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We discuss the dynamics of bubbles and liquid drops in quasi two dimensions, i.e.
in the Hele-Shaw cell, confirming different scaling laws for viscous drag friction,
together with scaling laws for a number of related phenomena. Motivated by
the study on viscous drag friction, we describe an experiment on drag friction
in a granular medium, which reveals a length scale that diverges towards the
jamming transition. These examples in the dynamics of viscous fluid and granular
materials underscore the importance of the scaling concept in understanding
physical phenomena, often vindicated by a clear data collapse by virtue of a
corresponding scaling law. To demonstrate the universal usefulness of the strategy,
we discuss another different example from the strength of biological materials.
To stress a wide applicability of the scaling approach, we introduce the robustness
of scaling laws and justify frequent emergence of the robustness.

Keywords: scaling laws; drag friction; jamming transition; strength of biological
materials

1. Introduction

The scaling concept has been known to be useful in various fields. For example, classic text
books of particle physics [1] as well as fracture mechanics [2] start from the discussion on
dimensional analysis. The scaling hypothesis in critical phenomena resulted in the birth of
renormalization group [3]. However, the scaling approach was not regarded as a strategy
that is complete enough to finish any physics studies: it was rather considered as an informal
first-step consideration.

The importance of the scaling approach was further put forward by de Gennes, partic-
ularly in textbooks of polymers [4] and capillarity [5], to show that the scaling approach
could be a physics strategy that is sound enough to finish a physical consideration if the
problem in question is complex (at least for physicists). As a result, the scaling approach is
now well accepted in the field of soft matter and well used by a relatively small portion of
researchers in the field.

However, it has yet to be well used as a standard strategy in various field of physics
and for researchers in more application-oriented fields including those in industry, despite
of its high potential. Accordingly, to inspire such potential users of the approach, we set
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2 K. Okumura

the purpose of this paper to provide a variety of examples in which the scaling approach
successfully provides a clear physical picture with scaling laws justified by a distinct data
collapse.

This article is organized as follows. We start with the problem of viscous drag friction
acting on a fluid drop surrounded by another fluid in a confined space in the Hele-Shaw
cell. After discussing other examples in which viscous dissipation plays a significant role,
we proceed to describe an experiment of granular drag friction in a two-dimensional cell,
which was motivated by the study of viscous drag in the Hele-Shaw cell. Finally, we discuss
the strength and toughness of biological materials, revealing that the same strategy works
effectively to provide some simple views on the mechanical superiority. We summarize
various advantages of the scaling approach at the end.

We stress here that the scaling approach is not necessarily limited to rather special
cases: scaling laws can be ‘robust.’ Scaling laws are often derived in the limit in which
a certain physical parameter X is much smaller than a characteristic value X0, i.e. in the
limit of X/X0 � 1. Because of this, scaling laws tend to be accepted as a formula that is
useful only in a very limited or special case, which is not always true, as we exemplified in
Section 5.

Since we discuss different problems in a short note, we could not give a detailed
background for each topic. Readers who get interested in a specific topic are recommended to
return original articles cited in this article, in which they should find a relevant background.

2. Viscous drag friction for a fluid drop in the Hele-Shaw cell

The experimental set-up is shown in Figure 1. The experimental parameters for the rising
bubble experiment in Figure 1(a) are specified in Table 1. We measured the transverse and
longitudinal diameters RT and RL of rising bubbles as defined in Figure 2(a)(1) to obtain
Figure 2(b). The results show that the bubble is slightly elongated in the rising direction
and, as seen in the inset, the aspect ratio is almost constant for all the parameters we studied.
The reason for the observed universal aspect ratio has yet to be explored.

D

Air Bubble

D

PDMS (oil)

glycerol drop

g

V

V

(a) Rising bubble (b) Sinking drop

Figure 1. (colour online) Illustration of experiment for a rising bubble (a), and for a sinking drop (b).
The Hele-Shaw cell is made up of transparent acrylic plates. The cell thickness D is a few millimetres
and the size of the bubble or drop is about one centimetre. The width and height of the cell is much
larger than the size of the drop.
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Philosophical Magazine 3

Figure 2. (colour online) (a) Moving fluid drops in a Hele-Shaw cell. Here, the viscosity of the fluid
drop and the surrounding fluid are denoted ηD and η, respectively. (1) The rising bubble (‘air drop’)
is slightly deformed from a circle and characterized by the longitudinal and transverse diameters,
RL and RT , respectively, as indicated in the photograph. (2) A glycerol drop surrounded by a more
viscous oil (as in (1)) is sinking in the cell. The fluid drop shape is very similar to that in (1). (3)
A glycerol drop surrounded by a less viscous oil (different from (1) and (2)) is sinking in the cell.
Compared with (1) and (2), the elongation is significant. (b) RL vs. RT for the bubble experiment.
The symbols are specified in Table 1. (c) V vs. D for the bubble experiment. (d) Plot in (c) replotted
with the two axes, the renormalized velocity (RT /RL )Ca and the renormalized cell thickness κ D,
demonstrating a clear data collapse by virtue of the theory. (e) Plot of Ca vs. κ D, in which the data are
not well collapsed as in (d), showing that the factor (RT /RL ) is important to explain the experiment.
Figures are reproduced from [6].

Table 1. Experimental parameters and symbols used in Figures 2. The densities ρ of PDMS oils
with the kinematic viscosities ν = 100, 500–3000, 5000–10,000 cS are 0.965, 0.970, 0.975 g/cm3,
respectively. This table is reproduced from [6].

+ × +× � � ◦ • �

D (mm) 0.4 0.5 0.7 1.0 1.5 2.0 3.0 5.0
ν (cS) 100 100 500 1000 1000 3000 5000 10,000

However, the consideration of the slight deformation of the bubble shape leads to a
clear explanation of the experimental data shown in Figure 2(c) plotting the constant rising
velocity as a function of the cell thickness D, via data collapse demonstrated in Figure 2(d).
When viscous dissipation is dominant for the velocity gradient V/D developed near the
bubble between the cell plates separated by D, the balance between the viscous dissipation
and gravitational energy gain (per unit time) can be expressed as
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4 K. Okumura

η(V/D)2 R2
T D � ρgRT RL DV, (1)

which results in
V � (RL/RT )ρgD2/η. (2)

Here, ρ, g and η are the density difference between air and silicone oil, the gravitational
acceleration, and the viscosity of the surrounding oil. By introducing a renormalized velocity
Ca = ηV/(ρg) (known as the capillary number) and a renormalized cell thickness κ D (with
κ−1 = (γ /(ρg))1/2 the capillary length), this relation can be expressed in a dimensionless
form,

(RT /RL)Ca = κ D. (3)

By rescaling the two axes of Figure 2(c), according to this equation, we confirm a distinct
data collapse as in Figure 2(d). The importance of the slight deformation reflected in the
factor RT /RL is demonstrated in Figure 2(e): if this factor is neglected (or set to one)
by assuming that the bubbles are in the circular shape, the quality of the data collapse
is considerably deteriorated. If Equation (1), which is confirmed in the bubble case, is
expressed in the force-balance form ηV R2

T /D � ρgRT RL D, we immediately know that
the drag friction acting on the bubble from the viscous medium is given by

F � ηV R2
T /D. (4)

This scaling regime, thus established for rising bubbles, can also be confirmed in the
case of a glycerol drop sinking in silicone oil (see Figure 1(a)(2)), if the drop is less viscous
than the surrounding oil, i.e. ηD � η (with ηD the drop viscosity), as in the case of rising
bubble (bubble is regarded as a fluid drop). However, if the surrounding oil is less viscous,
i.e. ηD � η, another scaling regime can be confirmed, in which the drag friction law is
replaced by

F � ηD V RT RL/D. (5)

This is established in [6], together with Equation (4).
Some comments are as follows. (1) The scaling laws shown in Equations (4) and (5)

can be considered as quasi-two- dimensional versions of the well-known Stokes friction
formula, which is expressed as F = 6πηV R for a rigid sphere of radius R. (2) There
seem to be many other scaling regimes for viscous drag friction for a fluid drop surrounded
by another fluid in the Hele-Shaw cell. For example, in the case of Equation (4), viscous
dissipation inside thin oil films formed between the bubble and cell walls is suppressed,
because the film thickness is thin and thus developing a velocity gradient inside such films
is energetically non-favourable. However, there may be a regime where such dissipation
becomes dominant. In fact, we have already found still other scaling regimes or dynamic
phases. (3) We are now trying to establish the phase diagram for such dynamic regimes. In
that event, we will be able to clarify conditions separating each regimes from others. Finally,
we mention another series of experiment using a similar set-up on drop coalescence in [7,8],
where one will find other examples of scaling laws clearly established by data collapse.

3. Other examples of scaling laws dominated by viscous dissipation: imbibition of
textured surfaces

An example of textured surface is shown in Figure 3(1) and (2) together with the brightness
analysis of the film thickness in (3). The pillars are low and the head edge of the pillars is
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Philosophical Magazine 5

Figure 3. (colour online) Imbibition of textured surfaces by silicone oil mixed with fluorescent
molecules. Magnified view (1) and overview (2) are given, together with the brightness analysis
visualizing the imbibing film whose thickness thins down with height. The relations between the
imbibition height x and the time t for different viscosities and effective gravity are given in (4) and
(5), respectively. Collapse of the data in (4) and (5) by virtue of the scaling law shown in the panel is
demonstrated in (6).

rather rounded, as indicated in the snapshot. The substrate material is completely wetted
by silicone oil. Because of this, oil penetrates into the texture, when a vertically positioned
textured substrate is put in contact with the oil bath, as if coffee would penetrate into a block
of sugar when the block is in contact with the surface of the bath of coffee.

The imbibition dynamics is shown in Figure 3(4) and (5): the viscosity of the oil as well
as gravity slows down the dynamics (to change ‘gravity,’ the substrate is tilted from the
vertical position for which the angle θ is defined to be 90◦).

The data in Figure 3(4) and (5) show that both viscosity and gravity is important,
whereas capillarity is the driving force, which leads to the following scaling argument to
be confirmed by a clear data collapse. In the Navier–Stokes equation, the driving force
corresponds to the pressure gradient term, which can be expressed as γ C/x , with C
and x the curvature and the imbibition height, respectively. The viscous term scales as
ηV/ l2 with η the viscosity of oil and l is a viscous length scale. The gravity term is
expressed as ρG with ρ and G the density of oil and the effective gravitational acceler-
ation, i.e. G = g sin θ . The capillary-gravity balance, γ C/x � ρG, fixes the radius of
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6 K. Okumura

curvature as C−1 � γ /(ρGx), which decreases with the imbibition height. As suggested in
Figure 3(1)–(3) (see in particular, the brightness analysis in (3)), the film thins down with
height, whereas the viscous length scale may be the thickness of the film. It is, thus,
reasonable to identify the radius of curvature, which decreases with height, with the viscous
length, i.e. C−1 � l. With this identification, the viscous-gravity balance, ηV/ l2 � ρG,
results in the following scaling law:

x3 � γ 2t/(ρGη). (6)

On the basis of this law, a distinct data collapse can be shown as in Figure 3(6). The curves
in Figure 3(4) and (5) collapse convincingly onto a single master curve in Figure 3(6).

Equation (6) stating that the imbibition length x scales with t−1/3 is in contrast with
the usual viscous regime of capillary rise or the imbibition dynamics observed on textured
surfaces decorated with relatively high pillars with sharp head edges (see, e.g. [9,10]): in
most cases, x scales with t−1/2. However, the same t−1/3 law has been observed in rather
different context of capillary rise into corners [11–13]. It seems that there are many different
scaling regimes for the imbibition of various types of texture surfaces, especially because
the problems boil down essentially to the imbibition of open capillaries in which free liquid
surface expands as the imbibition proceeds [13].

4. Granular drag friction for an obstacle in the Hele-Shaw cell

A naive question associated with the different scaling regimes shown for viscous drag
friction in the Hele-Shaw cell would be how the friction law would be changed if fluids
are replaced with granular particles in the cell. The set-up for answering this question is
shown in Figure 4(a) and (b). The cell is mounted on the slider and the slider can move the
cell at a constant speed. During the movement, the drag force acting on the obstacle can be
monitored by the force gauge because the obstacle and the force gauge is connected by a
non-extensible strong fishing line. Result for measured force vs. time at different packing
fraction φ are given in Figure 4(c). The force fluctuates considerably with time, but an
average at each φ can be well defined as indicated by the three horizontal lines. As the
fraction φ increases, both the average and fluctuation of drag force increase.

The average force is found to be a smooth function of the drag velocity V with force
and fluctuation increased with the packing fraction φ, as demonstrated, in Figure 4(d), for
all the packing fractions we studied. Here, the error bars, i.e. the fluctuations are removed
for clarity. In fact, all the curves are well described in the form F = F0 + αV 2 with both
F0 and α dependent on φ.

The dynamic component αV 2 of the drag force can be explained as follows. This
component may be estimated as the momentum transfer per time. The momentum transfer
occurs when the obstacle collides with a small particle. The frequency can be estimated as
RV φ/d2 with R and d are the radius of the disk obstacle and d is the average diameter
of slightly polydispersed grains (the thickness of the obstacle is also d and that of cell is
slightly larger than d). If collisions were a two- body collision, the momentum transfer per
collision should scale as mV with m the mass of grains. However, as the packing fraction
increases, grains ahead of the obstacle should be somewhat jammed [14] or shear jammed
[15]. As a result, the obstacle collides with a cluster of grains each time it collides with a
single grain. Naturally, the characteristic cluster size increases with the packing fraction φ,
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Philosophical Magazine 7

(a)

(c)

(b)

(d)

(f) (g) (h)

(e)

Figure 4. (colour online) (a) and (b) Set-up for the experiment for granular drag friction. (a) View
of the cell from above. (b) Slanted view of the set-up. One layer of granular particles of average
diameter d = 2 mm are packed in a two-dimensional cell made of transparent acrylic plates. The
diameter 2R of the obstacle is about 10 times larger than d . (c) Drag force f vs. time t . The force
fluctuates in time significantly, but with a well-defined average. (d) The average drag force F vs. the
drag velocity V for all packing fractions we investigated (the error bars that represent fluctuations
are suppressed here for simplicity). Remarkably, F is a smooth function of V . The average force F
and fluctuation (not shown) both increase with the packing fraction φ. (e) Data collapse of the plot
in (d) as a result of replotting the renormalized dynamic component of drag force as a function of
the renormalized velocity V/V0, according to the theory (f) and (g): divergence of the dynamic (f)
and static (g) components of the force at the jamming point φ = φc. (h) Total force F divided by the
divergent factor �φ−1/2 vs. velocity V . Plots are reproduced from [36].

suggesting the observed increase in the average force F with φ. To estimate the cluster size
l, we consider empty space around the obstacle below the jamming point at φ = φc. In the
region around the obstacle of area � l2, the empty area scales as (φc − φ)l2. The cluster
size l may be determined in such a way that this area scales with the obstacle area, i.e.
(φc − φ)l2 � R2, which means that this length scale diverges towards the jamming point.
The cluster area is now estimated as Rl: we expect the length scale l in the velocity direction
obtained above is separated from the length R in the direction perpendicular to it because of
shear in the moving direction acting in the granular medium. The cluster tends to be broken
in the perpendicular direction. This assumption means that the momentum transfer per each
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8 K. Okumura

collision with a grain should scale as ρRlφV d with ρ the density of grains. Combined with
the above expression for the frequency, RV φ/d2, we obtain the relation,

F − F0 � ρ(φc − φ)−1/2 R3V 2/d . (7)

Note that the factors φ appearing in the frequency RV φ/d2 and in the momentum transfer
ρRlφV d can be replaced both with φc near the jamming point, and, thus, the two factors
can be integrated into the numerical coefficient for the above scaling law. When we rescale
the dynamic component and velocity in Figure 4(d) according to the above scaling law, in
the form, F/F0 − 1 � (V/V0)

2 with

1/V 2
0 = ρR2l/(F0d), (8)

we obtain a remarkable data collapse as shown in Figure 4(e). The exponent of the divergence
is confirmed in Figure 4(f).

The static component F0 also scales with l: this force is also divergent towards the
jamming point. This is justified theoretically and experimentally as follows. When collisions
become negligible as velocity decreases, drag friction tends to be dominated by friction with
the bottom wall. When the cluster area Rl is much larger than the disk size, as in the region
near the jamming point, the friction force can be estimated as μρgRlφd , with μ the friction
coefficient:

F0 � μρgR2(φc − φ)−1/2d (9)

This divergence is well confirmed in Figure 4(g). When Equation (9) is combined with
Equation (7), it follows that the total force should scale with the divergent factor (φc−φ)−1/2

= �φ−1/2, which can be directly confirmed in Figure 4(h) (all the data shown here are
obtained for the same μ, ρ, d and R). In addition, the order of magnitude of F0 predicted
by Equation (9) is consistent with the experimental data: Figure 4(h) shows that F0/�φ−1/2

is of the order of 0.1 N. This is exactly the order of magnitude of μρgR2, which scales as
F0/�φ−1/2 according to Equation (9): for μ � 0.1, ρ � 3 × 103 kg/m3, g � 9.8 m/s2,
R = 11 mm, we obtain μρgR2 � 0.1 N.

The crossover between slow and velocity regimes can be well defined by comparing
the right-hand side of Equation (7) and that of Equation (9): the ratio of the former to the
latter is expressed as (V/Vc)

2 with

Vc � (μgd2/R)1/2 (10)

This crossover velocity is in fact another expression of V0 given in Equation (8), i.e. V0 � Vc,
because the divergent factors �φ−1/2 in l and F0 are cancelled out in Equation (8). The
orders of magnitude of the right-hand side of Equation (10), (μgd2/R)1/2, is estimated as
10 mm/s, which compares well with 100 mm/s, above which the V 2 law is established as
in Figure 4(e).

Some comments are as follows. (1) In [16], the dependence of Equation (7) on the disk
radius R is established through the agreement between theory and experiment. (2) It seems
that Equations (7) and (9) break down in a low-velocity region V � Vc: the above scaling
regimes are in a rather high-velocity regime. In the present set-up, however, it is technically
more difficult to explore in a low-velocity region: with velocity decreases the drag friction
force decreases and in such a case the friction with the bottom and top covers of the cell
becomes non-negligible; we have to establish a way to remove this component. As for
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Philosophical Magazine 9

low-velocity regions, there have been many related studies (e.g. [17–25]), while the high-
velocity region studied here may be compared with impact experiments [26–28], in which,
however, the packing fraction cannot be controlled. (3) Visualization of the diverging length
scale has yet to be explored. (4) The results discussed above are essentially reproduced in
numerical simulation [29]. (5) The growth of the fluctuations, apparent from Figure 4(c),
has been also analysed [16]: it diverges again as �φ−1/2. The statistics of the fluctuations
seems to be a Gaussian type, in contrast with a recent study [26].

5. Strength of biological materials

In nature, there are a number of strong and tough materials exploiting a magnificent micro-
structures, as shown in Figure 5(a). The layered structure of nacre, found inside certain
seashells like abalone and on the surface of pearl, is one of the most well-studied examples
as such (see Figure 5(a) left). In the case of the exoskeleton of lobster, similar layer structures
with different two periods can be observed as shown in Figure 5(a) right (in fact, these layer
structures originate from magnificent substructures). In the following, we focus on the nacre
structure, although a simple model for nacre introduced below can be applied also for the
structure of the exoskeleton of lobster [30].

The layered structure of nacre is viewed as composed of hard layers (of micron-scale
thickness dh) and soft layers (of nanoscale thickness ds). This thickness contrast implies
that the soft component is very minor. The hard component is aragonite, a crystalline form
of CaCO3, while the soft component is mainly composed of proteins. Because the latter
volume content is small, we can see only plates of aragonite in Figure 5(a) left. However,
as we will see below, a small amount of soft component drastically changes the mechanical
response. The hard and soft elastic moduli are denoted Eh and Es , respectively, and we
introduce a small parameter ε, which is defined as (Es/Eh)(dh/ds).

From the simple elastic model of the layered structure, we can predict the stress field
σ(r) near the tips of a line crack of length a in a two-dimensional plate of height L and of
width W (W � a), together with the deformation field u(r), with r (> 0) the distance from
a crack tip (see Figure 5(b)). As shown in the left illustration in Figure 5(b), we consider a
simple layered structure with the above introduced parameters Eh , Es , dh , ds , and ε. Typical
values of these parameters are shown in the right illustration in Figure 5(b). We introduce
a line crack perpendicular to the layered structure as suggested in both of the illustrations
in Figure 5(b). The sample is then stretched in the y direction (the direction parallel to the
layers) under a fixed griped condition (namely, deformations u0 and −u0 (both independent
of x) are respectively applied at the top and end bottom edges of the sample). When we
consider this problem in the limit of small ε, we can show that the dominant components of
stress and strain in the corresponding equilibrium state are the yy and y components, σ(x, y)

and u(x, y), respectively, because of the anisotropic nature of the problem. In addition, we
can show the equilibrium deformation field is governed by an anisotropic two-dimensional
Laplace equation on the xy plane,

(
∂2

∂ x̂2
+ ∂2

∂y2

)
u(x, y) = 0 (11)

with x̂ = x/
√

ε(1 − ν)/2 (ν is the Poisson’s ratio), subject to the corresponding boundary
conditions. In fact, we can obtain full analytical solutions for the fields by the conformal
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10 K. Okumura

(a)

(b)

(c)

(d)

Figure 5. (colour online) (a) Remarkable micro-structure found in nature. Magnified images of the
sections of nacre (left; courtesy of Prof. Dinesh Katti) and the exoskeleton of lobster (right; taken
from [37]). (b) Illustration of a simplified model of nacre with a crack and structure parameters in the
model at the scale of layer structure (left) and the scale of sample size (right). Created from [30]. (c)
Stress distribution under the presence of a line crack in a plate of nacre (left) and a monolith of the
hard element of nacre (right) with an intensity scale (middle), obtained by finite element calculations.
Stress concentration near the crack tips is significantly reduced in nacre. (d) Crack shape near the tip
(left) and collapse of the data (right), confirming the scaling law shown in the panel. The plots show
that the deformation is more enhanced for smaller ε0 (the case ε = ε0 corresponds to real nacre). (c)
and (d) Created from data in Ref. [32]
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Philosophical Magazine 11

mapping augmented by a special transformation that allows us to remove singularity ap-
pearing at the surfaces of the crack. From the analytical solutions when the crack size a is
much larger than the plate height L (see below for the details), we can derive the following
scaling laws that are valid near the tip [31]:

σ(r) � ε1/4σ0(L/r)1/2 (12)

u(r) � ε−1/4u0(r/L)1/2 (13)

Here, σ0 and u0 are the stress and deformation away from the crack tip.
The scaling laws suggest that stress concentration near the tip is weakened by the small

factor ε1/4 whereas the deformation is enhanced by the large factor ε−1/4. The former
statement supports the strength of nacre: a material fails mainly due to the enhanced stress
near tips of cracks, which is restricted here by the small factor ε1/4 (This is demonstrated in
the results of finite element calculations shown in Figure 5(c)). The latter statement suggests
the physical reason for the reduction of the tip stress concentration. As seen in Figure
5(d) left, as the soft modulus Es (i.e. ε) becomes smaller, the deformation in soft layers
is increased, which in turn reduces the deformation in hard layers. A weak deformation in
hard layer should lead to a weak stress concentration, because this material is predominantly
composed by the hard element.

The robustness of the scaling laws is demonstrated by finite element calculations based
on the same layered model performed by the software, ABAQUAS [32]. The data collapse
of the calculation data by the above scaling law for u(r) is shown in Figure 5(d), namely,
the curves for the deformation field as a function of the distance from the tip presented in
the left for different Es are well collapsed in the right by rescaling of both axes following
Equation (13). In fact, the numerical calculations are involved with a number of length
scales that should be well separated with each other: the set of conditions ds � dh � r �
a � W, ε1/2L should be well satisfied for the approximations leading to Equations (12) and
(13) are valid. However, some of the conditions are only marginally satisfied. Nonetheless,
the data collapse in Figure 5(d) right is clear (a similar collapse is confirmed also for σ(r)),
suggesting the robustness of the scaling laws.

We explain the robustness of scaling law in a more specific manner. The approximate
expression in Equation (13) is obtained via the following expression [33]:

u(r) = 2u0
1 − �√
1 − �2

√
r̂

π L
with � = e−π â/L ,

where â = a/
√

ε(1 − ν)/2 and r̂ = r/
√

ε(1 − ν)/2 as before. In the limit â/L � 1, this
expression certainly reduces to Equation (13): we may tend to say this expression is valid
for â/L � 1. However, it would be more precise to say this expression is valid for � � 1,
and this condition is satisfied even if â/L � 1: even for â/L = 1, the size of the correction
� = e−π � 1/23 is considerably smaller than unity. In fact, the collapsed data in Figure
5(d) right includes the case when â/L � 1: even though the condition â/L � 1 is only
marginally satisfied, the scaling law is valid. This is an example in which a scaling law
appears ‘robust.’

A few other scenarios for an apparently robust scaling law are as follows. When
a scaling law ∼ (X/X0)

1/2 is obtained as a result of series expansion, f (X/X0) =
(X/X0)

1/2(1−(1/12)(X/X0)+· · · ), we may tend to say that this scaling law is valid when
X/X0 � 1. However, this law is in fact well satisfied even when X/X0 = 1, for the sake of
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a small pre-factor 1/12. When the same scaling law ∼ (X/X0)
1/2 is instead obtained from

the series, f (X/X0) = (X/X0)
1/2(1 + (X/X0)

3 + · · · ), in which the leading correction
term starts from the third-order term, the scaling law can be well satisfied even when
X/X0 � 1 is not well satisfied; e.g. for X/X0 = 1/2, we have a fairly small correction,
(X/X0)

3 = 1/8. In many experiments and when constructing a scaling phenomenology,
we do not know the exact analytical mechanism leading to a scaling law in advance.
However, the above scenarios guaranteeing a possibility for a scaling law to be ‘robust’
may encourage experiment and phenomenology seeking scaling laws (although we can
think of other scenarios unfavourable for scaling laws).

Finally, we note that the fracture toughness can be also estimated [31] and the orders of
magnitude is comparable to experimental measurements [34]. Further details including the
background for tough biological materials can be found in a recent review [30].

6. Discussion

We have seen that scaling arguments are a powerful tool to unveil the physical mechanism
of the problem in question, and this approach is universally useful for a variety of problems
in the following respects. (1) The approach can extract the physical essence of the problem.
Scaling laws are usually obtained through balances of energies or forces of various physical
origins, and, thus, provide simple views and ‘intuitions’ on the problem. (2) Scaling laws
obtained in the course might be simple enough to be useful as a guiding principle to develop
products or to control the product quality. In such a case, scaling laws could make a strong
impact on various applications, including those in industry. (3) A scaling law can be robust
in the sense that it can be nearly exact even if the limiting condition for the law to be valid is
only marginally satisfied or even weakly violated. This makes the scaling approach useful
in a wide range of situations. (4) The validity of scaling laws can be made often through a
distinct data collapse, which is a rather subjective way to establish the agreement between
theory and experiment. (5) A clear data collapse determines the numerical coefficient for
the scaling law, giving a prediction for future detailed studies and impacting on the field
of research. The most serious weakness of the scaling analysis is that we cannot determine
a dimensional numerical coefficient, but this weak point can be overcome via fitting onto
experimental data. This implies the importance of a good coordination of experimental
and theoretical studies. (6) The approach is especially useful for problems of complex
phenomena in daily life or those related in industrial applications, with which physicists
have hesitated to tackle because of the difficulty coming from the complexity. However, it
is useful also for any new problems in physics to make a first step that is sound.

In conclusion, the scaling approach is a powerful method for pioneers in any fields of
physical science. The author hopes that this short note will inspire such pioneers to curve
out new frontiers of physical sciences.
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