has been done it is easy to apply the arguments to N==1, 2, 3, which
will be given in § 4.

For this purpose we have to derive graphical expressions of 8¢4°/8J: built with ¢:,
#3°, pa-vertices and ¢@.°-propagators. If this is done we get what we want through
Eq. (2-6) for N=4. Of course, ¢.° is originally given by the graphical expression
written in terms of Ji, ---, J-vertices and bare propagators, so we have to eliminate /;
in favor of ¢, in the graphical terms. These operations correspond to the Legendre
transformations given by Eq. (1-4); inverting Eq. (1-3) in favor of ¢. to get Eq. (1-5).

In the following subsections these procedures of replacement are performed
successively starting from the transformation from /i to ¢:°. In each step we sum up
a certain class of graphs and regard them as a single graph. The essential point in
this process is that we have to clarify what criteria can be used to keep correct
. weight** of each graph. '

3.1. The transformation from Ji to ¢°

Let us start from a transformation from /i to ¢:° by an appropriate process of
summation. Although what we discuss in this subsection may be a well-known fact,
we reproduce it here in our terminology because it will play an important role in the
general arguments below. In the first place we consider a class of graphs contained
in ¢4° shown on the left-hand side of Eq. (3:1). Here black dots stand for J: vertices.

ﬂw -

Here the lines in any graph denote the bare propagators. These graphs seem to be
summed up to the right-hand side, but does each graph appear with correct weight?

. ',“~\\ '«“‘\‘
\
Jr Ie Jr ,' Y 77 ,' \ PRty
*~——0 1O —r g HPS oL o}
) ]
Ay ;NS '\\ 7 .
N P \ /
Q) )

()

3-1)

(C)

Fig. 1. The example of troublesome graph.

*) If the theory contains interaction such as A¢®, S; should also include it, but the proof below does not
change. ) ]
*%) We use the correct (or right) weight of the graph in the sense that we get such weight if we regard
the corresponding graph as the one appearing in the Green’s function. )
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Fig. 2. Another example of troublesome graph. Fig. 3. Explanation of the larger 1-legged part.

-In the above case the answer is definitely yes. Consider, however, the case described
in Fig. 1. Of course, Fig. 1(a) contains the graph-of (b). It is, however, not known
that to which ¢:° the J; vertex at the center of (b) should belong (see (c)). The same
ambiguity occurs in all graphs contained in Fig. 1 (a) as shown in Fig. 2. In such
cases it seems impossible to sum up a set of graphs into one simpler graph with right
weight. The origin of such difficulty is of course that the graph-has no external lines.
Indeed, the diagrams appearing in Eq. (3¢1) do not cause such difficulties. To show
this we define a 1-legged pari which is a connected subgraph in the elements of ¢.°
jointed to the rest through only one line (bare propagator). This is denoted by a
closed (broken) line which encircles the subgraph and intersects only one line. In
what follows we draw a closed (broken) line so that it intersects one line (divectly
connecting one vertex ov external point and another vertex) only once at most. We
also define a larger 1-legged part as a 1-legged part consisting of more vertices. The
problem is whether we can unambiguously proceed to encompass a larger 1-legged
part. This problem becomes important when two 1-legged parts have a common
part; Case (a) —the two 1-legged parts inevitably intersect with each other or Case
(b) — one completely contains the other. In Case (a) we cannot determine without
ambiguity to which 1-legged part that common part belongs. But as is shown below
two 1-legged parts can have a common part only when one completely contains the
other one, except the graphs with no external line as described symbolically in Fig.
1(a). This is understood if we consider the case described in Fig. 3. We notice that
we cannot draw broken lines like Figs. 3(a), (c), because a closed broken line inter-
sects only one line and the graph is a connected one (these constraints inevitably
contradict with each other). Thus the only possible broken line is shown in Fig. 3(b)
in which it completely contains the other 1-legged part. This means that we can
unambiguously reach a largest 1-legged part in any graphs of ¢4°. It is thus possible
to proceed to a largest 1-legged part starting from any 1-legged part contained in a
given graph. We continue this procedure until there are no 1-legged parts other than
the largest ones (there may be many non-overlapping largest parts in a given graph).
This is done for all the graphs of ¢.°. Two graphs are said to belong to the same
element of ¢« if the two graphs have the same largest 1-legged structure (recall that
_graphs contained in each largest 1-legged part are different from one another). Then
we put together all the graphs belonging to the same element of ¢4°. It is easy to see
that this class of graphs corresponds with right weight to only one graph which is
obtained by replacing all the largest 1-legged parts with the ¢:“s. Through the above
procedure we finally accomplish the transformation from /i to ¢:°. The result is
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L 1C, T2, Js, f4]? , : (3-2)

where 1PI (1-particle irreducible) implies that if the 4 external lines are connected by
a fi vertex then the subsequent vacuum graph is 1PL

.Here we have used the following definition of 1PI (or ¢PI in general where i=1,
2,3). A given connected vacuum graph is called 1PI (7PI) if it is separated into two
parts only when at least 2(7+1) lines are cut except for the case that one of the
separated parts is a trivial ¢:°(g:°, ---, or ¢.°)-vertex.

3.2.  The transformation from J» to ¢=°

Next the transformation from J» to ¢:° is considered. Here we assume that ¢:°
is a functional of ¢:°, /s, Js and J.. Notice that it is already a functional of ¢:°.

Consider a graph of ¢:[¢:°, J2, /5, Ju] having the structure of Fig. 4. Here B-part
is a 2-legged part which is a connected subgraph of ¢:°[$:°, J2, Js, Jol. It is connected
to the rest by two lines (bare propagators). The 2-legged part is indicated by a closed
(broken) line intersecting two lines. .

As in the previous subsection, we prove below that we can proceed without
ambiguity to encompass a larger-2-legged part, that is, when two 2-legged parts have
a common part with each other, one contains the other or otherwise there is another
larger 2-legged part that completely contains these two 2-legged parts. If it is true,
the largest 2-legged part is well-defined and all the graphs of $.°[$:°, /, Js, /4] can be
made to have no 2-legged parts other than the largest 2-legged parts. Two graphs are
defined to be the same elements of $4°[$1°, Jo, J3, Ju] if both have the same largest
2-legged structure. Then we put together all the graphs belonging to the same
element of ¢:°[¢:°, J2, J5, Ju]. This class of graphs corresponds with right weight to a
single graph which is obtained by replacing all the largest 2-legged parts with the ¢,%’s.
Through the above procedure we finally accomplish the transformation from J to ¢-°.
Employing the notation where the line in the graph represents ¢:°, we have

[ 1S, $o°, Ja, Jo]l= i _ (3+3)

Here 2PI implies that if the 4 external lines are connected by a J; vertex, then the
resulting vacuum graph is 2PL »

Now we go back to Fig. 4 to prove the above
statement. Suppose there exists a 2-legged part
which partially contains B-part. Such cases are
shown in Fig. 5. The partially excludes the case
like Fig. 6 because the 2-legged part denoted by the
broken line completely contains B-part. Taking
Fig. 4. A graph of :5[¢:°, %.°, /5, /il into account the fact that each closed broken line
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d

Fig. 5. The 2-legged parts partially containing Fig. 6. The 2-legged parts completely containing
B-part. B-part.

Fig. 7. More detailed structure of Fig. 5: The a- or b-(b’-) part corresponds to subparts of A- or B-part
respectively.

can intersect just 2 lines, and that the graphs are connected ones, the cases shown in
Figs. 5(b), (¢) cannot occur. The graphs of Figs. 5(a), (d) have the following struc-
tures (Fig. 7). We notice that the case in Fig. 7(d) does not exist from the beginning
because we are dealing with IPI graphs which are already functional of ¢:°. In the
case of Fig. 7(a) there are three ways to encompass 2-legged parts as shown in
Fig. 7(a’) but there is the largest 2-legged part which completely includes the others.

The graphs in Fig. 5 do not include the cases in which the broken line intersects
the external lines. But we notice that the case of Fig. 5 and the corresponding Fig. 7
include that of Fig. 8 and that we need not consider the case where the closed broken

A2

&

Fig. 8. The 2-legged part intersecting an external Fig. 9. A graph of ¢.°[$:1%, 25, Js, Jal.
line.
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line intersects more than two external lines because the closed broken line can
intersect just two lines. Since A-part has external lines, we have exhausted all
possible cases, so the statement has been proved. ’ ’

3.3.  The transformation from Js to. $5°

In this subsection we make a transformation from Js to ¢:° by considering ¢.°[¢:°,
#:°, Js, J.] which is already a functional of $;:°(vertex) and ¢ (line).

Let us consider one of the graphs of ¢:[:¢, ¢.°, /3, Jd] which has the structure
shown in Fig. 9. Note that all the lines in the graph stand for the ¢.“s. As in the
previous subsections we consider another 3-legged part which partially contains both
A- and B-parts. We can prove the following statement in this case (see Appendix B);
that is, we can unambiguously proceed to encompass a larger 3-legged pari, namely,
when two 3-legged parts have a common part with each other, one completely
contains the other, otherwise there is another larger 3-legged part that completely
contains these two 3-legged parts.

We thus arrive at the following result in the same way as in the previous
subsections,

B[ 1%, ¢, P, Jal= } . (3-4)

Here what is implied by 3P/ may be clear. .
Now we can differentiate Eq. (3-4) by /s fixing ¢:°, ¢.° and #s°. This gives

0¢4“(a) _
. 574(1)&) 916,026,958 a'{}b 2 (3+5)

The above 3PI implies that when two sets ((a) and (b)) of 4 external lines are closed
by Ji«(a) and J.«(b) vertices, the resulting vacuum graph is 3P1. The factor 4! on the
left-hand side appears for the purpose of keeping the correct weight.
The cases in which right (@) and left (b) sets of 4 external lines are connected by
less than 4 lines (Fig. 10) are excluded because the above derivative is taken by fixing
1%, ¢2° and @s°. '

Flg 10. The graphs excluded in Eq. (3-5). ' Fig. 11. A graph of 68:[#:°, 65, ¢5°, J:1/57s.
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Fig. 12. The examples of troublesome structures.

3.4. The transformation from J+ to ¢£

Consider the final transformation from Ji to ¢.° and express 6¢:°/0/s(Eq. (3-5)) as
a functional of ¢:°. Note that ¢.° is a functional of ¢:°, ¢.° and ¢;° at this point.

We consider one of the graphs of 8¢,/6Js which has the structure given in Fig. 11.
Imagine, as in the previous subsections, another 4-legged part which partially contains
both A- and B- parts. Here we encounter a difficulty; there arises an ambiguity in
defining the larger 4-legged part. This is a crucial difference compared with the
previous subsections. Indeed, the structures shown in Fig. 12 bring about a serious
problem. The two 4-legged parts (B, C) have a common part, but there is not the
third 4-legged part which completely contains B- and C-parts. For the detailed
discussions on the structure of these graphs, see Appendix B. We realize from these
examples that if the graph contains the substructure shown in Fig. 13 (this type is
called the pseudo 4-vertex), a lavgest 4-legged part loses its meaning. So we introduce
another variable ¢,°? and try to make a transformation from /i not to ¢4° but to ¢4?,

' 3 4 2 4 2 3 _
$457(1,2,3,4)=¢:(1,2,3,4)— I + I + I , (3-6)
/ 2 / 3 / 4

where the black dot stands for ¢s¢. The pseudo 4-vertices are thus excluded from the
definition of 4-legged parts. Then in Figs. 12(a), (b) there is only one way to draw a
closed broken line as 4-legged part, i.e., the lines B, C respectively in the figures, and
no way in Fig. 12(c). The largest 4-legged part can now be defined, and the transfor-
mation from Ji to $:“? is accomplished. After the transformation, we get

0b:° 5 |
45T 00) (;;}4((51)) s pepuc {}” : (3-7)

On the right-hand side a./.4 (at least 4) and a./.5 mean that the graphs meet the
following constraints. ‘Suppose that 4 external lines on both sides of a graph of
Eq. (3+7) be connected by two extra ¢.(a), ¢:“*(b) to make a vacuum graph. If the
resulting vacuum graph is separated into two parts

in such a way that no line connects $:>*(a) with

$45?(b), then at least 4 lines have to be cut. Other-

. wise, at least 5 lines must be cut in order to sepa-

Fig. 13. The pseudo 4-vertex. rate it except for the case where one of the separat-
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[:o:}:o:+:o: 0=, =, ==
Fig. 14. The generator of the simple net: The circle stands for ¢, (or pseudo 4-vertex).

Fig. 15. The simple net: We include the first term for convenience.

== [ ><

@)

_Fig. 16. Explanation of simple net: The circle in (a) and black dots in (b) and (c) stand for.¢.*(or
pseudo 4-vertex) and ¢s° respectively.

ed parts is a trivial ¢:°, #s° or ¢ (or pseudo 4-vertex).

Let us study the graph shown in Fig. 14. In what follows, the square bracket [--]
implies the sum of the permutation of the external lines on the left- and right-hand side
of the graph. In this definition the permutation of one external line on the right-hand
side with the one on the left-hand side is not allowed. Consider a particular set of
graphs obtained by the iteration of Fig. 14 and included on the right-hand side of
Eq. (3:7) as well. This particular class of the graphs generated by 6 different
elements in Fig. 14 which meets a.l.4 and 5 conditions of Eq. (3-7) is called simple net
and is shown in Fig. 15. This set does not contain such parts as Fig. 16(a) because-it
is inconsistent with the fact that we have already taken the largest 4-legged parts in

Eq. (3:7) by‘using #:?. The pseudo 4-vertex can appear in @: only in a way

of Fig. 16(b) because if it is contained in the graph in a way of Fig. 16(c) this part
‘contradicts with a.l.4 condition of Eq. (3-7). It is easily understood that the simple
net composed of combination of ¢.“? and pseudo 4-vertices can be written by a simple
net built only with D, defined as

’ /o3 /o4
Dy(1,2;3,4)=¢:""(1,2,3,4)+ I * I . (3-8)
2 4 2 2 i

Note that D, should be used in a way that is consistent with a.l.4 condition of Eq. (3-7).
We call this simple net D, simple net. Noticing that the graphs appeared in Eq. (3:7)
are able to be classified by the number of D. simple net where we can make the graph
apart by cutting 4 lines, the following relation is readily written down, '

0a© _

8]4 ¢1°,¢2°,¢3C
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Here a,{}b means the class
%

: of graphs which satisfies the following
CH) condition.¥” Suppose that 4 external
lines on both sides of the graph be con-
nected by two extra $.°(a), ¢.57(b) to
get a vacuum graph. If this vacuum
graph is separated into two parts, at
least 5-lines must be cut except for the
case that one of the separated parts is a trivial ¢:°, ¢s¢ or ¢4>? (or pseudo 4-vertex).
Note that another constraint should be added to the definition of 4PI to eliminate the
first two terms of the D, simple net from the 4PI graph; the resulting vacuum graph
does not correspond to Fig. 17. Strictly speaking, in order to keep the right weight
of the graph, we should associate the factor 1/4! with every D; simple net and 4P1 part
in Eq. (3:9). This point will be mentioned in § 4.

Let us use here the following very interesting theorem which is proven in
Appendix C.

@) =)

Fig. 17. The explanation of 4PI: The circle stands
for ¢.>? (or pseudo 4-vertex).

THEOREM 1 Dy simple net =[Dy chain]™?,

where D, chain means the class of graphs given in Fig. 18. It is a class of the graphs
created by the second derivative by D. of the sum of the cyclic vacuum graphs shown
in Fig. 19. Thus we obtain

= -1
prespaepse <4-’ - £ @ ) : (3-10)

Then we reach the final result for the BS kernel.

I 2 £
s W e - @

0p4°

afa

Fig. 18. The chain: ;:CD::; stands for Du(1, 2; 3,4) in what follows.

*) This is also -expressed in terms of ¢yele of pairs defined in Ref 10).
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This result corresponds with the second derivative of the main result in Ref. 10).
Therefore, the following equation, ’

< - (4 @ > Apit= (3-12)

a

& _ is our generalized 4-body BS equation. In Eq.
o “\ (3:12) the integration over space-time coordinate is
suppressed and [---]o implies that [---] is evaluated
at the solution ¢ to 8I'/6¢=0. Equation (3:12) is
Fig. 19. The cyclic vacuum graph. the main result of this paper.

§4. 1,2 3-body equations

In this section we give the second derivative of the 1st, 2nd and 3rd effective
actions by our method presented in the previous section. It will be seen that they
coincide with those in Ref 10). Since we have already worked out the 4th effective
action, this is straightforward. By this process we can check the validity of our
sum-up rule but on the other hand it sheds light on the problems which occur in the
case of effective action of higher order than the 4th. We come to this point at the end
of this section.

We start with the lst effective action. We notice that J, vertex in 6$:/8/: can be
replaced by ¢:¢ as in § 3.1 and get

!
-

0¢¢
ofx

-

The definition of a.l.7 and a./.i+1 (i=1,2,3) can be given analogously with the
previous sections, that is, “The vacuum graph is first defined by attaching two ¢:’s on
both sides of the graph. This can then be separated into two parts only when at least
7 or 71+1 lines are cut depending on whether the two attached ¢./’s remain connected
or not, except for the case that one of the separated parts is a trivial vertex ¢@x°
(1<k<7).” Note that for the first effective action (=1) the lines are bare propagators.

We can classify the graphs of the right-hand side of Eaq. (4-1) by the number of
lines which lead two separate graphs if one of them is cut,

(<——> 0)

ol
ol
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7
Here a ¢ 6 is usually called the self-energy part and IPJ implies that if each

external point a, b is closed by a ¢°J; (vertex with bare propagator) then the
subsequent vacuum graph is 1PI.  So using Eq. (2+6), we get the BS-kernel and the BS
equation for 1-body case, :

S - ( )'7- 7 S (4-3)
(- @) s o

which determine the energy of the one-particle state and 4¢.° is nothing but 1-body
wave function.

In order to study the 2-body case we notice that /i vertex in ¢:° can be replaced
by ¢:° vertex as in § 3.1 and get

$ot= ' , (4-5)

where 1PI means that the vacuum graph obtained by supplying two /z vertices is 1PL.
“Then replacing J: with ¢.°, we get

a2
el :
' = 3
2 OJz leiesra . (4-6)
i i N

The meaning of «./.2 and 3 has already been defined. Note that lines here are the
$:”’s. Then we notice that

Sba’ T
Sz lowess 2_5[——] ta +2_5 :O:O:“ . (4-7)

Consider the weight of the graphical expression on the right-hand side. Suppose that
one of the graphs of the third term contains p+ ¢ vertices and that the left 2PI part
contains p vertices and the right ¢ vertices. For simplicity we assume that this graph
contains only one kind of vertex. We can obtain the weight of this graph by the
following steps.

1. Distribute p+ ¢ vertices to the two 2PI parts (C(b, g)=(p+q)/(p'q") ways).

2. Calculate the weight for each 2PI part separately by considering the lines connect-
ing two 2PI parts as fixed external points.
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3. Connect the two 2PI parts with the factor 1/2!.

Note that these steps can be applied regardless of whether 2PI parts are symmetric
graphs or not with respect to the above artificial external points. Note also that the
graph has the original factor 1/(p+¢)! which produces (1/p!)-(1/g!) if combined with
the C(p, g). Then we find that we can obtain the weight simply by calculating the
correct weight of each 2PI part separately and connecting these with the factor 1/2!. It
is easy to generalize the above argument for the case that several kinds of vertices are
contained and for higher terms on the right-hand side of Eq. (4:7) (note® that C(p+¢
dedb s, p) Clgt-+r+s, ) Clr+s, r)=0/p1)-(1/g)--(1/r1)-(1/s])). So we
associate every 2PI part in Eq. (4-7) with the factor 1/2! to keep the correct weight of
the graphs. As mentioned in § 3.4 this kind of argument is also applicable to
Eq. (3-9).
Thus we reach the following relation:

¢1C,]3,]4: 2/ [ - :I - Z @ . (4'8)

Then we get the 2-body BS kernel and 2-body BS equation,

-7 .
&ff?@c: [__} ‘(zfi) @ ’ (4-9)

[ :A]—I - (4] @ - Ag"=0. (4-10)

0

0pa°
of2

In a similar way we can proceed to the third step and get the 3-body kernel and
BS equation,

2¢ - -7 . L - ‘ ’
5‘756361;2530: [——-} “(3_//) @ , (4-11)

[E]-I‘ Gl @ | "¢36=0  | » 412

0

All the above results coincide with the well-known expressions (for instance, see
Refs. 2) and 4)).

*) This property also supports the sum-up rule.
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Fig. 20. The troublesome graphs: The number in each circle stands for that of lines attached to the
circle.

Our method presented here helps us to elucidate the problems which have to be
- solved when we proceed to higher channels, or N-body case with N=5.

Let us consider the quantity (0¢s°/0Js)s.c,-0.c to get the expression of
8°I5°/5¢s°0¢s°. It is assumed here that N=5 so that [:°=I3[:C, -+, ¢, Js, -+, Jw]
actually. :

As in § 3.4 we can get the expression for 8¢s°/8Js as a functional of #:°, ¢2°, $s°,
¢4, Js, -+, In. After that we must transform /s to #s°. For this purpose we need
similar analysis as in Appendix B. We notice that the structures shown in Figs. 20(a)
~(f) (especially (f)) cause problems similar to the one pointed out in Fig. 12 but they
are more troublesome. They prevent us from defining the largest 5-legged part
without ambiguity. We have to solve the combinatorial problem for these graphs in
order to get the correct 5-body BS equation. This is under investigation.
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_ Appendix A
—— The General Form of the N-Body BS Equation ——

Bound states and resonances are identified with the presence of poles in the Green’s
functions. Here we study this fact briefly but in a general way. Then the formal
N-body bound-state equation (Eq. (1-8)) is derived.

Consider the second derivative of W,

(e = Ol Tl pam)p(31)-+ ()0

—<0| To(x1)++ @(xn)10>€0] Tp(v1)-++ o yn)[ 0> . (A-1)

We concentrate on extracting bound state |Ps> which appears in N-body channel
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defined by (x1, &2, -+, z~) and (31, ¥, ==, yv). It is assumed that it does not couple to
channels lower than N, :

Ol gz ()| Pa>+0 | (A-2)
Olo(z) oz Pe>=0, (<N-—1) ' (A-3)

where Ps stands for 4-momentum with Ps®=ms’. We call this state pure N-body
bound state, where we assume that the diagonalization of the i-body channel from
=1 to =N has been performed.

Inserting a complete set of states into the appropriate place™ of the right-hand
side of Eq. (A-1), we extract the intermediate state that corresponds to one pure
N-body bound state.*® The T-product in the first term on the right-hand side of
Eq. (A-1) contains (2N)! terms corresponding to the order of the operators. But we
concentrate on the terms in which the smallest values of the time component of (x,
X2, -+, xn) is larger than the largest value of those of (31, vs, ---, yn). From this
contribution we get

n_o*W
1 OJno]y

(N1~

= / d*P 6(P°)8(P*—ms*)<0| To(x1)-- ¢(xw)| P>XP| To(y1)--o(y)|0> . (A-4)
~New coordinates are introduced here,
X=LN(x1+---+xN); Y=]—1V(y1+"-+yzv),
V=X~ Xie1; Yy, =y;—Yir1. (=1, N—1) (A-5)
Then we notice that***

—yk=R+fj(rx)—fk(Vy), (A-6)

where R=X—Y and fi(7z)(fx(7y)) is dependent on 7(#,) but independent of both X
and Y. Noting the relation o(x)=e" " *p(0)e *"* and using Pu|0>= =0 we find

(N2<0] o)+ o) P> P Tp(3n) - o(w)|0>

= 3 0RO+ lr) =) 008+ 008 ) 0= 135+ 0(— %)

X exp{—iP+(R+ ful7z)— Ful 7))}
X0l p(0)exp(— P+ 721)(0)-+ 9(0)exp(— iP + 721.,) p(0)| P>

*) From Eq. (A-3) the second term on the right-hand side of Eq. (A-1) does not contribute.
**) For simplicity we assume here that this state is not degenerate, but the proof below does not change
very much even if it is degenerate. -
*¥HE) = — o =— (vt ),
2=X+1/N) vz, + QNN #z,+72)+ 0+ (1N (72, +oor + 72,0), ete.
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X< Plo(0)exp(iP« #y5.,) 9(0)-- 9(0)exp(iP - 75 9(0)|0> (A-7)
—zk° [
s—— - R/a’k o Glre, 70, K, P).. , (A-8)

Here we have employed the following notations; R+ fx{7z)— fa(7y) =xk— vi, super-
script zero denotes the time component of the corresponding four vector, (xi, -, %)
or (¥ -+, ¥1) is one of the permutations of (x1, -*-, z~) or (31, -**, yn) respectively, and
25,y means the summation over all these possible permutations.

Taking into account the contribution from the terms in the 7 -product where one
of the permutations of (¢(x1), #(x2), -, ¢(xn)) comes after that of (¢(v1), ¢(32), -+,
#(yn)) (the opposite case of Eq. (A-4)), the Fourier transform of the quantity in
question takes the form

2 4 z “R 62W
(V1) 7 (27r)4 / d°R e SIS n

= 1 <9(7’z, Q") g(ry, Q") _ 9(ry, @57) §(7s, QB~)> A (A-9)
47/ Q%+ ms* \ Q°— Q*+ mst+ie Q4+ Q*+mgt—ie /)’

where Qz*=(/Q?+ ms?, £ Q). Thus the pure N-body bound state constituting of

@(x1)---p(xn) is completely extracted as a pole of the total energy of N-body channel.

The other terms in the T-product of Eq. (A+1) do not contribute to the channel defined

by (x1, 22, ==, x~) and (v1, v, =, Yn). .
Using Eqgs. (1:3) and (1:5), we get

SEW 8y
Y = 2 .
R ST T g, O (A-10)

where space-time coordinates and integration over those Varlables are suppressed.
Then it is easily derived that

_N,[NEI FCW 4 T, W FEW J
2 (@) T2 56,200 (w) AW () T ()3T
8w .
X San(y)ouly) ~ M(E9) (A-11)
where
Iz, ) =350 — y1)+ 5(zn— ) (A1)

In the above expression (y1, ---, ¥&) stands for one of the permutations of (y1, -, ¥v)
and 2s implies summation over all possible (yl, -, ¥&).  The Fourier transform can
be written in the following forrn

/dq’[FQ(q, q)+ Wién(aq, a)IRw(a, p)=1(q, p). (A-13)

Here @, ¢ and p are momenta corresponding to R=X—7Y, »: and 7, respectively
(there are (N—1) ¢’s and p’s). F%gq, ¢’) denotes the Fourier transform of the first
term in the square bracket on the left-hand side of Eq. (A-11).  The other notations
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will be clear. Note that the momentum @ is not integrated and the right-hand side
is independent of Q.

Observing that W# ~ has poles corresponding to pure N-body bound states while
F%Uq, g’} does not, we realize the following theorem.

THEOREM 2 The pure N-body bound-state energy appears as a zevo of the second
derivative by ¢n of the Nih-effective action.

Inserting the vacuum solution ¢ the N-body BS equation therefore becomes
(I¥(q, £))edd(p)=0 (A-14)

or Eq. (1:8) in the coordinate representation. All the possible bound states will be
found if one solves Eq. (1-8) successively starting from the case N=1. This is the
case even if the channel diagonalization is not performed; we have only to look for
new bound state which has not appeared in the lower channels.

Appendix B
—— General Structures of Figs. 9 and 11—

Let us go back to Fig. 9. If we take a 3-legged part which partially contains
B-part, general structure of this graph can be expressed as Fig. 21. The closed
broken line C in Fig. 21(b) is assumed to be such a 3-legged part which has b-part in
common with B-part. Adopting the notation in which a, 8, -+, { stand for the number

AT - -y

- - -

)
\/

(b)
Fig. 21. The general structure of Figs. 9 and 11: The parts a, B, -+, { stands for bundles of lines -
connecting between a- and a’-parts, ¢’- and b-parts, ---, &’- and b’-parts respectively.

Fig. 22. (,8,7,8,68=(2,1,1,2,0,0).
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(c)

Fig. 23. Example of the graph for which we can- Fig. 24. The troublesome cases. v
not establish the statement.

of lines contained in @, B, -+, {-parts respectively, we get a+ ¢+ y+e=3(C-part), e+ 8
+¢+06=3 (B-part). The assumption mentiored in § 3.3 remains true if E-part in
Fig. 21 is a 3-legged part (e +a+8=3). Note that the graph is constructed with #:°,
¢.° so that the cases with e+a+8=1, 2 are excluded. Therefore we have to study
only the case e+a+§=4. ’ .

Considering again the fact that the graph is built with ¢:° ¢.°, it follows that «
+38+y+ >3 (D-part).

The connectivity of each part requires =1 (A-part), y=1(B-part), =1 (C-part).
Then the only allowed set.of (a, 8, -+, {) is*¥

(a,B,7,0,¢68=(2,1,1,2,0,0), (B-1)

which corresponds Fig. 22(a). But the graph should be made up of ¢, so the closed
broken line C or Case Eq. (B-1) does not actually exist** ending up with Fig. 22(b).

In fact there are other cases which should be considered. These are the cases
where the broken line C intersects external lines. But the above arguments are valid
for such cases as well. So the statement in § 3.3 is proved.

In the above discussion the crucial point is that the A-part has external lines.
Otherwise, we have to consider the case like Fig. 23 where the above conditions for
C-part break down.

Next we come back to Fig. 11 and follow the discussion similar to the above one.
Then the following cases seem to prevent us from defining the larger 4-legged part.

(a,B,7,6,¢ =(2,1,2,3,0,0) (a),
- (3,2,1,2,0,0) b),
(2,1,1,2,1,0) (0),

611,300  @. (B-2)

Cases (a), (b), (c) are shown in Fig. 12 and (d) in Fig. 24. But Fig. 24 causes no
problem like the case of Fig. 22 since the graph is built with ¢.°, but (a) (b) and (c) are
the origin of the problem as mentioned before.

*) This result is easily obtained by a personal computer. :
*%) Of course, we could set more strict constraint from the beginning so that Eq. (B-1) cannot be allowed.
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Appendix C
—— Proof of the Theorem 1; Dy Simple Net=[Ds Chain]™ ' —

The D, chain is clearly defined as®

Ds chain=— Tl = kKL, (C-1)
I(x; ¥)= $2°(21, 31) $2° (22, ¥2) $2° (23, ¥3) $2°(4, 34) (C-2)
E=3(-D"'K:, - (C3)
K= 34K, | | | (C4)

OO XOC
[ 1 . (C-5)

);OZO('...'.)O(
- Y43
In Eq. (C4), m:=i/2 or (2i+1)/2 depending on whether i=even or odd. We need

further explanation of Eq. (C-5).*® First, black dot on the right-hand side stands for
D, (as in all the graphs in this appendix), that is,

2Ly T2, 2~ Y
T % RV
e, ) (DY) [, ) o, )]

X [2°( 123, 2) p2°( s, 24)]1/2<%E>2 s [$2°(ws, v5) $2(wwa, y)]'2,
(C-6)
where we have employed, along with any fuhction X (a1, 2, 3, x4), the function

X (1, x2, X3, 4)

=X(y1, Yz, Vs, y4)[¢zc(y1, xl)]1/2[¢zc(yz, xz)]lllz[fﬁzc(%, xs)]1/2[¢zc(y4, 3«"4)]”2'- (c-7

— T N— 1 2 £
7 W 0y et ...
: ! 1 ‘ . ceee I g & - W
l ' e
$ | ‘ ; .
\ ! \ /
L veee emen v ane
- ~ e’ 1 2

m

Fig. 25. The structure of the graphs that give Fig. 26. The non-simple-type graph.
vanishing contribution to Eq.(C - 8): Two closed
broken-lines stand for any 8-legged part.

“*) This is also defined by the second derivative of the following quantity by ¢.° fixing #:°, ¢.° and ¢
(1/2)tr{Inf1+(1/2) D] —(1/2) Di—(1/2)[(1/2) D2 — (1/4D[ 445712},
**) 7, is already defined in Eq. (A-12).
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Kz, Ky Kz

)OC);’)()Z)CO

Fig. 27. Mechanism of cancellation: The first Fig. 28. The possible structure for the simple-type

(second) term on the right-hand side stands for graph: The shaded part represents the inter-
the contribution to the graph on the left- twined part. ‘

hand side from the term K I, 'Ki(K:) in

KT, 'K(K).

As always appearing squared, the square roots cause no ambiguity. Second, [-*]
implies that K»' represents 6 different types if /#m and 3 types if [=m.
Now we study the inverse of Eq. (C-1) which can be written as

(D4 chain)“: —4![4(10+K+K[0—1K+KIO~IKIO_IK+ ) . (C8)

Our aim is to prove that this coincides with D, simple net. The proof is divided into
two steps. First we will show that terms which can be viewed as having the stucture
of Fig. 25(non-simple-type) vanish in Eq. (C-8). And then it is proved that the
" remaining type (simple-type) of graphs corresponds to simple net with right weight.
A given non-simple-type graph may be one element of K»', otherwise it has
necessarily the structure of Fig. 26 (/>2, m>=0). We call the shaded parts in Fig. 26
intertwined parts where two adjacent D, vertices are connected by one and only one
line. Noting that the graphs of K do not have intertwined parts in itself, intertwined
parts surely come from Iy™' in Eq. (C+8). So we have only to prove that the graphs
on the left-hand side of Eq. (C+6) vanish in Eq. (C-8). For /=2, m=0 the graph is
generated by the terms K and KI,"'K in Eq. (C+8), so it is cancelled out (Fig. 27). By
the same analysis we see that the graphs with /=2, m=0 are cancelled as well. For
the case where />2, m>1 we make use of mathematical induction as follows (see
Eq. (C:9) below). All cases are exhausted if we consider the cases where the upper
leftest Ds vertex comes from Ki, Kz, -+, or Kiyn. By the assumption about lower
hierarchy only the four underlined terms in Eq. (C+9) remain. But these four terms
are also cancelled out as illustrated in Eq. (C-9).
4 T 2 4 Ka!
SO X [PODa XD
= 7 + v

J0OCHQC O\ TG 200X

freee

L XShoc xR
T =" oo T xidx
e X\
T e T xede) T xx

NN NN B A~~~
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xi:':':‘:xxx

J'C:J'C)CJ(X

Fig. 29. The generation of the subpart illustrated in Fig. 28.

Kmm—z Kri Ky Kri Kr Kz

Kemer 3 K Kesmer 1 K Kevm
)OC.'ﬁf)(?C XOC ; XX _
D00 0Cde X T . (©9)
Thus Eq. (C-8) is able to be rewritten as
(Ds chain)'=—4L(L+ K +K Iy K+ K Iy 'K’ fo;lK’+---) , (C-10)

where K'=Ky'— Ki* and I, implies that the adjacent two D, vertices in K’ which are
attached to both sides of I, are directly connected by one and only one line so that
all the graphs in Eq. (C-10) may become simple-type. Note that each I, thus
corresponds to intertwined part.

If a simple-type graph does not have the structure of Fig. 28 it appears with right
weight, because there is only one way Wwe generate it in Eq. (C-10). Note that each
intertwined part comes form Io™'. In other cases, however, it is also proved that it
appears with right weight by noting that the subpart shown in Fig. 28 is generated as
Fig. 29 and by using the induction with respect to the number of the subparts shown
in Fig. 28. So Theorem 1 holds.
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