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The effective action I'[¢], defined from the generating functional W{J] through the Leg-
endre transformation, plays the role of an action functional in the zero temperature
field theory and of a generalized thermodynamical function(al) in equilibrium statistical
physics. A compact graph rule for I'[¢] of a local composite operator is given in this
paper. This long-standing problem of obtaining I'[¢] in this case is solved directly with-
out introducing the auxiliary field. The rule is first deduced with help of the inversion
method, which is a technique for making the Legendre transformation perturbatively. It
is then proved by using a topological relation and also by the summing-up rule. The
latter is a technique for making the Legendre transformation in a graphical language.
In the course of proof a special role is played by J(%)[¢], which is a function(al) of the
variable ¢ and is defined through the lowest inversion formula. Here J(9)[¢] has the
meaning of the source J for the noninteracting system. Explicitly derived are the rules
for the effective action of {((z)?) in the ¢* theory, of the number density (nro) in the
itinerant electron model, and of the gauge-invariant operator (@7“1/)) in QED.

1. Introduction

The effective action I'[¢] or thermodynamical function introduced by Legendre
transformation is a very convenient tool in various fields of physics. Actually this
fact has long been realized in condensed matter physics as well as in particle
physics.!

In spite of its widespread use, the precise rule for constructing the effective
action for a local composite field seems to be difficult although the graphical rules
for an elementary field and for nonlocal composite fields up to four-body operators
are already known.2® The study of the effective action for a local composite
operator amounts to rewriting the theory in terms of physical variables such as
the expectation values of the number density operator, spin density operator, local
gauge-invariant operator, etc. Thus the importance of the investigation cannot be
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overestimated. In the following we deal with three examples — the effective action
of the ¢(z)? operator in the ¢* theory, a generalized free energy as a function(al)
of the spin and number density in the itinerant electron model, and the effective
action of the ¥(z)y*%(z) operator in QED (where 9 is the electron field).

In some cases the hard problem of obtaining the effective action of local com-
posite operators has been avoided by Hubbard-Stratonovich transformation” or by
introducing an auxiliary field.® In such a formulation, the auxiliary field is not equal
to the local composite operator if one deals with the off-shell quantities and extra
work is needed to extract the physical on-shell quantities, which are directly related
to the original local composite operator. In addition, there are important operators,
such as ¥(z)1¥(z) in QED or QCD in the study of the chiral symmetry breaking,
which cannot be dealt with by the auxiliary field technique. This article can be
regarded as the first step toward these cases.®

In the following we deal with the local composite operator itself without intro-
ducing an auxiliary field and explicitly derive the graphical rule for the effective
action. Difficulty is solved by using the inversion method.1®14 As seen below, in
our formalism the quantity J(°'(¢) plays an essential role since we rely on the
inversion method so that it is natural that the present work is different from
Ref. 15, which explicitly deals with the Gross-Neveu model in a way suitable for
1/N expansion.

In this article we are concerned with only the combinatorial aspect of the subject.
For the field-theoretical cases there remain the crucial issues of renormalization of
composite operators. This important aspect of the problem is mentioned in the
Discussion (Sec. 5). A complete study of the problem is very important and needs
a separate investigation. On the other hand, in the case of the system defined on
a lattice, the results are readily applicable to the actual physics!* without being
influenced by the divergence problem.

We emphasize here that the analysis of the Feynman diagrams appearing in T’
is no doubt indispensable for getting the solution of the renormalization problem
about the effective action of the local composite operator.

For later discussion let us define the effective action I'[¢] explicitly. For the
zero temperature case it is introduced through a generating functional W[J] with
a source J coupled to some operator O; "] = (0|¢i7C|0). Here |0) represents
the ground state. Then a dynamical variable ¢ is defined as ¢ = % = (0)’ and
the effective action, which is a functional of ¢, is given by I'[¢] = W[J] — J¢ with
-J= %. Here J is given by a functional of ¢ by inverting ¢ = %. For simplicity
we have considered the z-independent variables J and ¢ since it is straightforward
to extend to the local variables J(z) and ¢(z). We have called a function of J or ¢
a functional, as we will do in what follows, so that we can recover the z dependence
freely. In equilibrium statistical physics W corresponds to the thermodynamical

2Actually, the results presented here have been developed to be applied to the gauge-invariant
study of the strong coupling phase of massless QED and positronium states.?
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potential . For instance, O is chosen to be the total number operator N; then "
corresponds to the Helmholtz free energy F and J is the chemical potential u(N).

The essential step of Legendre transformation is to invert the relation ¢ = %VJK
in terms of J. The inversion method enables us to write down the explicit form of J
in terms of ¢ by perturbative calculation. The lowest relation of the method defines
the functional J(®[¢], which is the source as a functional of ¢ in a noninteracting
system. As will become clear, it is J(®)[¢] that plays a fundamental role in deriving
['[4]. In fact it turns out that, by the inversion method, I'[#] in the case of a local
composite field is obtained as a class of irreducible graph in a certain sense (plus
simple terms) as a functional of J(O[¢] rather than ¢ [for the ¢* theory, see (2.69)
with (2.46) or (2.90)]. In other words, all the functional dependence on ¢ is through
J©[¢]. This point is in remarkable contrast to the rules for the effective action of
an elementary field and nonlocal composite operators where the rule is based on
¢ itself. This may be the reason why the problem of the local composite operator
is difficult and has been unresolved. The use of J(®)[¢] naturally comes out in the
formulation through the inversion method.

In order to explain the inversion method!®!* (again for the simple case of the z-
independent variables J and ¢), we assume that the theory has a coupling constant
A. Then the expectation value ¢ = ((5)" is calculated in the presence of J through
the Feynman rule [like (2.9)] to get a series expansion

o= ™[], (1.1)
n=0

where ¢(™)[J] is the nth order of ) by regarding J as independent of A. This relation
can be inverted to give

J= i J™ig], 1.2)
n={

where J(™)[¢] is the nth order of A\. To obtain the explicit form of JW[¢] as a
functional of ¢ we first assume (1.2) and get

p=> ¢ [Z g [¢1] (1.3)
n=0

n=0
= ¢ [JO[g] + JM[g] + )+ ¢(1)[J(0)[¢] +JVP]+ ]+ (1.4)
or
¢ = ¢(0) [J(D)[¢]] + ¢(0)' [_](0)[¢]] J(l)[¢] 4ot ¢(1) [J(O)[¢]] +oee (1.5)

where ¢(0Y[J] = 5—‘”%[11. The inversion is made by regarding ¢ as independent of
A, namely as of order A% = 1. Then an explicit form for J(™)[¢] is known succes-
sively up to the desired » by writing down the nth order of (1.5); ¢ = ¢(O[J(D[g]],
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JO) = —g¢M[J0[g]) /¢ [J[g]],. ... Regarding ¢ as independent of A just cor-
responds to making the Legendre transformation from J to ¢ (see App. A). The
extension of the above formula to the case of local variables J(z) and ¢(z) can be
done merely by recovering the x dependence and appropriate space-time integrals.
We will see that the series expansion (1.5) in the graphical form is directly given
by (2.10). An explicit form of J(®[¢] may not be obtainable in the cases studied
in this paper because J(°)[g] is defined by the inverse of a known functional ¢(®)[J]
or JO[g] = ¢(O-1[¢]. However, examples in which J(®[¢)] is explicitly obtained
are dealt with in App. C. But this is not necessarily an obstacle; rather, it may
be a merit in actual calculation in some cases. An explicit instance in this respect
has been provided for the case of the itinerant electron model.'* In other cases it is
more convenient to change the dynamical variable; ¢ — J(®[¢)], as in Ref. 12.

In Sec. 2 the case of the ¢* theory is discussed in detail as the simplest example
and also as a prototype for the subsequent two models. First we try to deduce the
rule and arrive at the propositions to be proved later. Explicit rules are given in the
form of Proposition A2 with A1’ or Proposition A3’ below. In the second subsection
we rigorously prove these propositions in two ways: by the use of a topological
relation and by the summing-up rule.}® In Sec. 3 the case of the itinerant model is
studied as an example of the free energy of condensed matter physics. A more model-
specific study of the case has been carried out'* to give a systematic improvement
of the Stoner theory and to obtain the results similar to the SCR theory by Moriya
and Kawabata.l” The last example of QED is given in Sec. 4, which can be the first
step toward a gauge-invariant study of the gauge field theory. A discussion on the
renormalization problem is given in Sec. 5, as stated before. Appendix A gives the
reason why ¢ is to be considered as independent of X in the process of inversion in
a way different from the one given in the literature. In App. B the Feynman rules
which are necessary for our discussion are given in detail because the symmetry
factors play an important role in the deduction of the rule. Appendix C reproduces
the known rules of the effective actions for an elementary field and nonlocal two-
body composite operators by the inversion method. In these cases J () [¢] can be
explicitly given, as stated before. In App. D we review the path integral technique
for the fermion coherent state used in Sec. 3.

2. The Case of ¢* Theory

As the simplest example we consider the effective action for the expectation value
of a local composite operator ¢(z)? in the ¢? theory — we take I'[¢] with the local
variable ¢(z) o« (¢(z)?).

Let us introduce the generating functional W[J] in the path integral represen-
tation as follows:

eiW[J] — /D(pei5[¢,J]’ (21)
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1 -
Ste.7] = -3 [ d'adtye@)6 @ o)

- % d*zo(z)* + —;-/d"xJ(x)go(x)z, (2.2)
G (z,y) = (@ +m?)6*(z - y), (2.3)

where [ Dy denotes the functional path integration by the field ¢. Note here that
an z-dependent local external source J(z) is coupled to the local composite field
operator ¢(x)2. In general, apart from the situation where the symmetry of the
Lagrangian preserves it, the vacuum expectation value of the composite operator
¢(z)? is nonvanishing even if the system is not in the condensed phase. This is
the case with the ¢* theory. The true condensation should then be the difference
between {p(x)?) - evaluated at the perturbative vacuum and the nonperturba-
tive (i.e. condensed) vacuum. Thus if one wants to write the effective action as a
functional of the condensation in the above sense, it may be appropriate to change
the source term from J(x)p(x)? to J(z)(p(z)? — (p(z)?)5_,), where {(p(z)?)5_, is
evaluated at the perturbative vacuum. But we do not introduce the source term
like this for the following two reasons:

(1) We could know the value of the condensation in the above sense by comparing
the two solutions for the stationary equation of the effective action. One of
them is of course {¢(z)?)5_,.

(2) We are mainly interested in the mathematical structure of our problem, so that
it is wise to choose the simpler option.

Hereafter we frequently use the notation in which the space-time indices and
their integrations are omitted if it causes no ambiguity. For example, Sy, J] in
(2.2) is denoted as

—%ch“w - %w“ + %145
in this symbolic notation.

It is straightforward to get the graphical rule for W[J]. We note here that
different rules are obtained depending on how much of J is absorbed in the propa-
gator. In this paper both of the two diagrammatic rules (2.4) and (2.5) are used:

i 4

1 _ 1, _
W[J]‘Wo=—2—iTrlnGJl+{(e T, , (2.4)

i.e. the sum of all the connected vacuum graphs built with the four-point vertex —)
and the propagator G, and

1 1 i i
W -Wy=~-=Tr ln[G(O)]——l + _'<e—1‘}<ﬂ‘+§(.7“)+.l(’)+---)‘P2>G(o) , (2.5)
21 1
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i.e. the sum of all the connected vacuum graphs constructed out of the four-point
vertex —\, the two-point vertex J(*) with ¢ > 1, and the propagator G(®). Here the
propagators are defined as (with obvious symbolic notation)

G'=0+m?—J, [GO]'=04+m?-JO, (2.6)

Wy is the trivial J-independent part of W and Tr represents the functional trace.
The first term on the right hand side of (2.4) or (2.5) (Tr In term) is usually denoted
by a circle in graphical representation and, in this paper, is called a trivial skeleton
(the definition of the skeleton itself is given below). Furthermore the notation of the
form (O]y]) 4 means the summation of all the possible connected Wick contractions
of the operators contained in O[y] by using A as propagators, i.e.

_ [ Dpe'Se0|y]
(Olph)a = —fD_S"—éTST’_ )

conn.

with Sy = —%cpA*«p. (2.7)

Throughout this paper we frequently employ this notation from which the weights
of graphs are explicitly obtained. Remember that the original notation (¢(z)?),
(p(x)?)” implies, however, the full order expectation value. The rule (2.5) contains
two-point vertices of J(¥? (i > 1) because the absorption of J into the propagator
is not complete.

Now the expectation value of the local composite field will be called ¢(z);

specifically, w1 2\J
o) = o = Lot

(2.8)
With the notation (2.7) the graphical rules corresponding to (2.4) and (2.5) are
summarized as

¢ P <llp26—%¢4> ) (29)
2 G,

i.e. the sum of all the connected graphs with one external point (where two propa-
gators meet) built with the four-point vertex —X and the propagator G, and

¢ = <l¢2e—%¢‘+%(1‘”+ﬂ”+m )<p2> , (2.10)
2 c©®
i.e. the sum of all the connected graphs with one external point (where two propa-
gators meet) built with the four-point vertex —), the two-point vertex J® (i > 1),
and the propagator G(%),
To rewrite the theory in terms of this dynamical variable ¢ instead of J, we
introduce as usual the effective action of ¢ through Legendre transformation:

Tjg] = W[J] / dJ(z)d(z) = W[J] - I8, (2.11)
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with an identity

— J(z) = g([f]) . (2.12)

It is convenient to introduce I'("™), which is the nth order in A, or

r=> 1", (2.13)

n=0

Then we see in Subsec. 2.1.2 that T'®) and T'(1) are explicitly given by (suppressing
the space—time integration)

O = _JO[4)p %ZTI‘ In[GO], (2.14)
r - _%w. (2.15)

In this case of the ¢* theory, J(©)[¢] is defined through

1 1 1
o(z) = ﬁG(O)(z,x) = % (D e Jm)[d’])zz s (2.16)

which is to be proved in Subsec. 2.1.1. We emphasize here that although the right
hand side is denoted by a single graph of (2.31), ¢ on the left hand side is a full
order quantity, suggesting that J(®[4] has full order information. The central part
of our study is that for the remaining part of I', which is called AT,

AT = ir(ﬂ (4] - (2.17)
=2

2.1. Perturbative derivation of the graphical rule for
T'[¢] through the inversion method

An explicit calculation up to the fourth order of X is sketched, and based on the
result the general rule for full order is deduced. Full justification is given in Sub-
sec. 2.2. In Subsec. 2.1.1 the rule for J(*) is inferred by the inversion method. We
see that J(™ is successively given as a functional of J(®[#]. Then in Subsec. 2.1.2
we obtain '™ based on the J(™ vertex in two ways: by integrating the diagrams
of J(™ or by starting from a closed formula for AT. Since J (™) has already been
given as a functional of J(®[¢] in Subsec. 2.1.1, the effective action AT is obtained
as a functional of J(®[g]. Explicit rules for AJ and AT are given in Subsec. 2.1.3,
in which their dependence on J(®[¢] is transparent. For this purpose an artificial
bosonic field ¢ whose propagator is a functional of J(®[g)] is introduced.
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2.1.1. Rule for J(™)

The original series of ¢ is first calculated as
= ¢(0) + ¢(1) + ¢(2) + ¢(3) + ¢(4) + .- (2.18)

through (2.9), regarding J as being of order unity with graphical representation as
follows:

¢(0)[J] — , (2.19)

¢(1)[J] — , (2.20)

QL0 O
691 = OO + 30 diagrams. (2:23)

Here the dot e corresponds to an external point where two propagators meet and to
the insertion of the operator ¢(x)? which is effected by the derivative with respect
to J(z). Note here the relation %’ﬁz = G(y,z)G(z, z). The propagator G s(z,y)
and the factor —\ are associated with a line and a four-point vertex respectively.
(No factor is associated with a dot. For a detailed rule including the symmetry
factor, see App. B.)

We mention here that the diagrams of ¢(") are obtained by attaching a dot,
in all possible ways, to one of the lines in the graphs of the nth order of W. For
example, the 31 diagrams of ¢(4) are obtained through the fourth order of W:
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+ OO + C%%:)+ QO
+<Zz> +(Q}I)+ CXE} + L (229

Since the above diagrams of ¢(*) are all functionals of J(z), which is contained
in the propagator G ;(x,y), we get ¢(x) as a functional of J; ¢ = ¢[J]. Assume that
the relation ¢ = ¢|J] is inverted to give the relation J = J[¢] and this inversion is
done perturbatively as in (1.2) regarding ¢ as an quantity independent of A or the
order A9 = 1. Then, as in the Introduction, we get the following formulae of the
inversion method:

¢ = ¢ (JO], (2.25)
O J1) 4 (1) =g, (2.26)
$O J(@) 4 Ly (JW)2 4 gy J1) 4 ¢() =0, (2.27)

1 3
(0 J(3) 4 4O y(1) 5(2) 4 i4{,(0)'"(,](1))
+ ¢ g2 4 %¢(1)"(J(1))2 + @ g 4 B3 =0, (2.28)
O J@ 4 %¢(o);: (2J(1)J(3) + (J(z))2) + _;_¢(0)”’(J(1))2J(2)
+ Zli¢(0)ll”(J(l))4 + M B 4 g 71 7(2) 4 31!.¢K1)”’(J(1))3

+ ¢ @) 4 %¢(2),,(J(1))2 + ¢34 6 =¢. (2.29)

Here we have employed a concise notation. If we explicitly write (2.27), for example,
it has the form

8¢(®) [ J(O)] 1 5¢® [ J(O)]
4 (2) 1 4, 34 (1) (1)
/d x————éj(o)(a;) JE Nz + 5 /d zd y_——___éj(O)(x)éJ(O)(y)J (2)J\ ()

s [JO)] _
+ / dtz S JO(z) + ¢@[IO] = 0. (2.30)
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We emphasize here that all ¢ (i = 0,1,2,...) and their derivatives in (2.25)~(2.29)
are evaluated at J = J([¢], defined implicitly by (2.25). So Eqs. (2.26)—(2.29)
successively give the functional dependence of J3) to J® on ¢ through J©[4).

Let us discuss the graphical expressions of {2.25)—(2.29). Note here that the
propagator in the following graphs is G(® = m—i—J@[—‘ﬂ instead of G;. Then,
from (2.19), Eq. (2.25) is expressed as

6= O . (2.31)

Here and hereafter the dot represents a derivative not by J but by J(®. Notice also
that the meanings of the graphs on the right hand sides of (2.19) and (2.31) are
different because the line or the propagator in them is not the same: G for (2.19)
and G for (2.31). Thus (2.31) reduces to (2.16). It is stressed here that J(O[¢] is
defined through (2.16) or (2.31) although its dependence on ¢ is only implicit. By
the use of (2.19) and (2.20), Eq. (2.26) is also expressed as follows:

QJ(l) + CD =0. (2.32)

Here we have used the relation

O = O . (2.33)

Noting that a four-point vertex makes a contribution —A so that

O0-O=0Q- o
JO =) Q (2.35)

1 1
(1) = = \—
T =M = N e T o

we get from (2.32)

or
(2.36)

Thus JU) is given by J(©[@]. Consider next the graphical expression of (2.27)
obtained through (2.19)-(2.21).

Ja)

JO
O"m T e T CDJ“) M @
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We see that the second, fourth and sixth graphs on the left hand side are summed
up to zero after replacing J™) by the right hand side of (2.35) by explicitly taking
symmetry factors into account of course — see App. B. A similar cancellation of
the third and fifth graphs on the left hand side of (2.37) occurs, ending up with

O

The graphs of (2.28) and (2.29) are also obtained through (2.19)-(2.24). These
expressions originally consisted of many terms, but due to a similar cancellation
mechanism they reduce to

Or-0.

Om-Cr D - @
L@ - @
-

These simple results lead us to the following proposition to be justified later. Before
we present the proposition it is convenient to introduce the terms 1VI and 1VR.
The 1VI (one-vertex-irreducible) graph is a connected graph in which removal of any
one of the four-point vertices does not lead to two separate graphs. The 1VR (one-
vertex-reducible) vertex is defined as a four-point vertex in a connected diagram
whose deletion results in a separation of the graph. The 1VI graph can also be
defined as the connected graph without any 1VR vertex while the 1VR graph is a
graph in which at least one 1VR vertex is present. By definition a graph which does
not have any four-point verter is not 1VR but 1VI although the trivial skeleton
(Tr In term) is not 1VR or 1VI. Namely, all the graphs are classified into three
categories: 1VI, 1VR and the trivial skeleton. For later convenience we introduce
the skeleton. Both the 1VI graph and the trivial skeleton are called the skeleton.
In other words, the whole class of the skeleton comprises all the 1VI graphs plus
the trivial skeleton. With this terminology we see that all the 1VR graphs in (2.37)
disappear to result in (2.38) after all the J(1)’s are replaced by the right hand side
of (2.35). Thus we can deduce the following proposition.

(2.40)

Proposition Al. After the replacement of J*) by its graphical expression of
the right hand side of (2.35), all the 1VR graphs originally appearing in the inversion
formula of the nth order with n > 2 [(2.27)-(2.29) and higher order relations] cancel
out. In other words, only the 1VI graphs with correct weight remain in the inversion
formulae.
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Note here that 1VI cannot be replaced by 2PI (two-particle-irreducible) as in
the case of the effective action for the nonlocal operator y(z)p(y).2*% This is clear
from the second and third (1VI) graphs from the last on the left hand side of (2.40),
which are 2PR (two-particle-reducible).

We also note a very convenient way to express the original graphs of the inversion
formulae (2.25)—(2.29) and higher order relations such as (2.31), (2.32) and (2.37)
in which graphs J(1)’s still remain [without replacing them by the right hand side of
(2.35)]. Let us turn our attention to (2.10), where graphs are built with propagators
G® and four-point vertices ~\ and pseudovertices of order A* with 7 > 1, which is
denoted as __;]L . We have called the two-point vertex originating from
J(Mp? a pseudoverter, since it has nothing to do with the definition of 1VI. The
term 1VI is defined as one-vertex-irreducible with respect to the four-point vertex.
Then the graphs of the inversion formula are obtained as follows. If one writes
down the nth order of (2.10) considering ¢ and G® (namely, J®) as being of
order A’ = 1, one obtains the inversion formula of order n in the graphical form.
For example, the zeroth order of (2.10) is

b= < 1w2> , (2.41)
2 ()
which is equivalent to (2.31), and the first order is
Loof 3d 4 %4y o
=(= _= - 2.4
0 <2Q0 ( 4'(p + 2J "2 . ) ( 2)

which is (2.32). Furthermore the second order of (2.10) reduces to (2.37). Here it
is convenient to introduce the self-contraction of the pseudovertex (Fig. 1) and the
four-point vertex (Fig. 2). Since the relation %%%1 = GG holds, the quantity

1 ]
J(n): <_§02 . _J(n)<p2>
Q 2 2 GO

_1 1 1
T 20+m2—JOO+m2- JO

6
-t O S (2.43)

is called (the nth order of) the derivative of the self-contraction in the following.
Then, as we have from (2.10)

(n)

0 = nth order of <%¢26_%¢4+%(J(1)+J(2)+-..)‘p2> ’ (244)
G(0)
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O

Fig. 1. The self-contraction of the pseudovertex.

Fig. 2. The self-contraction of the four-point-vertex.

for n > 1 we get the formula

1 A 4 i (D) (D) 2\ ndeelf
- J(») = nth order of <§<p26_?"" (T e > , (2.45)

G

where ndself (no derivative of the self-contraction) implies that the derivative of
the self-contraction is moved on the left hand side. Since (2.45) is the original
inversion formulae of the nth order, Proposition Al implies that in (2.45) all the
contributions from the J(1) vertices should be eliminated if only 1VI graphs are
kept. Thus Proposition A1’ follows:

Proposition A1l’. J(™[¢] (n > 2) is successively obtained as a functional of
J(©[¢] through

1 A 4t ir ) W3 ; 1VI/ndself
- OJ(") = nth order of <§cp2e”ﬂ"’ M 1SR A e > , (2.46)
GO

i.e. the sum of all the connected 1VI/ndself diagrams with one external point built
with the four-point vertex of —J, the two-point pseudovertex J() (i > 2) and the
propagator G(©).

The restriction 1VI/ndself implies that the derivatives by J(® of the self-
contracted diagram are excluded and, at the same time, only the 1VI graphs should
be kept. This proposition is directly proved in the next subsection by using the
summing-up rule.!®

We can directly get (2.38)-(2.40) from Proposition A1’ due to the 1VI/ndself
restriction [through the procedure similar to the one given in (2.41) or (2.42), etc.].
We notice that the right hand side of (2.46) contains J()’s with ¢ < n (strictly
speaking i < n — 2). Hence we successively obtain JG@ (i > 2) as a functional of
J© . For example, J@ is expressed by J© if one inserts the J(2) vertex given
in (2.38) into (2.40). In this way J® can be successively given as a functional of
J©®[g] [without using JO) (j < 1,1 # 0)].
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2.1.2. Rule for AT by use of the pseudovertexr J™ with n > 2

Now we turn our attention to the effective action I'[¢] itself. We notice that T(™)[¢]
satisfies
sT™g] _

5302) —J) (). (2.47)

Then for n = 0 we get (2.14), because by differentiating the right hand side of
(2.14) with respect to ¢ we obtain —J(© through (2.16). T'(!) is also easily obtained
by integration of (2.36) so that we have (2.15). To derive I'("™) for higher n, it is
convenient to note the fact that

(m _ D8] _ 67O[g) sT]g)
¢ b 6J(0)

6
-

The quantity of the last equation is a kind of propagator for the composite operator
©(z)? and is called the composite propagator [(o(z)%p(y)?)]. D is called the inverse
composite propagator in what follows. Thus we get from (2.48)

§T(n)

Therefore the right hand side of (2.46) is just %(—(:;. Keeping (2.50) in mind and by
integrating (2.38)-(2.40) we arrive at

e — @ , (2.51)
©

: (2.52)

-J (2.48)

and that

(DO es
J@ = —<Q)—@ : (2.54)

with
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Note that the symmetry factors play an important role in the integration (see
App. B). Note also that the first factor on the right hand side of (2.54) corresponds
to the amputation of the composite propagator (2.49).

In fact we can derive (2.51)—(2.53) and higher order relations more easily. To
this end we introduce a closed form of functional representation of AI'[¢]. We first
write down the following equation, which is clear from (2.1), (2.2) and (2.11):

el = / Dipeil=to(Ormio— gt +11e*-14] (2.55)
where J is expressed by ¢. Noting that
J = JO¢] + A¢ + AJ[¢] (2.56)
with SAT
AJ:J(2)+J(3)+...=__5¢_ (2.57)
and that, apart from the irrelevant constant factor,
/Dwe—i%qa(ﬂ-{-m?—.l(o)yp — e—%Tr ln(D+m2—J(0))’ (258)
we get
eilld] — ei[—J(o)da—}l;Tr In(Q4+m?—J©) - 34?]
i[-3o(04+m? =IO Yo 2+ H(I-T ) —(J-T O -} ¢)4]
« I Dee A . (2.59)
fD(pe—z§<p(D+m —J(0)}p
In this way a closed formula for AT is obtained:
i[~Lo(a4m?—J©) ot {~ 1'A¢4+,\¢¢2_x¢2 __ AT %2—4’
e‘iAF[fﬁ] - fDSpe [ E‘P( ) { T 7 z } _JT( )] (260)

[ Dpe—1#(0+mi=T@)p

This equation indicates that AT’ can be calculated perturbatively by using GO =
(0 4+ m? — J(©)~1 a5 propagators. The role of the additional vertices 3¢p? — 3¢?
and %q& are merely to suppress the self-contractions. In other words the graphs
having the structure of Figs. 1 and 2 disappear. To see this let us take one specific
—%cp“ vertex. Each of four ¢’s of the vertex is to be contracted with the other ¢.
There are three possible ways to make such contractions:

St a2 - SR, (26))
where the normal ordering : ™ : means that each of the n ¢’s is to be contracted
with ¢ contained in a vertex different from the one we are taking. Note here that
the contraction within a single vertex (self-contraction) is given by

1 1
pp==|—m—roo— oo = 2¢. 2.62
o= (l:l+m2—J(°))m 2¢ (262)
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We can write in a similar manner

A A A
SO0 => S0+ S0P (2.63)
2 2 2
Then the contractions of the set that appeared in (2.60) become
A A g A A 4.
] + §¢4p - 2¢ = nk @, (2.64)

which is clear from (2.61)—(2.63). In the same way %—(%—2 — ¢) reduces to

SAT (1 — AT 1
I
In this way we get a simple formula for AT'[¢}):

AT = %(e—%v‘—%%?ff)’;:g = %(e—%¢‘+%(ﬂ”+ﬂ”+---)<P’>'(‘;(i')f’ (2.66)

where the superscript nself implies that we have to keep all possible connected
Wick contractions using the propagator G(9 = (0 4+ m? — J(0)~1 excluding self-
contractions of both the four-point vertex and the pseudovertices.

From this formula we can successively derive I'™) (n > 2) more easily than in
the previous method in which we started from the algebraic inversion formula to
obtain J(™ first and then I'(") through integration. This is seen as follows. First
notice that (2.66) actually starts from A% because the first order of the right hand

side of (2.66), which is 1( — D? 'C';fol)f , becomes zero due to the nself restriction.
Since I'?) is of order A2, we get
If
@_ L/ O\ im o\
) G

The second term on the right hand side makes no contribution to I'®), again due to
the nself condition, thus leading to (2.51). In the same way I'® is calculated from
the expression

nself
1/1 (=ix \* A i i
ré® = z <§—‘ (T 4) - zatp“ <—§J(2)tp2) - -2-J(3)<p2> , (2.68)

and we get (2.52).

(a) (b) (c)

Fig. 3. An example of 1VR graph that is canceled in I'5),
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This course of study can be continued (up to the desired order) to get (2.53) and
so on. In (2.66) we do not yet have the 1VI restriction explicitly, but we can see that,
due to the additional vertex —%%%\pz = —£AJg?, all the 1VR structures in the
diagrammatic expression of (2.66) exactly cancel out. For example, the 1VR graph
of Fig. 3(a) which appeared in (2.66) for n = 5 is canceled by those of Figs. 3(b)
and 3(c), which are supplied by the pseudovertex —%AJcpz. Thereby a practical

formula for AT'[¢4] is obtained:

Proposition A2. AT is given by the rule

1 i i ns
AT = z_,(.e—z*.r<p4+g(J<’>+J(~“*>+~~)saz et (2.69)

i.e. the sum of all the connected 1VI/nself vacuum diagram built with four-point
vertices of —), two-point pseudovertices of J(*) (i > 2) and propagators G(®.

The condition 1VI/nself implies that only the connected Wick contraction cor-
responding to the 1VI graph needs to be considered and, at the same time, that the
self-contractions of the pseudovertex of Fig. 1 are excluded. The self-contractions
of the four-point vertex of Fig. 2 are automatically excluded by the restriction of
1VI. Corresponding to the relation (2.50) or

SAT
- OAJ - m, (2.70)

the ndself restriction in (2.46) is changed to nself in (2.69). Proposition Al is
the derivative form of Proposition A2. Proposition A2 is clearly equivalent to the
following Proposition A2’ and is justified rigorously in the next subsection.

Proposition A2’. T(™ (n > 2) is the sum of all possible nth order 1VI/nself
diagrams constructed out of the four-point vertex of order A and the pseudovertices
of the order A* (2 < i < n—2), which are denoted by J , and the prop-
agator G0 = (O +m? ~ J©)-1,

We put stress on the fact that Proposition A2 or A2’ makes it possible to write
down T™ (n > 2) successively with its ¢ dependence coming only through J (0)[¢],
although the rule contains J®, J(3) J4) . This is because the graphs of I'™
contain J) with ¢ < n — 2 while the graphical rule for these J) in terms of G0
propagators is already known in (2.46) or through I'®) by the relation (2.48):

-1 ;
; sT()
J():—(Q> =5 (2.71)

Combined with the fact that I'®) and T) are also given only through J(®, which
is clear from (2.14) and (2.15) with (2.16), T itself is given by J(®.
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From Proposition A2 or A2’ we can directly obtain (2.51)—(2.53) and

- @D Qo+ B
+ @ +oo +oe (2.72)

and so on. The directness comes from the 1VI restriction.
Now it is convenient to introduce the whole class of the 1VI vacuum graph K[A];

K[A] = (e~ #e )V, (2.73)

where the propagator used in the diagram is A. Note that the trivial skeleton
—LTrln A" is not contained in K[A] by the definition (2.7). Thus this quantity is
described as the whole class of the vacuum skeleton minus the trivial skeleton. The
whole class of the vacuum skeleton is given by

K[A] = K[A] - -l—Tr InA~! = /D(pe_z‘”A L , (2.74)

24 excl 1VR

where excl 1VR implies that the 1VR graphs are excluded or that only the 1VI
graph and the trivial skeleton are kept.

In (2.53), (2.72) and in the graphs of (™) with higher n obtained by Proposi-
tion A2, we see that I'(™) is the sum of all the 1VI vacuum diagrams built with the
four-point vertex and the decorated G(®) propagator. The decoration is done
by J™ (n > 2) pseudovertices which are inserted into the G® propagators in all
possible ways. We see also that —aTr In[G(®]~* and the self-contractions of the
pseudovertex J(¥ with 7 > 2 are not included in AT Thereby we arrive at Propo-

sition A2’
Proposition A2”. AT[¢] is given by K[G]— £ Tr In[G] ™! —AK,, = K[G]-AK,
where
G=@+m2—JO - J&_ & _.. )7 (2.75)
= (O+m2+ 26— Jg)) " (2.76)
or, with the line representing the propagator G(®,

_ (2 (3) J@ g3
G — + J + J dee + B + e

(2.77)

and
AKy = —%Tr GO + ¢(J = JO — JW). (2.78)
13
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In other words, I' = I'9) + T'M) 4 AT is given by
(gl = —¢J(4] + %as" - %Tr In (O +m? — J[g] + Ap) + K[G]
= —¢J[g] + %¢2 + K:[G] . (2.79)

The quantity ——Tr In[G]~! — AK; is a Tr In of a decorated propagator specified as
follows. The decoratlon is made by J©, J@ jG&  (JO = )\ is not included)
but the decoration only by J(%)s [the first term on the right hand side of (2.78)]
and the decoration by one single J(2), J®) . . [the last term of (2.78), which is
a summation of the self-contracted diagrams of Fig. 1 with ¢ > 2] are excluded.
Proposition A2"” will be justified in the next subsection precisely.

Although the appearance of the term —J¢ in (2.79) seems to be somewhat
curious, it is not actually so. Differentiating (2.79) with respect to ¢ by noting
(2.76) and (2.12), we get

(o 25 (-£2.13) =o. o

The second term is not zero because &< 7 ¢ contains various orders of A. Thus we get

6K

=27, (2.81)

which is consistent with (2.8) or ¢ = %‘1 in the following sense. If one uses the
relation

W="C"+Jp= %qﬁ + K[G) (2.82)

[obtained from (2.79)] on the right hand side of ¢ = £% and then uses (2.81), one
gets the left hand side of this equation, i.e. ¢.

2.1.3. Rule for AT in terms of J©©[¢]

From Propositions A2 and A1’ we can deduce another graphical rule for A" and
AJ in which all the ¢ dependence is exphcn:ly through J(O)[¢] We arrive at the

new rule by using (2.71) and by noting that £ —@y is given by the right hand side
of {2.46) (in addition to the facts stated just above Proposition A2"’). To state the
new rule we introduce the i-vertex (i = 0,1,2,...), which is defined as

_1 §K[GON
vi(xy,...,1) = AT (zy) 67Oz i1 — ;2 , (2.83)

where 6; ; is the Kronecker delta.
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Now the final rule is given by the following statement where the graphs are
built with the inverse composite propagator D(z,y) and the vertices v;(z1,...,%;)
(i=0,1,2,...).

Proposition A3. AT and AJ are given by the following rules:
AT = Z [all the connected tree diagrams with all the

pairs (z;, p) of the arguments of v;’s connected by

D propagators (vacuum graph)] , (2.84)

AJ(z) = / d*yDgy x Z [all the connected tree diagrams with

one of the arguments of one of the v;’s being the point y

(graph with an external point)] . (2.85)
The tree graph in terms of D propagator is the graph in which all the D propagators
are articulate. Here the D propagator in a connected graph is called articulate if
removal of it leads to a separation of the graph. Note that D(z,y) lines never make

a loop because D(z,y) comes from J() with i > 2 [see (2.71)]. Proposition A3 is
understood through examples. For instance, I'9) in (2.53) or

@O @ @@

can be written as

(2.86)

'Y = fourth order of (%UlD’Ul + ’Uo) . (2.87)

In (2.86) J(V[¢] dependence is evident because there is no J(*) pseudovertex (i > 2).
All the ¢ dependence is through J(® contained in G(® (and D). The sum of the
first two terms of (2.53) exactly coincide with the first term of (2.86) with correct
weight after substitution of (2.38) or (2.54).

Proposition A3 can be expressed as follows. For this purpose we introduce a
o field whose propagator is D. (The o field looks like the auxiliary field but has
nothing to do with it.) Then AT is given by

1 ‘quDae"SOe"si"t
Al = = .
i DeDoetSo

So = —%so[G“’)] o %UD‘IU, (2.88)

y
conn/tree/1VI/excl

— A 4 1 2
Smt—' 4'50 +2U<P ’
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D=—5‘;:) =--(O>“1 . (2.89)

Here the subscript conn/tree/1VI/excl implies that only connected graphs which
are tree graphs in terms of the D propagator and also 1 VIin terms of the four-point

with

vertex have to be considered and, at the same time, that the substructure of Q
and Q has to be excluded. Hence with the compact and self-evident notation,
Proposition A3 is rewritten in the following form:

Proposition A3’. AT and AJ are given by the following formulae:

1, _ia e i g2\ tree/1VI/excl
Al = ;(e %‘P tioe >G(°),D ’ (2‘90)

1 i 4. 2 tree/1VI/excl
—- AJ = <_(p2e—'¢r<ﬁ +300 > , (2.91)
2 G©),D

where the connected graphs with tree/1VI/excl restriction are constructed by three-
point (c¢?) and four-point (Ag*) vertices and propagators G(¥) of the ¢ field and
D of the o field.

Recall that both G(® and D are functionals of J©. Proposition A3’ is easily
understood from the rule (2.69) with (2.46), but a rigorous proof is presented in
Subsec. 2.2. Notice that this rule does not contain the J(*) pseudovertex unlike the
previous rules, but instead D is represented by the propagator of the artificially
introduced ¢ field. From (2.90), the quantity I'4), for example, can be directly
obtained as (2.86) above.

Finally we note that a certain infinite series of the graphs appearing in AT'[¢]
can be conveniently summed up. The series I', is the sum of all the possible closed

chains constructed out of the unit element O or

rch=© + @ + oo (2.92)

This series is summed up to give

Fchz—%[’l‘rln (1—,\0) +,\nQ+(3!-2) @ ] (2.93)

2.2. Formal justification of propositions

In this subsection we directly prove Propositions A2'', A1’ and A3’, leading to the
full proof of all the propositions in the previous subsection.
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Proposition A2 or (2.79) is proved easily by analyzing the graphic expression
of W[J] rather than that of I'[¢]. It is based on a similar topological proof given
in Ref. 2. If one writes the graph rule of W[J] using G; = (O + m? — J)™! as
the propagator [the rule (2.4)], the whole dependence of W{J] on J is through the
propagator Gy = (O+m? — J)~1. The contribution of all the 1VI graphs appearing
in W[J] can be written as K[G], the vacuum skeleton minus the trivial skeleton
—TrInGj ' [see (2.73)]. Then all the graphs of W[J] seem to be generated by
replacing G with [G}' — (~A¢)] ™}, i.e. W[J] seems to be given by

- 5 Trin (651 +A9) + KI(GT" +3¢)™'] = KIG]. (2.94)

Note here that ¢ is the sum of the all distinct connected diagrams with one external
point where two propagators meet. [We use here the rules (2.4) and (2.9) in which
the propagator Gy = (Q + m? — J)™! is used so that there are only the four-
point vertices —) and the pseudovertex does not exist in the graphs of ¢.] But the
above statement is not exactly true, because each element of the graphs of (2.94)
is incorrectly weighted. To examine this point the number of the skeletons N(K) is
defined as follows. Removal of all 1VR vertices in a graph leads to separated graphs
which no longer have any lines connecting them. Then all the resulting separated
graphs are skeletons and the number of them is N(K). Note here that the skeleton
and the v; vertex are slightly different, i.e. v; does not contain the second and the
last term in (2.83) and the trivial skeleton while the skeleton does. An example of
the graph of N(K) = 4 is given in Fig. 4. Now we see that each graph of W[J] is
contained in (2.94) N(K) times.

OO~ @ OO W

Fig. 4. An example of the graph of N(K) = 4.

On the other hand, if we turn our attention to 1VR vertices the graphs of W([J]
seem to be generated by

1 A
§¢(*/\)¢ = "5¢2 ) (2.95)

because ¢ is all the distinct connected graphs with one external point [given by the
rule (2.9)]. Again this is not true, however, because each element of W[J] appears
N(1VR) times, N(1VR) being the number of 1VR vertices in the graph.

Thus the above two ways to construct the graphs of W{J] are not satisfactory.
But fortunately we have a simple topological relation:

N(K) - N(1IVR) =1. (2.96)
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This can be proved by noting that the addition of one skeleton having one external
point necessarily increases the number of the 1VR vertex by 1. Thus if we take
the sum K[G] + $¢?, each graph of W[J] is contained exactly once or with correct
weight. Hence we have

W[J] = K[G] + %dﬂ. (2.97)

This proves (2.79) or Proposition A2"”, leading to the proof of Propositions A2
and A2'.

We show below that Proposition A2" can also be proved by using the summing-
up rule, which has been established by the author.'®! Indeed we see that Eq. (2.81)
is directly obtained by the summing-up rule in the following. If Eq. (2.81) holds,
by assuming the form

P = ~J[glé+ 56+ A[G], (2.98)

we immediately know by differentiation with respect to ¢ that A[G] is equal to
K[G], leading to (2.79).

Fig. 5. The 1-part (encircled by the dashed line) in a graph of ¢.

In order to prove (2.81) we first note that ¢ is all the distinct graphs with
one external point [representing the insertion of p(z)?] which are built with the
propagators Gy = (O +m? — J)~! and the four-point vertices —\ [the rule (2.9)].
A 1-part is a subdiagram connected to the rest by one four-point vertex. When cut
out, the 1-part itself is one element of the graphs of ¢ (see Fig. 5). The summing-up
rule is best explained by an example. In short it guarantees that we can sum up
the graphs on the left hand side of the following example to the single graph on the
right hand side with correct weight.

(—2¢)
4 PN b= @
(—2¢)

(2.99)

In other words all the 1-parts directly attached to the skeleton through an external
point are summed up to ¢. The statement is proved rigorously as follows.

In the graphs of ¢, we can easily show that if two different 1-parts have a common
part, one completely contains the other. (Note here that in a vacuum graph this is
not true so that the following arguments cannot be applied to the graphs with no
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external point.) Thus one can unambiguously proceed to a larger 1-part starting
from one of the 1-parts (which is smaller) in the graph and finally reach the second-
largest 1-part. See Fig. 6 as an example. (The largest 1-part is the whole graph
itself.) This procedure can be repeated to reach the second-largest 1-part starting
from another 1-part which is not contained in the former second-largest 1-parts. We
continue this until there are no 1-parts other than the second-largest ones. Thereby
we find the second-largest 1-part structure of the graph. This operation to find the
1-part structure is done for all the graphs of ¢. After the operation we sum up all
the graphs having the same structure. We thus know that all the propagators in
the graphs are modified to G = (G5! + A\¢)~! while 1VR graphs disappear because
all the second-largest 1-parts are summed up to ¢ with correct weight.

Fig. 6. The procedure to reach the second-largest structure. (a) proceed to a larger 1-part; (b)
reach the second-largest 1-part; (c) reach the second-largest 1-parts; (d) reach the second-largest
(1-part) structure.

Hence we know that ¢ is all the distinct 1VI graphs (including a derivative of
the trivial skeleton) with one external point where propagator G; = (O +m?—J)~!
is replaced by G or

_ 9K(G]

6= (2.100)

6J J—J—-2e ’

which is equivalent to (2.81). Thus (2.79) or Proposition A2" is justified.

Having shown that Propositions A2, A2’ and A2" are true we can take it for
granted that Propositions Al and A1’ also hold because Proposition Al’ can be
regarded as the derivative form of Proposition A2. But Proposition Al or A1’ can
be directly proved by using the summing-up rule again. From the rule (2.10) or
(2.45) we know that

1 ix 4, i (1) 7(2) 2 excl
_ AJ = <_<p2e—'?.r‘f’ FEIDID4)p > , (2.101)
2 G

where the superscript excl means that the contributions of the zeroth order and
the first order in A and the derivative of the self-contractions of J(*) with i > 2
are ezcluded from the expression. The derivative of the self-contractions has been
moved on the left hand side. Keeping the graphical meaning of (2.10) in mind we
apply the summing-up rule again to obtain
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- Q AJ = all distinct 1VI graphs with one external point
which are built with the propagator

([G(o)]_1 + )\¢)_1 and the four-point vertex —\
and the pseudovertex J) withi > 1. (2.102)

In the above, all tlhe corrections by the pseudovertex J(1)p? change the propagator
([G(O)]_l + A¢) " back to G¥, and hence we get

1 i (SO O g2 1VI/ndself
_ AJ = —cpze L2et+3( +J5 4 e
2 G

> 1VI/ndself

(2.103)

= (L 2-2et+iar?
2¥ ¢

G
This equation is, of course, equivalent to Proposition Al’.

The remaining work is to prove Proposition A3'. First the rule (2.91) for AJ
is easily proved by mathematical induction; we assume the rule is true up to J(*
or the nth order of AJ and then we can convince ourselves that the statement for
J(+1) or the (n + 1)th order of AJ is also true from Proposition A1’. For this
purpose we have only to note that the graphs of J(® contain J* (i < n — 2) and
have one external point so that the summing-up rule can be applied.

The last task is to prove® the rule (2.90) for AT. It is clear from Propositions
A2 and A1’ that the graphs appearing in AT are exhausted in the rule (2.90).
Thus it is enough if we confirm that the graphs of AT in Proposition A2 appear
with the same weight as in the rule (2.90). In other words we justify (2.90) on the
basis of Proposition A2"". To this end, we expand —2:Tr In[G]~! in terms of AJ
(=J® 4+ J® 4...) and get

- %’I‘r m[G]™! - AKy, = ’; Z%Tr(c:(“)m)n. (2.104)
AK, is canceled by the zeroth and the first order of the expansion. Therefore we
get, from the expression AT = K[G] — 5 Tr In[G] ™ — AK,

AT =K[G] + Y -;—nTr(G(O)AJ)" + AJQAJ
n=3

oo AJ
=K[([¢O1 -AanT+ Y :

n=3 AJ

A O ol Oer) am

bThe author got the idea of the proof presented below from S. Yokojima, to whom he is very
grateful.
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By this relation the rule for AT is also proved by mathematical induction. We
assume that the rule is true up to the nth order of AT or T™. We notice here
that the first two terms on the right hand side of (2.105) contain each graph N(v;)
times and the last term N(D) times [see the graphical rule (2.91) for AJ]. Here
N(v;) and N(D) are the number of v; vertices (j = 1,2,...) and that of the D
propagators respectively. Due to the topological relation

N(v;)-N(D)=1 (2.106)
we confirm that I'(®*1) is given correctly by the final rule (2.90).

3. The Case of the Itinerant Electron Model

In the previous section we have taken the ¢* theory, which is simple and convenient
for developing a general framework. In this section we take a physically more
interesting system as another example — the itinerant electron model including
the Hubbard model. We couple an external source to the local composite operator
corresponding to the spin operator (and to the number density operator). Writing
down the effective action for such a system is equivalent to rewriting the theory in
terms of the expectation value of the spin operator or the magnetization instead of
the external source or the magnetic field. Such a formulation is of course convenient
for the study of the magnetic phase of the system — the problem of the spontaneous
symmetry breaking of SU(2), which is inherent in the model.

The generating functional for this system (written as €2 in this section instead
of W) is a generalization of the thermodynamical potential to the case where an
external source, which depends on imaginary time 7, is present. This is particularly
useful for our purpose and is defined by

e = Ty T, Jo 41 (3.1)
H[J] = Ho +Hy, (3.2)
Ho = Z Z trr’alaar’a +U Z NptNry (33)
rr! o r
Hy ==Y Jo(r7)neo (3.4)
= - h(rr)S.(x) = uN, (3.5)
r

where 87! is the temperature of the system and T is the T-ordering operator. The
creation and annihilation operators for the electron of spins o and o' at the lattice
sites r and r’ satisfy

{@roraliy} = berboor - (3.6)
Furthermore t,.- represents the hopping term and U the on-site Coulomb inter-
action. We have also introduced
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Mro = al,0ro 3.7
8.0) = 5(ner —may), (3.8)
N = Z(ner + 1), (3.9)
Jo(rr) = %h(rr) i (3.10)

We regard below both the chemical potential and the r-dependent magnetic field
h(rr) as external sources for convenience. They are combined to J,(r7) as in (3.10).
Note here that if we want to rewrite the theory in terms of the expectation value of
the number density operator without taking the spin operator as another dynamical
variable, we have only to set J; = J| in the following formulae. The spin index o
is defined to take the value (+1, —1) for (1,]).

The path integral representation in terms of Grassmann variables z and 2*
(corresponding to the operators a and a' respectively) is given by (see App. D)

e = /’Dz*DzeS[“’z’J], (3.11)
Sle* 2 d] = = 3 2, Golihrwe ~U'Y 22212 221
zz'o z
+ Z JeoZsg 220 (3.12)
o
=— Z 23G020 — Uziz12} 2y, (3.13)
o
9
G;Il: = Orqy! <6rr’F +trr’) 3
T (3.14)

[G;;]zz: = G_l =6y p1bppr oo )

zx’

where z and z' denote the sets (rr) and (r'7') respectively. From this expression
it is straightforward to get the Feynman diagram expansion for Q in powers of U.
The expectation value of the local number operator n,, is defined as

_ 60
0Jz0

= (alo'al‘ﬂ )T

Pzo =

3 5 =— —0omy, (3.15)

aliart +af ar + aaITGrT —alar\ g
2
.

where z again denotes the set (r7) while n, and —m, are the expectation value of the
local number operator and the z component of the local spin operator respectively.



Int. J. Mod. Phys. A 1996.11:65-109. Downloaded from www.worldscientific.com

by OCHANOMIZU UNIVERSITY LIBRARY on 06/04/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

92 K. Qkumure

The effective action or a generalization of the free energy to the case of 7-
dependent dynamical variables is defined by

s
F=0+ / ir Y L(er)peer) = 0+ 3 Tao o (3.16)
0 ro o
with an identity
oF
ro = T 1
J. b0 (3.17)

F corresponds to T' of the previous section. The rule for ¢ corresponding to the
rule (2.10) in this case is

Ustoiat My O,
—¢o = <zgz;e Usjzrafatd ], (T +00+ )"v”‘“’> (3.18)

co’
i.e. the sum of all the connected graphs built with four-point vertices U, pseudo-
vertices J&" (i > 1), and propagators G with the notation similar to (2.7). Here
GO is defined as
-1 _
[GP],, = Cay — 8242 (3.19)

The extra minus sign in (3.18) originates from the sign in ¢ = —%%. Then, as

mentioned before (below Proposition Al), the inversion formula of the nth order in
U is given by the nth order of (3.18) regarding both ¢, and G as order unity.

Thus we obtain
o"..‘.
_¢T=O, "¢J.=‘. :;, (3.20)
v')..'.
OJ}" + O i =0, (3.21)

and so on. Here the solid (dashed) line to which an arrow is attached (per loop of
lines) represents the propagator of the spin-up (spin-down) electron and it is G(To)

(G(lo)). The dot denotes the place where two propagators meet (corresponding to
a derivative with respect to J(® — note that %g; = 6,6/GS,O)G£P) ). The factor U

is associated with a four-point vertex at which sf;in—up and spin-down propagators
come in and out, while no factor is associated with the dot (see App. B). Hence
from (3.21) we get

= _Ud (3.22)

or
JV =Ug, = -UTtG,. (3.23)
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The second order formula of the inversion method is also obtained as that order of
(3.18);

-"' 'a;'.. ‘¢>~,
J .__o' f Cone? ft Cene?
T

T
{OCO- QO+ @D o

Caas’
LTYrid

,-.
.,
'--

which reduces to, as Eq. (2.37) does to (2.38),

OnQD e

Further, it is easy to find that, corresponding to (2.39),

OO ©

The left hand side of (3.25) or (3.26) can be written as :—J%;J(i), with 2 = 2 or 3.
t

Following the procedure presented in the previous section we get

F=FO 40 p@ 4 p® ... (3.27)
FO =579, -5 Trn [¢P] 7, (3.28)
m U
FO =UY " ooy = 5 D Seobeo (3.29)
T o

Cen®

F) = A (3.30)
F® = + , (3.31)

where F(™) satisfies
(3.32)
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Note that J(® contained in G(°) is a functional of ¢ defined by the solution of
(3.20) or

1
bz = -G, =~ (m) . (3.33)

The free energy of the Stoner theory is recreated by F(®) + F(1). Now it is clear
that all the propositions given in Sec. 2 hold for the present model with minor and
self-evident modifications. Here we repeat them for later convenience.

Proposition B1. The graphical rule for AF is given by the equation

I . 2) (3) 4\ " 1VI/nself
AF = —<e Usjzrzz+y,, (JP+I0+ )z,za>G(o) , (3.34)

i.e. the sum of all the connected 1VI/nself diagrams constructed out of four-point
vertices, two-point pseudovertices and propagators GS,O).

Here the 1VI/nself condition implies that only the 1VI graphs are kept and
graphs corresponding to the self-contractions of the vertices are excluded.

Proposition B2. J( is successively given as a functional of Jf(,o) by the formula

. - « VI/ndself
J™ = nth order of D, x <Z*zae_UzTZ”lzl‘*za'(Jg)'*'Jg)*'"')z"'za,>1 .
o G ’
(3.35)
where
56 1 1
D;'= 2 —_ . (3.36)
MY /SN T R L e S N 1
Proposition B3. The graphical rule for AF is given by the formula
AF = _<e—Uz;szIzl+Ea 22 20p—0 >tree/1VI/ech ’ (337)
G©.D
or, in a more detailed expression,
AF = — [ Dz*DzDypeSot Sint
sz*sz(peSO conn/tree/1VI/excl
* — 1 -
So = — 20: 2 (GO 2, + 3 Xg: oD 0, , (3.38)

Sint = —Uz;szIzl + Ez;za<p_,,
o

where the subscript conn/tree/1VI/excl implies that we should take only connected
graphs which are tree graphs with respect to the D, propagator of the bosonic field
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@, and also 1VI with respect to the four-point vertex, and the substructures of the
2
graphs corresponding to F‘S(oy'l‘r InG® and ; J(fg& sty I In G are excluded.

Note that Proposition Bl can be deduced from the formula

AF = (e Usimslat 0, (047504 255 yieel (3.39)

which is clear from the functional representation:

e F = oTa(-376o+Tx G 1)-Us1 4,

[Dz"Dze” Lo 2 IC)  ey —Ut sy 2] 2+ 5, [(Jo =)z 20 = (Jo = IE)00 14U S1 6,
x

[ Dz*Dze~ To 51601120

(3.40)
or
—ap _ [Dz*Dze” To 2N e +(~Usj 212} 24U L, b0 2520 -Ud161)~ L, 53 (2320 —$0)
e =
[ De*Dze= Lo #1605 20
(3.41)

There is another way to state the graph rule. For this purpose K[A] is defined as

follows:

K[A] = (e~Usimsiz )V, (3.42)

where A is the propagator used in the graphical expression. Then the rule is sum-
marized in the following proposition.

Proposition B1”. AF = F — (F(® + F(1) is given by K[G] — AF, where
G, = (G = JO - JD — J® — ...)“1
= (G - T +Us_s)", (3.43)

AF = Th(G"'-JO-JP -J»-...)
=S T (G- TO) =S 6, (F - TP~ IM). (344)

In other words

F=Y 6,0, —Upr¢, -y TrinG;' +K[G]

=" ¢.J, - Ugré, +K[G]. (3.45)
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4. The Case of QED

The final example is the effective action for the expectation value of gauge-invariant
local composite field ¢#(z) = (P(z)y*4¢(z)) in QED. The practical use of I'[¢,] in
QED is as follows. Although (¢y*4) = 0 for the vacuum, the lowest relation of
the on-shell condition!® (with the space-time integration over y and the summation

over v suppressed)
T3¢ (y) =0, (4.1)

PPERZY

where
2 = _6?__F[¢]_
BEVY ™ ()60 (y) #=0 ,

determines the bound state in the channel specified by ¥v*y. This allows us a
gauge-invariant study of 3S; of the positronium state. The following work may also
be a starting point for the study of the order parameter for the chiral symmetry
breaking ¢ = (1)%) in the massless QED and that of (G2¢®) or (A5 A7) in QCD. Here
g and A} are operators for quarks and gluons respectively. All these are believed to
be nonvanishing objects, in contrast to ¥v#1). The lowest order discussion of {{%))
has been given in Ref. 11.

r (4.2)

The generating functional in this case is given by (with the space-time integra-
tion and the summation over the Greek index suppressed)

GWILK] / DFDYD A SFVAT] (4.3)

S0, A, J) = ~§G™p — S AMDZIAY + bbb + T

= —9G7 e — %A“D;,}A" +ej AP, (4.4)
where
G7! = —iy,0* +m, (4.5)
Gl =G = T, (4.6)
D} = -Dg,, + (1 - %) 8,8, , 4.7)
Ju = V19 (4.8)

Here the parameter X specifies the gauge. Then we get Feynman graphs for ¢, =
W _ i N — (T .
F (]u) = (T/)’Yu"/’)

b, = <1/;,Y“wee'z‘7p¢.4“+(J;(;l)+J;(;2)+"' )17:'1"¢>G(0) . (4.9)
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i.e. the sum of all the connected graphs built with three-point vertices (1/77"1,DA“),
two-point pseudovertices (J,(f)d;'y“w), electron propagators G(® and photon prop-
agators D. Here JS" is the ith order (in e2) of J* and the propagator G©® is G
but J replaced by J(©). The quantity J(® is defined by

$u(z) = 17,09 (2, 1), (4.10)

which is equivalent to (4.11). By writing down the ith order of (4.9) one gets the
inversion formula of that order. For example,

¢"'=O , (4.11)
Om OO Do o

v 20 NGO
Or O+ Oy SR OK

- OO 000 OO

+J( +C) +J -i-O + J‘"+ O
++++Qm:O=O- (4.13)

In the above graphs we associate the electron propagator G(©) with each solid line
and the photon propagator D with each dashed line. In addition a factor ey, or v*
is assigned to a vertex and a dot () respectively (see App. B).

If we define JE) and Jz(al) from (4.12) by

O (OID =i

we see that all the ng)’s exactly cancel out the 1PR structure appearing in the ¢th
order of (4.9) with ¢ > 2. Here 1PR means one-particle-reducible with respect to
the photon propagator. Hereafter the 1PI graph is defined as the graph which is not
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1PR in the photon channel Indeed all the 1PR graphs in (4.13) disappear after
substitution of the last equation due to J‘E‘l) while Jg) remains;

QJ") " J(: +J +J(' + (Hw
+ + + +O:O =0 . (415)

The effective action in this case is defined by I' = W — J,¢* (with the space-
time integration suppressed) as usual with an identity —J* = 6%}. Thus integrating

(4.15) one can obtain I'?) [and higher order of I" by using (4.9)]. Here we can take
another course instead. For this purpose let us first examine the path integral
representation of I'. Integrating out the photon field we get

ol — / DY Depe— PG bHGu D o +idui# —idud* (4.16)

Since T(9 is defined by —J) = "61:;) the quantities T}) and T%}) are defined as

"= OO + =rv+ry (4.17)

in accordance with (4.14). The quantities AJ and AT in this case are expanded as

AJ = JI(BI) 4+ J@ 4 gB) 4. , (4.18)
AT = Fg) +T@ 417G 4.0, (4.19)

Noting that T{) = £¢#D,,¢* and T® = —J0¢* — i Tr In[G®)]~1, we get
ol = i (~7P¢*—i Tr m[G] ™) 4isf ¢# Dy ¢”

f DTZD’(,DC—":JJ[G(O)]—1¢+i£;j"Dyujv"—‘l'(-],‘—J‘(,o))j"_i(']p—]‘(,o)+%2¢" D, )"

J DiDpe-HE1 (420

or
[ DIDYE [-9[6 ) w+e(45% Dpvi” =4 Dy )+ 1 ¢* Dy 8” - $8F (5* —¢*))
T —

J DDy #IE®] ¥

(4.21)
We write (4.21) as

1, .e2. vio_g i, \mse
AF[¢] — ?<e’TJ"D" ]v—l%%)g.?u G(ol)f . (422)
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The meaning of nself is that we have to exclude the self-contraction of the electron
propagators. By using (4.22) and noting the cancellation similar to that in (4.13)

we get
AT = + JS’+ AL
+ + + O":O +ee. (4.23)

Combined with the arguments similar to those of previous subsections, we arrive at
the following proposition (with a similar statement for a graph of J(™):

Proposition C. I'™ (n > 2) is the sum of all possible nth order (in e?) 1PI

diagrams constructed out of the four-point vertex of order e? (*----4 ), the

J(l) . ;
vertex of order e? (-»-f—-) and vertices of order e* ( _,‘_Ii)___ )

(2 < i < n). Here the propagator is G(®). In other words

1, 2. pevi Lig®
AT[¢] = ;(e‘*ﬂ»”“ A LS Wi (4.24)
where (- - - ), pr means 1PI (in terms of the photon lines) connected Wick contraction
using the propagators G(®) which is a functional of J (),

Of course, there are various equivalent modifications of Proposition C.

5. Discussion — The Renormalization Problem

The problem of the renormalization of composite operators has been studied by
many authors.!® They considered the renormalization of the expectation value of the
operators which are the product of local composite operators and elementary field
operators such as ¢(z1)? - - - @(x1)%¢(31) - - - ¢(yn ). But the main concern of the usual
approach is somewhat different from what is required in this paper and the usual
scheme is not readily applicable to our case. So we suggest here a renormalization
scheme which is appropriate to our problem. To make the point clear, we show
an example of the renormalization of the composite operator in the context of
the inversion method for a simple model. For this purpose, we consider the two-
dimensional Gross-Neveu model® with the source term

£ = @)ip(e) + 36 (B@)(@)’ + T((), (5.1

where 9 is the N-component, massless fermion field. We show that the effective
action of the local composite operator (z)¥(z) can be made finite at the level of
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the first order (in g?) of the inversion series. This is accomplished by redefining
the normalization of the composite operator 9(z)y(z). As seen below, the result is
consistent with that of the original paper,® where the effective action of the auxiliary
field o is renormalized.

We assume that the renormalized composite operator (P(z)¥(z)) , is related to
the bare composite operator ¥(z)y(z) by

VY = Z(P)r, (5.2)
where the Z factor is expanded in terms of the coupling constant g2:
Z=1+¢*ZM4... (5.3)

Introducing the generating functional in the usual way, we define the variable ¢ in
this case as follows:

aw T6) ) = 6(©) (1)
Z2¢=—==Z((YY)r)" = ¢+ (D) +--- . (5:4)
The essential point is that the inversion is performed between J and the above
rescaled ¢. In the large NV limit ¢(°) and ¢(!) are given through Feynman graph:

N[fdp 1 _NJ A+J?

$O(J) = - Wtrﬂ——_J = ﬁln 77 (5.5)
d? 1 d%k 1
¢ (J) = ¢*N? (27r€)2tr1‘ — (21)2“(]‘ —77
= ="' ()¢ (J). (56)

Here we have introduced the cutoff momentum A. Now we apply the inversion
method, by considering ¢ (not Z¢) as order unity, to obtain

¢ =6 (7)), (5.7)
§z0¢ = g0 (1O (4)) JB(g) + oD (JO)(9)) , (5.8)

from which we get
JD(e) = ﬂzﬁgzzﬂw +9%0. (5.9)

Here we have used Eq. (5.6) and the fact that [¢(°)’(J(°)(¢))]_1 = dJO)(¢)/d¢.
Then the inversion series can be written as

T=JO)+I0(@) +-- =T (s +42V¢) + g6+ Olg"].  (5.10)
Noting that J(© is the inverse of ¢(?) [see (5.7)] we arrive at (up to the order of g2)

A%+ (J - g%¢)?

N
Mg =¢O0(J — =——(J -
649209 = 90U — ') = -2 - PO —7

(5.11)
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If we define N A2 _

JASES [ln T=Fie ™ 2_ , (5.12)
¢ becomes a finite quantity and for J = 0 we obtain
Ng’¢ (

s

¢=

In—+14+0 .
) +14+ [A2 ) , (5.13)
or, regarding A as infinity,

¢ =Me ="/, (5.14)

with A = Ng?. This expression agrees with (4.18) of Ref. 8. Note here that if we
set J = 0 the expectation value of ¢ and that of the auxiliary field o coincide with
each other. This suggests that our prescription of renormalization in the inversion
scheme is a correct one. Now the effective action up to the first order in g% becomes

I'= -Z}ZTI'[(’L¢ + J(O)(Z¢)] - ¢J(0)(Z¢) - %¢2 + 0[92] , (5.15)

where Z is given by (5.3) and (5.12). In spite of its appearance the above I' is finite
up to g2 of course. Whether we can remove the divergences by the Z factor in (5.2)
at higher order is now under study.
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Appendix A. Legendre Transformation and the Inversion Method

In this appendix we look more carefully at the reason why we should assume that ¢
is of order A? = 1 or independent of A in our inversion process. This point has been
exemplified in terms of diagrams. The explanation was not necessarily familiar to
everyone. Here we present a clear explanation in purely mathematical language.
Although the following discussion is trivial it is worthwhile in order to understand
the foundation of the inversion method. For brevity the case of z-independent
variables J and ¢ is considered.

Consider the quantity W[J,A] — J¢[J, A], in which ¢[J,A] = ﬂV-sL}ﬂ. Here we
have emphasized the A dependence. If we take a small variation of this quantity
assuming that J and A are independent variables, it becomes

SWIJ, A SWJ, Al
A >
SWIJ, \]

= A= Jdg[T ). (A1)

20 gx — dIg[d, N - Jdé[J, Al
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Hence we see that the quantity can be regarded as a function(al) of two independent
variables ¢ and A. We thus write the quantity W — J¢ as I'[¢, \]. What is implied
here is as follows: if we solve the relation ¢ = M}Jﬁl in favor of J assuming that
the two quantities ¢ and X are mutually independent to get J = J[¢, A] and then
insert this expression of J into all J appearing in W[J] — J¢, then W[J] — J¢
is automatically written by only two independent variables ¢ and A. In other
words, the inversion process of Legendre transformation is carried out regarding ¢
as independent of A. Hence the process in the inversion method exactly coincides
with the inversion process of Legendre transformation. Note that once the inversion
or Legendre transformation is performed and after the sources are set to the desired
values, zero for example, the resultant ¢ depends on A of course.

Appendix B. Feynman Rules
@t theory

Although well known, we summarize for clarity the rule (Rule A) to get algebraic
expressions from the corresponding graphs for the ¢* theory.

Rule A1. In one specific way (as one likes), assign n labels z;,...,z, (internal
points) to all the four-point vertices and the pseudovertices, where n is the total
number of vertices (including the pseudovertex).

Rule A2. Associate a propagator G ; [for the rules (2.4) and (2.9)] or G(® [for
the rules (2.5) and (2.10)] with each line. A factor —\ and J(*) are assigned to the
four-point vertex and the pseudovertex of the ith order respectively. No factor is
assigned to the dot which corresponds to the external point.

Rule A3. Associate a factor i~L for a diagram, where L is the number of
independent momenta of the graph.

Rule A4. Associate a symmetry factor S for a diagram.

Rule A35. Sum (integrate) the product of all factors in Rules A2-A4 over the
space-time index zj,...,Z,.

The symmetry factor S for each graph is given by the line symmetry number Sj,
and the vertex symmetry number Sy as S = g-- g As is well known, S, and Sy
are obtained through the following rule:

Rule Sy 1. If there is a line which starts from a vertex (including the dot e and
pseudovertex) and comes back directly to the starting vertex, associate the factor 2.

Rule Sg,2. If there are m lines (m = 2,3,4) directly connecting two common
vertices (including the pseudovertex), associate the factor m!.

Rule S;,3. The product of all the factors in Rules S;,1 and Sp.2 is S

Rule Sy. Assign n labels 1,...,n to n vertices (including the pseudovertex) in
an arbitrary way. Count the number of all possible other ways of assigning n labels
that give the same topological structure as the first specific way. The number thus
obtained plus 1 is Sy.
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For definiteness we give some examples; the graph which appeared in (2.19) has
(SL,Sv)=(2,1): three graphs of (2.21) have (212-2,1), (22,2) and (3!, 2) respectively.
As another example we consider the reduction of (2.37) to (2.38). Since the
symmetry factors of the second, fourth and sixth graphs on the left hand side of
(2.37) are (S, Sv) = (1,2), (2,1) and (22,2), the contribution of the three graphs
becomes zero. This is because, after we replace JI) by the use of (2.35) (whose
symmetry factor is 2), new symmetry factors of these graphs become 1-2-22 2.1-2
and 22 - 2 respectively. By a similar argument we find the cancellation of the third
and fifth graphs on the left hand side of (2.37). Thus we get (2.38) from (2.37).

The itinerant electron model

The rules for the itinerant electron model are given as follows (Rule B). Rules B1,
B4 and B5 are the same as Rules A1, A4 and A5 respectively. Rule B3 is Rule
A3 with i~Z replaced by (—1)L(—1)Ls, where L; is the number of fermion loops.
Rule A2 is changed into:

Rule B2. Associate y—»—=z and y--»---z with [G%O)]my and [Gio)]xy re-
spectively, and the factor U is assigned to the four-point vertex. The factor Jf(,i) is
also associated with the pseudovertex of the ith order. No factor is assigned to the
external point.

As for the symmetry factor S( = g- - 3-), rules for Sp and Sy are essentially

the same as those of the @* theory except for the fact that we have to distinguish
the spin-up and spin-down propagators and their directions of the arrows when we
consider the topological equivalence. Thus the factor Sg, is always 1 in this model.

QED
Finally, the rules for QED are presented as follows:

Rule C1. Assign n labels, in one specific way as one likes, (21, 1), .., (Zn, n),
to vertices (including pseudovertices).

Rule C2. Associate an electron propagator G(®) with each solid line and a
photon propagator D with each dashed line.

Rule C3. Associate a factor ey, and J,(,i)'y" with the three-point vertex and
the pseudovertex respectively. «* is assigned to the dot (e) which corresponds to
the external point.

Rule C4. Associate a factor i~%(—1)%7, where L is the number of loop momenta
of the graph and Ly is the number of the fermion loops.

Rule C5. Associate a symmetry factor S for a diagram.

Rule C6. Sum the product of all the factors in Rules C2-C5 over z; - - -z, and

B fne
The symmetry factors are calculated as before. Note that Sy, is always 1 in QED.
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Appendix C. The Inversion Method for {¢(z)) and {¢(z)e(y))

We show below how the inversion method works to reproduce well-known results
for the effective action of (¢(z)) and {p(z)¢(y)). For simplicity we consider the *
theory, and several lower orders of the known rule are explicitly studied rather than
giving formal proof.

The case of (p(x))

In order to study the effective action of elementary field ¢(z), the generating func-
tional W[J] is defined as in (2.1) with S[yp, J] replaced by

Ste. 01 = 3 [ d'ap(@)0 -+ m?)p(@)

- i\—'/d“xw(x)“ +/d4:zJ(m)tp(:z). (C.1)
The dynamical variable ¢ for the effective action is
111% 7
=——= C.2
#(z) = 575 = o)’ (c2)
by the use of which I'[¢] is defined by (2.11) and Eq. (2.12) holds as an identity.
Now the original series expansion in ) is given by (suppressing the z dependence)

&) = _.Q. + —I—« , (C4)

4@ = }I " QI " IQ + Q0

jo 8 £ . C5
Here a dot denotes the external source J and a line the propagator D—_:T;;. Thus
(2.25), the right hand side of which is (C.3) with J replaced by J(®, becomes

= —s (06)
or
o) = (5373 700, )

from which J(© is obtained explicitly as opposed to the case of the local composite

operators;
JO = (0 +m?)zyb(y) . (C.8)
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Hereafter, all the dots in the graphs denote J( instead of J as in (C.6). We
immediately know that

IO = ~14(0 -+ m?) (C.9)

by integrating J© = —¢L=2 From (C.3) and (C.4), the inversion formula. of order
6¢
A, (2.26), becomes

—J + I + 0. (C.10)

if we note that ¢(® = (O + m2)_1, which is denoted by a line. The integration of
JO) = —ﬂ;%) leads to

r = I + Q. (C.11)

By (C.6) we confirm that I'(!) is a functional of ¢ indeed. Equation (C.9) and the
first term of (C.11) constitute the usual tree part of the one-particle-irreducible
(1PI) effective action. From (C.3) to (C.5), the second order formula (2.27) is

written as
jo + Qo 4 —-I-—J(l)
+_I__I_4 " _Q_{_ﬂ " _I_Q_. + 00,
+——ﬂ—-¢ + _8.. + —@—«:0. (C.12)

The second term of (2.27) disappears because ¢(9[J(?)] = 0. Using (C.10) we see
that the one-particle-reducible (1PR) graphs in (C.12) exactly cancel out each other
to yield

Jo + —— + —8—~ + —— =0, (C.13)

from which we obtain

=" + ._8_. + ._@_. . (C.14)

This course of study can be continued up to the desired order to give the well-known
result ] )
T=-2¢(0+ m?)¢ — ?17‘7’4 + K1pi9], (C.15)
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where K1p1|¢] is the 1PI vacuum graph K;pr[(0 +m?)~1J] (written in terms of the
original J representation) but with (O + m2)~1J replaced by ¢ or

’C1P1[¢]='—<l‘ + :§§ + >—8— + -—@——o + - (C.16)

with the notation (C.6). We note here that without using (C.3)-(C.5) we can
directly obtain (C.10), (C.12) and higher order relations if we note the equation
corresponding to (2.10). This point is taken in the following case of (p(z)p(y)). It
is easy to convince oneself that if one uses (O+m?+ A ¢?/2)~! instead of (O+m?2)~!
then the result of Ref. 5 is obtained.

The case of (p(z)e(y))

Now we consider the effective action of the bilocal composite operator. The
generating functional W[J] in this case is defined as in (2.1) with Sfp,J]
replaced by

Slp, J] = -5 / d*zo(z)(0 + m?)p(z) — / d*zo(x)*

+ -;-/d4xd4yJ(x,y)<P($)‘P(y)

| A
= —‘2'<PGJI<P - ZW‘ ) (C.17)
Gl = G z,y) = (Q+m?)s (z —y) — J(z,y). (C.18)

Note here that J(z,y) has been absorbed in the propagator G;. We define ¢(z,y)
and I'[¢] by

Ha) = s = 50l (C19)
igl = W) - [ d'sdtyd(@)6(z.9). (C:20)

Then the zeroth order inversion formula (2.25), which is directly obtained as the
zeroth order of the relation corresponding to (2.10), gives (with the space-time
index omitted)

o= (C.21)
The line denotes the propagator G evaluated at J = J (0), namely
1 1 1
fee T — (0) R
¢S iarm—I® =0 (€-22)
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Unlike the local case the key point is that this relation can be explicitly inverted to
give J(® [cf. (2.16)], i.e.
JO =0 +m?+ig7t, (C.23)

which gives, by integration,
I =@+ m?)¢+iTring. (C.24)

Equation (2.26) or the inversion formula of order X, which is obtained by the first
order of the equation like (2.10), gives

J)
— + 0O _, (C.25)

or, through integration,
=0 . (C.26)

We have used the notation in which _Jil_)___ stands for Ggoz) 5},? GS,% where
LGO = ¢ [see (C.22)]. From (C.26) we make sure that ') is actually a functional
of the bilocal variable ¢ because lines in the graphs represent ¢. The second order
formula (2.27) given by the equation like (2.10) is written as

J)

J®@ iSO (¢)] J Q
+ + +
(1) 8
+ __Q_‘_I._ + ._QC)_ + + _e_ =0.

(C.27)
Using (C.25) we see that the one- or two-particle-reducible (2PR) graphs in (C.27)

exactly cancel out to give
Iz, )= = @ Y (C.28)

iz, = () - (C.29)

As in the case of {¢(z)), we can continue the process and get the well-known result

T'=Tr(0+m?) ¢+6Trlng+Kopld], (C.30)

or

where Kzpilg] is the original 2P1 graph Kot [ 57| with 1gikey replaced by

¢ or
el = OO + (Q) +-- (C.31)
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Appendix D. Path Integral Formula for the Fermion Coherent State

In this appendix we derive (3.11) from (3.1). In order to clarify the notations, we
first enumerate some formulae for the fermionic coherent state in the case of a
single mode. The generalization to the multimode case is straightforward. For the
anticommuting operator a, a' like (3.6), the coherent state is defined as

alz) =zlz),  (zla’ = (2]z", (D.1)

where z and 2* are Grassmann numbers. Then inner product of the two states

becomes
(2l2) =%, (D.2)

which means that the coherent state is neither normalized nor orthogonalized. The
matrix element in the coherent state is

(20(at,a)|2') = O(z*,2')e*" (D.3)
where O is a normal-ordered operator. The overcompleteness is expressed as
/dz*dze“'ﬂz)(zl =1. (D.4)
The trace of a normal-ordered operator becomes
Tr O(a, a) / d2*dze*"*(—2|O(al, a)|2) . (D.5)
In order to derive (3.11), we first estimate
(zr|Tye” fdr(taﬁa;aﬁ+v(aga,))IZI)C_Z;,,;“ . (D.6)

Here V is the on-site Coulomb term and the source term appearing in (3.3)—(3.5),
and V(ala,), zr and zr are abbreviations of V({al},{ay}), {21y} and {zF,} respec-
tively. As usual we divide the exponential into N +1 pieces and insert N multimode
complete sets like (D.4). We get

(HH [zt ) T et S i
=1 «

x &€ Doir Utapazio1p Yl zioin)} (D.7)

where € = B/(N + 1), 206 = 2Ias ZN+1a = 2Fa and we have assumed that V is
normal-ordered. The first two exponentials can be formally written as

P DA A CHE NS VN MU G IO (D.8)

In this way, through the trace formula (D.5), we obtain the path integral represen-
tation of (3.1), arriving at (3.11).
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