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Unified time-path approach to the generating functional of the Brownian oscillator
system: The bilinearly corrected Feynman rule for nonequilibrium processes

K. Okumura and Y. Tanimura
Division of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki, Aichi ggg, Japan

(Received 26 May 1995)

We derive fully corrected propagators of a bilinearly interacting Brownian oscillator system by
summing up an infinite number of Feynman diagrams. The generating functional of a nonequilibrium
system is calculated in terms of the bilinearly corrected propagators thus obtained. The result off'ers
the Feynman rule for systematically studying the eff'ects of both anharmonicity of the potential and
nonbilinear system-bath couplings on the Brownian oscillator system. The reduced density matrix,
which is useful for investigating the dynamics of the system, is also calculated. The unified time
path, which is powerful in calculating propagators, is introduced and used efFectively throughout
the work.

PACS number(s): 05.40.+j, 05.70.Ln, 42.65.—k, 82.20.—w

I. INTRODUCTION P MO 2 f p, mio, .

Feynman rule for a nonequilibrium quantum system
has been widely used electively in various fields. The
temperature Green function was introduced, from which
the information on the real-time process was pulled out
by using a rather intricate method of analytical continu-
ation [1—4]. On the other hand, the double-path method
starts from the real-time instead of the imaginary time
[5-8].

Recently the double-path formalism is extended to a
formalism in which the propagator becomes a 3 x 3 ma-
trix instead of a 2 x 2 of the double-path formalism
[9,10]. Typical nonequilibrium processes are explicitly
calculated through the Feynman rule in terms of the 3 x 3
propagators [11].We introduce the unified time path from
this formalism in the following section. The path integral
is directly performed on this unified time path.

In this paper we consider a nonequilibrium process
where the total system is initially in the equilibrium state
and then the time-dependent external force (applied af-
ter the initial time) derives the total system towards a
nonequilibrium state. In such a case the unified time-
path approach gives a unified perspective to calculation
and argument as we see below. The quantity explicitly
derived below is the generating functional for this case
of nonequilibrium process, from which the Feynman rule
is readily known and thus all the physical quantities can
be estimated by diagrams. The generating functional is
here defined as a functional of the external force which
is obtained from the density matrix by tracing over all
degrees of freedom of the total system [see Eq. (2.11) be-
low]. The generating functional of nonequilibrium system
provides a convenient means for incorporating eKects of
dissipation in physical systems [12].

We intend to calculate the generating functional of the
Brownian motion model. One of the most fruitful models
of the Brownian motion is described by the system-bath
Hamiltonian [13],

N
—Q) c;q;+ V(Q, q, t).

Following the work by Caldeira and Leggett [14], there
has been a renewed interest in the problem of Brow-
nian motion. This model has been successfully used
to study problems in chemical reaction 15,16], electron
transportation in the semiconductor [17, and quantum
optics [18]. Various techniques have been developed to
include the effects of V(Q, q, t) g 0 both numerically and
analytically [19—23].

Though many studies have been done by using this
system-bath Hamiltonian in diverse fields, there were no
systematic and analytical ways of calculating the efI'ects
of the anharmonicity of' the potential and the nonbilin-
ear coupling [i.e. , the case of V(Q, q, t) g 0]. [Though
the interaction Q P, i c,q, is usually called linear, we
call it bilinear or linear-linear in what follows since,
if we view the system (1.1) as a special case of (2.1)
with (2.2) below, it may be appropriate to call the term

o c;s.q, qi ~ Q P,. r c,q; bilinear interacting term. ]~)2
This is partly because the Feynrnan rule in which propa-
gators are fully corrected by the bilinear interaction has
not been derived up to now. Needless to say, this line
of study is important since the real mechanism of dissi-
pation may be much more complex than the simple har-
monic case.

In this paper we derive the bilinearly corrected
3 x 3 propagators for a general bilinear coupling term

& c;~q, qs and obtain an expression for the generat-
ing functional in terms of these propagators [see Eq. (6.1)
below]. This expression gives a Feynman rule for a
nonequilibrium system where anharmonic interactions
correspond to vertices. Note here that the bilinear inter-
action does not appear as vertices since it is fully taken
into the propagator. Thus we can systematically study
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the nonequilibrium process of the total system not only
for the case of anharmonic potential (both for the sys-
tem and for the bath) but also for the case of general
(nonbilinear) mechanism of the system-bath interactions.
We also show that the reduced density matrix, which is
useful for studying the dynamics of the system, can be
calculated from the generating functional.

Finally we point out the close relation between [24]
and the present work. In [24] they derived various cor-
relation functions for the case of the harmonic system
potential and the bilinear system-bath coupling. Some
of their expressions can be regarded as elements of our
3 x 3 propagators for the special coupling case [see Eq.
(4.19)] while they did not derive the other elements of the
propagator even for this special coupling case. The gen-
eral coupling case is not dealt with in [24] at all. In this
sense the present work can be viewed as a generalization
of [24]. We show explicitly, however, how these elements
of propagators can be used as the basis for investigating
the eKect of the anharmonicity or nonbilinear coupling by
using the Feynman diagrammatic technique. Especially,
the nonbilinear coupling correction can be systematically
examined in our forumlation.

to the original Hamiltonian,

H(t) = HT(p, q) ~ H~-(t)
= H(t) —) J,(t)q; (a = 1, 2). (2.8)

Z'Jz Te —t fo dtH & (t) Z J2 Tel fo dtH 2(t) (2 4))

where T and T are the usual time ordering and antitime
ordering operators, respectively. We introduce the gener-
alized version of the unnormalized initial density matrix,

&Js T e
—

z fo "d7H3(~).
T (2 5)

where T is the r-ordering operator and H '(w) is given

by

H" (r) = H(t = 0) —) J„(~)q;.
z

(2.6)

Then the time evolution operators from initial time to
infinite future (and vice versa) of the total system with
the source are given by

II. THE UNIFIED TIME PATH Then the normalized initial equilibrium density matrix
of the original system is expressed as

Let us consider a quantum system of N + 1 degrees of
freedom. The total Hamiltonian is expressed in a gener-
alized form as

pl —— 0 TrO (2.7)

HT(pq) =)
~

' + 'q, ~+VT(q t),
(2m, 2 )

(2.1)

Consider the generating functional for the correlation
function ZJ or that for the connected correlation function
R 1 defined by

N

v~(q, t) = --,' )
i, j =0
(t Pi)

c*'q'q' + V(q t) (2 2)
ZJ = el~' = Tr ~~'ZJ'ZJ' (2.8)

By using the generating functional, the expectation value
of the coordinate of the system at t is given as

where V(q, t) is the nontrivial part of the interaction

[for example, V(q, t) = Aqp P, i q, ]. The conventional
system-bath Hamiltonian can always be cast into this
form, if we set (pp, qp, (cJp, mp) = (P, Q, O, M) and regard
the other degrees of freedom as the heat bath. Strictly
speaking, the bath degrees of freedom N should be taken
to infinity at some stage in order to dissipate the energy
of the system (P, Q) to the bath.

We are interested in the case where the total system
is initially in equilibrium with the temperature 1/P, and
then the time-dependent external force is applied at some
time, say t = 0. The external force brings the total sys-
tem to a nonequilibrium state. In this context the to-
tal nontrivial interaction V(q, t) is really time dependent
while initially it is only a function of the coordinates, i.e. ,

VI(q):—V(q, 0). In what follows we assume c,~(= c~, )
time independent without loss of generality.

The experimental observable of the system is always
expressed by the expectation value of various operators
or correlation functions. Such quantities can be system-
atically investigated when the generating functional is
introduced. To this end, we add artificial source terms

BW(")'= w, (t)

BTV

BJ2;(t) ~ p
(t & 0), (2.9)

BTV
(q')t=p = —. ~J ( )

(2.10)

Here, J = 0 implies Ji, ——J2,; ——J3,, ——0 for all i. We
can also obtain the expectation value of the momentum
or the correlation function including both p; and q, [after
replacing all p, (t) with m;q;(t)] by taking derivatives of
W with respect to J; [10,25] [see also Eq. (5.20)].

At this point we introduce the unified time path C =
Ci +C2 +C3 in the complex time plane as in shown Fig.
(see Ref. [10]). Namely, it starts from the origin up to
infinity along the real path (Ci), returns to the origin

(C2), and then goes to —iPh along the imaginary axis
(Cs).

The step function 8c (t, t') on C is naturally defined
such that 8c (t, t') takes the value unity if the time t is
later than the time t', otherwise 8t (t, t') = 0. The word
later here means that the time t appears later than the
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Z ~wJ ~ ~ dt's. (t) (2.13)

- Ret

where j'[q] implies the path integration on the unified
time path and 8 (t) is the Lagrangian corresponding
to H (t) (see Appendix A). Now that all the quanti-
ties appearing in ZJ become the c number, we can pull
out the interaction term by using the simple identity
& «&& ~ = & (dJ~Q

')

Z
—t' fc dt's'T(, ~,&) Z(O}J=C Ji ~

i=O
(2.14)

where

FIG. 1. The uni6ed time path C = C~ + C~ + C~ on the
complex t plane. The actual paths C~ and Cq are on the real
time axis and T ~ oo.

time t' when we go along the unified time path following
the direction of the arrow in Fig. 1. The b function
bc (t, t') on G is also defined accordingly. Note here that

ZJ(O) t fc «2 ~.'(t) — *2 *% (t)+J*(t)a(t)
q;e , (2 iS)

and VT (&gt}) implies VT(q, t) with q, replaced by -", s& (,)
.

Although the quantity ZJ i itself has been already ob-
tained [24,10], we present a quick derivation based on the
unified time path. For simplicity we drop the index i of
q;. The well-known result (see, for example, [26]) on the
C1 path,

0&(t2, t', ) = 0(t', —t2), 0&(ts, t') = 0(its —it'),
b&(t„t', ) = —8(t, —t', ),

—„-' f, «(~+, v'(t}—~ (t)~( ))
~

etc. (t, t' E G ) while 0(t) and b(t) are the usual step
function and b function, respectively.

Thanks to the unified time path the generating func-
tions ZJ and WJ are now expressed in the compact form

1/2
e &, (2.16)

27t ih sin uT

Z tRg T T —t fcdtH (t) (2.ii) [(q + q' ) cos (uT —2qq']
2 sing)T

where T~ is the time-ordering operator on the unified
time path defined through 0c (t, t') and H~(t) should be
interpreted as H~(t) = H~-(t) (t F C ). Note that
H ' (t) is here defined by

1+ .
sin 4)T

dt Ji(t) [qsinw(T —t) + q' sin~t]

H J' (t) = H (t = 0) —) Js,;(t)q,

1+— dt ds Ji(t)Gii(t —s) Ji(s), (2.17)
2 0

with Js(t) = Js(—i7.) while H ' '(t) are given in
Eq. (2.3).

The path integral on the unified time path can be per
formed by a simple generalization of the usual one. The
essential point is that we divide the unified time path
into % + 1 pieces (to ——0, ti, . . . , t~, t~+i ———if') and
introduce e, 's; e, = (eo, t:i, . . . , e~) such that

+(t ++ s) (2.18)

is generalized on the unified path C as

1 since(T —t) sinews
ii t 8 0 t —s

mLd Siil 4/T

t;=)
Ic=O

t, —t, =) ~& (i& j). (2.12) (qiT« " -' ' -lq)

We should notice that ei is positive if ti is on C1, negative
if t, is on C2, and pure imaginary if ti is on C3. Then the
generalization of the familiar method follows naturally.
The result is

g
1/2

(2.19)
(2~h sinh ~Ph)

where S~ is given by S with the following replacements:



S3 UNIFIED TIME-PATH APPROACH TO THE GENERATING. . . 217

T -+ —ipse, q = q' and integrating over q. We thus get the known
result,

dt -+
C

J (t) J(t) = J (t) (« (- )

8(t —s) i Oc(t, s). (2.20)

Z(o) „wJ( )
e

2 sinh(u)Ph/2)

st = —
~

—
~

st f dsJ(t)D(t —s)J(s),
2 (h)

(2.21)

(2.22)

We emphasize the fact that, although these replacements
may be almost self-evident, the above result can be di-
rectly obtained by natural extension of the known meth-
ods (see Appendix A). On the contrary, they first derive
{q[o.~s~q'), {q'~K~'[q"), (q"~K~'~q) separately and then
performed integration with respect to g, q', q" to derive
the quantity Tr o ~sK~'K ' in [24,10].

The generating functional ZJ is obtained from
Eq. (2.19) by tracing over the coordinate, i.e. , by setting

D(t —s) =
2m' sinh(~Ph/2)
x [ec(t —s) cos~(t —s —iPh/2) + (t ~ s)] .

(2.23)

Thus the notion of the unified time path which was in-
troduced in Ref. [10] can be extended in a useful way.

By recovering the index i of q, , we arrive at the follow-
ing expression for the generating functional for the total
system:

Z
—

s f~ "'V'( s ~'(t) ) ZLJ=C Jr (2.24)

—, f~ tB Q, sz. (,) t:tt tts, (t) —(„-') f dt f ds Q; Jt(t)Dt(t s)J ( )ts— (2.25)

where D;(t —s) is defined in Eq. (2.23) with m, ~ replaced by m;, &u, , and V(s&(i) ) implies V(q, t) in Eq. (2.2) with
h 8

q,. replaced by gJ (g).
By using the trivial identity (see Appendix B)

*t ~s = es~*(+++)*it ~t x (a factor independent of J), (2.26)

ZL ~~wJ—8 (2.27)

i I 1 ('il)'—WJ = —
i

—
i

dt ds) J, (t)D;, (t —s) J,.(s),2 &&) c c
(2.28)

where

which holds for matrices A, B and the vector J, we see
that Z& can be formally cast into the following form:

corrected propagator D,~(t —s) by noting the graphi-
cal meaning of Eq. (2.26), which will become clear as
we go along. It should be emphasized that Eq. (2.24)
with (2.27) and (2.28) gives the Feynman rule based on
the bilinearly corrected propagator. This Feynman rule
is a starting point of studying a nonequilibrium system
subject to an anharmonic potential in addition to the
linear-linear interaction.

III. THE LAPLACE-FOURIER
REPRESENTATION

[DV(t —s)] '= [D'(t —s)~V]
' — cV~(t —s) (2»-)5 '2

and b;~ is Kronecker's delta. The inverse in the above
expression is the inverse of the matrix when you consider
D;~(t —s) as the matrix D & with a = (i, t), l) = (Z, s).
Moreover note here that t, s is on the unified time path.
In Sec. IV, we derive the explicit form of the bilinearly

If we introduce variables J~+~ and J~ ~ by

J(.) =(J,+J.)/2, J(-) = J, J„—(3.1)

then the quantity lt J in Eq. (2.22) can be expressed as
[24,10]

(3.2)

d.
~

J(-)(t)D,' "(t—.)J'+'(s)+ -J' '(t)Dp '(t —s)J' '(s)
I

d7- J (t)D (t + jr) Js(~) + —— d7 d'r Js(r)Dp ( z'r + z7 )Js(r ), —
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where

D(—+) (t)

D(——) (t)

D( )( .
)

( )
Sl nldt

i mv
coth((uPh/2)

cos ut,
2mb)

h
coshur(it —7. + Ph/2)

2m' sinh(uPh/2)
cosh(u(~ + Ph/2)M ~ + r++ —r.
2mur sinh(uPh/2)

we have

(0 & t, 0 & r & Ph), (3.13)

"'D.' "() (t&o),c 27cx

Ph oo

X (z, n)—: d~e '"" dte "X(t,r)
0 0

By noting that

0 (9 (p)
D() (t s)

( ) ( )
Wg (3 4)

with W& defined in Eq. (2.22), we have

Dp +'(t —s) = ~(t —s) [(q(t —s)q). —(«(t —s))pl

(3 5)

where (X)p is the connected part of the average of X by
the initial density matrix for the noninteracting system.
The time evolution is also done by the noninteracting
Hamiltonian. Explicitly,

(3.i5)

D(—)(t+ )
1 ) ' d D(—)( )

(t &o), (3.i6)

D(")(-. ) = ' ) .'"-.D'"'(n)
n= oo—

where

(q(t)q) = ( (t) )o (q)o (3.6)

where

(0 & ~ & Ph), (3.17)

(q(t) ) qe Te (e I e' &"qe ' ~"q) /Tee ~, (3.7) (3.18)

with II = p /2m + mu q /2. Similarly we have

(t —s) = - (q(t —s)q + «(t —s))o.(—) =1
2

(3.8)

), , [f(z) —f( -)]
n= —oo

Dp (z, n) = —5 "
[f(z) —f(v )],

(3.19)

(3.2o)
Since (q(t —s)q) p is the complex conjugate of (qq(t —s) )p,
we can recast the above relation into Dp( ) (n) = hf (v„). (3.21)

Dp
+ (t) = —2i8(t)Im(qq(t))p,

'(t) = R («(t))'

We also have

Dp( )(t+ i~) = (qq(t+ i~))p,

Dp (—ir) = 8(w)(qq( —iv))p + (w m 7). —

(3.9)

(3.1o)

(3.11)

(3.12)

Here, v„ is the Matsubara &equency de6ned by

v„= 2am/Ph,

and the function f (x) by

1 1

(3.22)

(3.23)
Equations (3.9)—(3.12) imply the fact that once the

quantity Dp (t + iw) is evaluated the others can be
obtained as a special value of this quantity. For example,
Dp (—6 ) is given by Dp (t + iw') evaluated at t =
0, ~' = r[see Eq. (3.3—)] if 7 & 0.

We note here that these equations also imply the well-
known fact that one can obtain all the expressions by the
analytic continuation of the Matsubara Green function

D,"(—'~).
By introducing the Laplace-Fourier transform

The contour C on the complex z plane runs parallel to
the imaginary axis where the real part is chosen. so that
there are no poles on the left side of the path. Note
that Dp (z) cannot be denoted as the summation of

Dp (z, n) since the term, "",, though odd in terms

of n, is singular in the sense that it behaves like 1/n as
nM oo.

Equations (3.14)—(3.17) with (3.18)—(3.21) may be eas-
ily checked if we use (0 & r & Ph)
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and

cosh ld (r —Ph/2)
2 sinh(uPh/2)

1

sinh cu(7 —Ph/2) 1
2 sinh{~Ph/2) Ph

ue' "
4J +V

e'CP~ T

u2+ V2

(3.24)

(3.25)

We have used Eq. (3.27) and the fact that nonsingular
terms, which are odd in terms of n, are summed up to
zero. If we set r = 0+ in Eq. (3.28), the left-hand side be-
comes {qq(t)). Since Do

+ and Do ) are the imaginary
and real part of {qq(t)), respectively, we get Eqs. (3.18)
and (3.19) as desired.

1
z — v = —m z v (3.26) IV. DERIVATION OF THE BILINEARLY

CORRECTED PROPAGATORS

Note that the summand in the right-hand side of
Eq. (3.25) is singular implying jumps at 7. = 0, Ph. This
fact leads to the following relation to be used later:

With the J(+) representation, we can recast Eq. (2.25)
into the following form:

~~o+ Ph iv„lim )
n= —oo

1
2

(3.27)
Z~ = h~J —eE;,, *'~a'J ~eE; +J —e —e

where

(4.1)

D(-')(t+ —h ),„dz'LP~ TPh„c, 2&i

{3.28}

The prime means that the summation excludes the con-
tribution from n = 0.

By virtue of Eqs. (3.9)—(3.12), once one knows

Do( ) (z, n), one can derive the other propagators.
Though the process is trivial, it is useful when we derive
the bilinearly corrected propagators so that we examine
this process. I et us start from

( c) l ~ rh')'

1 /hi)'
+—

I

—.
I c'~

h (ip

a o

~aJ,(+)(t) aJ,'-)(t)

a a
+

aJ(-)(t) aJ,'+)(t) )
Ph

dT
M, ;(t) OJ, , (t)

'

(4 2)

and 4J;, 4+ are given by making the following replace-
ment in Eq. (3.2) [see also Eq. (6.2)].

Replacements with respect to 4J;.
If we use

(J(-),J(+),J,) ~ (J,' ', J,."',J. , ), (4.3)

(3.29)
(D(

—+) D(——) D(—s) D(»))
0 ~ 0 ~ 0 & 0

which is clear from the initial value theorem of the
Laplace transformation, we get the following result by
setting t = 0 in Eq. (3.28):

(D(
—+) D(——) D( —s) D(»)) (44)

where Do; (l, m = +, —,3) is given by the replacement:

Do (—i7) = ) e'"" f(v„). (3.30)
(m, cu) m (m, , (u, ) (4.5)

Thus we obtain Do( )(n) = hf(v ) as desired. Next, by
noting a simple relation (for n g 0)

in Eq. (3.3). In the Laplace-Fourier representations in

Eqs. (3.18)—(3.21), Do, is given through the following
replacement:

Z+ V

Z —Vn

we have

Z2
+

Z V V Z —V V
(3.31) 1 1

f(x) = —, , ~ f, (x) =
m M + x (4 6)

„).e*",, ", [f(z) —f(v-)]
n= —oo

(3.32)

Replacements with respect to 4+ [see (6.2)]:

(J,J+,J ) -+ (J, , J,+,J,), (4.7)

„ ) .. .[f(z) —f(v-)] /D( —+) D(——) D(—s) D(»))
0 s 0 & 0

——f(z) (r ~o+).
2

~ (D(
—+) D(——) D(—s) D(ss)) (4 8)
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These quantities D,-. are the bilinearly corrected prop-
agators we aim at deriving in what follows.

Let us begin with the derivation of D~- . This quan-
tity is expressed as

( +) 5 8
J

BJ,( )(t) BJ,I )(0)
= 0(t)(q'(t)q~ —

q~ q'(t)}

where (A ) is the average of X by the initial bilinearly cor-
rected density matrix whose dynamics is governed by the

bilinearly corrected Hamiltonian. For example, (q;(t)q }
is given by Eq. (3.6) with Eq. (3.7) under the replacement

q-+q;, H-+)
I

' + ' 'q;
~

—) qcq, .
q2m; 2 )

(4.1O)

Thus we can calculate D; + (t) by using the following
Feynman rule. Note that this rule is immediately ob-
tained &om the third expression in Eq. (4.1).

Propagators Vertices External points

D —+ 2
C;j

DO i
j+

C;j

D 3
O, i

3i j3
C;j

D33
O, i

By using the fact that Do; (t) is causal, we easily 6nd the following graphical expression:

'=+ =
0

i +— a + — j +
t' t II 0

(4.11)

Let us consider the third graph explicitly. The algebraic expression of this quantity is given by

(4.12)

(4.13)

Thus if we define matrices

X'~(z)]' = f'(z)~'
IF(z)]v = &v

we have

(4.14)

D(,. +) (z) = F;, (z) . —.

Here we have introduced the matrix F(z) by

[F(z)] = F&(z)] F(z)

(4.16)

(4.17)

'( ) =
—, (F ( )+F ( )F( )F ( )

+Fd(z)F(z)Fd(z)F(z)Fd(z) + ]' (4 15)

which leads to the final expression,

where the inverse implies the one regarding (i, j) as the
indices of the matrices.

We can calculate D, (t) in a similar .way. The
graphs at the second order in c, is given in Fig. 2. Due
to the causality the number of graphs is considerably re-
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33 33

FIG. 4. The second-order graphs of D( (—i7).

For the case where the linear-linear coupling matrix c,.~takes a nonzero value only when

co, =co=—c, (jgO),

FIG. 2. The second-order graphs of D (t).

duced by setting the time of the right end of graphs to
t = 0. The estimation of these graphs is again done
by the Laplace-Fourier transform. After many terms are
canceled with one another, we arrive at the following sim-
ple expression:

+[F&(z)E'(z)Ed(z)

the expressions of the diagonal elements Doo+ (z) and
Do(o (z) have been obtained in Ref. [24] [expressed as
2iA(z) and S(z), respectively]. In this case the matrix
P(x) is replaced by a mere number [1/fo(x) —f~(x)]
with f~(x) = P,. i c2f;(x). Their p(x) and p satisfy
Mxp(x) = p, f~(x) —with M:—mo. If we recall that they
started from the system Hamiltonian HG I = P /2M +
(MO2 + p) Q2/2 with (P, Q, 0, M) = (po, po, ~o, mo), we
find that our results reduce to theirs.

The Fourier transformation for the real-time vari-
ables instead of the Laplace transformation (the Fourier-
Fourier representation) is easily obtained if we make the
replacement

dz

. 2%i

dk zt ~ ikt
2~' (4.20)

The higher-order contributions are summed up to the
following final result:

in Eqs. (3.14)—(3.17) and

z ~ i(A: —iO+) (4.21)

D(——) (z)— ) [E(z) —E(i „)]. (4.18)

By a similar analysis we obtain D( )(z) and D( )(z).
The second-order graphs needed for calculation are writ-
ten in Figs. 3 and 4. The results are given [see (6.3)
below] if we replace f (x) with the matrix E(x) in
Eqs. (3.18)—(3.21).

We would have been able to obtain all the elements
of the bilinearly corrected propagators starting from
D( s)(z, n) just as before [see below (3.27)] and, in prin-
ciple, we could have started from D( )(w) by using the
analytic continuation.

in Eqs. (3.18)—(3.21), etc. In this representation we
can also show easily that our results reduce to those in
Ref. [24] for the above special case of Eq. (4.19).

V. THE REDUCED DENSITY MATRIX

The coordinate representation of the reduced density
matrix pg(Q', Q, t) can be obtained by using the method
similar to the one used in deriving the generating func-
tional. In this section we regard the 0th coordinate
and momentum as the system degrees of freedom, i.e. ,
(po, go) = (P, Q) . The reduced density matrix with the
source J = 1; (n = 1, 2, 3;i = 1, . . . , N) is given by

33

where

Tr~crg(t)
Tra.g(t)

e
—-„' J~ dt'H (t')

(5 2)

FIG. 3. The second-order graphs of D (t + ix).
and Tra (Tr) implies the trace over all degrees of &ee-
dom of the bath (the total system). The time t = T of
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o J(t) is the final (initial) time of Ci {C2) (see Fig. 1)
and t = T is assumed to be finite in this section. Though
the actual reduced density matrix is obtained as pJ (t)
at J = 0, we introduce the source terms for later con-
venience. In the coordinate representation the unrenor-
malized reduced density matrix Trio'J(t) is expressed as

~J(q' q t) =—(Q'IT E~J(t)lq)
h JL (9J(ti))oL(Q Q t)

(s.3)

(5.4)

where V in the above expression is the nonbilinear inter-
action of the total system and crJ (Q', Q, t) is given by

oL(q' Q t) = e "' ""*"''"" X (q'iree if~ ' s(')iq) X (5.5)

Here, 4J, is given in Eq. (4.1) and the second element in the product on the right-hand side is given by Eq. (2.19) with
{q', q, p, m, w, J, T) replaced by (Q', Q, P, M, O, Jo, t). The exponent of the second element in Eq. (5.5) is bilinear in
terms of the vector (Q, Q, Jo) [see Eq. (2.19)j. The functional 4J, is also bilinear in terms of the vector (Ji, . . . , Jiv).
Thus, we can write Eq. (5.5) in the following form:

o J (Q', Q, t) = e " *' ' ") "
~ ")e

' x (a factor independent of Q', Q, J), (5.6)

where 3 = (Q', Q, Jo, . . . , J)v) and M is a matrix inde-
pendent of J. From the identity (2.26), we know that
o'&L(q', Q, t) takes the following form:

(Q) g = TrQp J (t) = dqqp J (Q, Q, t)

—
2 AQ +EQ+2 J DJ

A' (5.11)
o JL (Q', Q, t) = o J (r, z, t)

~(t) —i Ar —i~Bg2+Crz+Er+Fz+J DJ
)

(5.7)

where A, B,C are independent of Jo, . . . ,J~ while E,F
are linear combinations of Jo, . . . ,JN. , and K(t) is inde-
pendent of r, x, Jo, . . . , J~. Here we have introduced r
and x by

Q + Q Qf Q
2

(5 8)

and J . DJ is a symbolic notation for
2J.DJ—:

i

—
/ )qh)

= —YVJ,

dt ds J,(t)D,, (t —s)J,(s).
(5.9)

e ""~ '~~&"& o (r z t)
Qg'+(

J
h fc ( ag(q&) ) J' dr~L(r () t)

(5.10)

We are new in a position to connect A, B', C, E, F with
various expectation values or correlation functions. Let
us start from the expectation value of Q;

where D,-~ is the bilinearly corrected propagator. In or-
der to identify D;~ with the bilinearly corrected operator
we have used the fact that Z& ——1 dr8J(r, 0, t) The co-. '

ordinate representation of the reduced density matrix is
now expressed as

pJ(q' q t) = (q'lpJ(t)lq)

BpLJ (r, z)
't Bx 2

(5.14)

We can show that C = 0 by considering the following
symmetric correlation function;

PQ+ QP PQ+ QP
2 2 pJ t

dPdq'dqP + ~ "-'~«-~')
2

x pJ(Q', Q, t)

OpLJ (r, z, t)

(5.15)

where p&(t) is pJ(t) with nonbilinear interaction V set to
zero, or

oLrzt
pJ(q' Q t) = (q IpJ(t)iq) = „', ' (5»)
The connected part of the equal-time autocorrelation

function of Q (variance of Q) can be connected with A
in the following manner:

(Q ):—T Q (t) —{Tq (t))

dq
—

2 AQ +EQ+ &
J DJ

QE2

The expectation value of the momentum P is identified
with F as follows:

(P)~ = TrPpJ(t)

dPdq'dQPe& (~ ~ ) pJ(q', Q, t)
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If we note that

(PQ)
) f hBh(T)

( T) z,

i Bx p 2

drp~(r, 0, t)
2i

we arrive at the result C = 0.
The equal-time autocorrelation of P becoxnes

Thus the variance of P is expressed as

(P )
—= TrP p~(t) —(P)L, = hzR.

Thereby we have the result

(5.17)

(5.18)

cr~ (r, z, t) = & ~ + ~ (Q)t~+J.QJ2(Q2) 2g2

27r(Q2)
(5.19)

where J DJ is given in Eq. (5.9). The quantities (Q)q, (P)q, (Q2), (P2) are easily obtained through the generating
functional and are given explicitly in terms of the bilinearly corrected propagators as follows.

BW )- D(—+)(t )J(+)( ) + D(——)(t. )J(—
)( )M( —) (t) h

Ph
dr ) D(,. ') (t g ir) J&, (r),

0
2

0 BR'i 0
(P)g ——M —

( )
——M —(Q)g,

h 8 c)

' BJ (t) c)J (t') t=t'=0

2 8 c) h c) c)

' l9J )(t) c)J (t') t=t'=0
MDOO (0—). (5.20)

The above results generalize the expression for the density-matrix element given in Ref. [12] with considerably easier
calculation. Namely, the external forces were restricted to F(t) and f(t) only [which correspond to J (t) and J+(t),
respectively] in Ref. [12], while the three external forces J (t), J (t), and Js(t) are introduced in the present work.
As a result, we can investigate anharmonicity and nonbilinear efFects not only on the Cz + C2 path but also on the
C3 path. The density-matrix element enables us to study the difFerences between quantum and classical dynamics,
particularly if we introduce the Wigner representation [12,24].

VI. CONCLUSION

We have derived the bilinearly corrected propagator by using a graphical technique. Thereby we have succeeded
in taking the inverse in (i, t) space with t on the unified time path [see below (2.29)]. The results are summarized as
follows. The generating functional defined in (2.8) is given by

g& —e r fc dtv(~&&a&)e~w~ (6 1)

where the generating functional for the connected correlation function &W& given in Eq. (2.28) can be rewritten as

/ . 2 QQ OO

O'+ = I —
i

dt d
i
J, (t)D,. + (t —s)J.+ (s)+ —J, (t)D, (t —s)J (s) i

~ oo Ph Ph Ph

+—— dt dr J, (t)D; (t + ir) Js z(r) + —— dr dr'Js;(r)D, (—ir + ir') Js z(r'), (6.2)
0 0 2 0 0

where the Fourier-Laplace representations of the propagators are the following:
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~(—+)
(g) fC',

~(——
)(t) f

zz + ( )2-

, . [0(t)."+~(-t) -"] „)...[+( ) -P( -)1',

D,';"(t+'-) = '„).".-. '"' [F( ) -P(=)].„c 2zrz z —v„Tl= —
,OO z

) e'"" hF;~(v„), (6.S)

where the matrix E(v ) is given in Eq. (4.17). As mentioned at the end of the fourth section, if we set z = i(k —i0 )
in the above expressions, we readily obtain the Fourier-Fourier representation of the propagators. From the expression
(6.1) it is trivial to construct the Feynman rule. It is emphasized here that the vertex V(B/BJ(t)) comes from the
anharmonic interaction since the linear-linear interactions are fully taken into the above propagators.

As a simple illustration of the Feynman rule, we consider the system-bath Hamiltonian with the anharmonic
interaction V(q, t) = gQ /3! where the system is represented by (po, qo, mo, uo) = (P, Q, M, 0). The Feynman rule for

this system is given through the bilinearly corrected propagators D, (t —s.) and the three-point vertices illustrated
in Fig. 5. By this rule we have the following expression for the first-order correlation function of Q:

—2iIm(QQ!z))g— + +
0

+ +
0

(6.4)

dt'

where the lines represent not D; but Doo . (X)g is the connected part of the average of X by the initial density
matrix for the full Hamiltonian including the interacting term gQ . The time evolution on the left-hand side of (6.4)
is done also by the full Hamiltonian. Explicitly the leading correction term becomes

OO OO

( g
~

dtilD( +)(t t/)D( ———)(tl tjl)D( +)(tl tel)—D( +)( ll)—
g ) 00 00 oo 00

( ig))
tz )

.e"Doo+'(z) ~o (z)Doo+'(z)
27ri

(6.5)

where

~'i(z) = dt "D (t)D + (t) (6.6)

zg)
'

. ).Doo+'(z) ~V(z) Doo+'(z).
27ri

The estimation of these formal expressions together with
other quantities in the context of quantum optics needs

FIG. 5. The three-point vertices appearing in the Feynman
rule for the system-bath Hamiltonian.

%e give one more example. Assume we have a non-
bilinear coupling gQ P q; /2 in addition to the bilinear
coupling Q P, c,q, . In this case we have only to interpret
the lines in Eq. (6.4) slightly differently. In the previous

case, the lines always corrspond to Boo, while in this
case of nonbilinear system-bath coupling, the lines im-

ply various D, Namely, the second graph in (6.4) in
this case stands for several algebraic expressions. One of
them is given by

a separate study and is now underway.
The coordinate representation of the reduced density

matrix has been also derived in a simple way. The result
is expressed in Eq. (5.10) with Eq. (5.19). Note that we
can immediately derive the Feynman rule from this ex-
pression once anharmonicity of the potential V is given.

Though the concept of the unified time path extended
a little in this paper is effective in calculation and argu-
ment, it may be still considered as in its primitive level.
If the Fourier transform counterparts on the unified path
were cleverly constructed, our derivation could be more
straightforward. This point is now under investigation.

The actual calculation using the Feynman rule derived
here has a wide range of applicability. Applications to
nonlinear quantum optics and the chemical reaction rate
problem are now underway.

In this paper, we demonstrated the calculation of cor-
relation functions based on the perturbative expansion
of the anharmonicity of the potential. However if we use
a novel method of the Legendre transformation recently
developed in the context of quantum field theory [27],
we can obtain nonperturbative results for any physical
quantities that we are aiming at. In this case the gen-
erating functional derived here is a starting quantity to
be Legendre-transformed. This line of study is also now
under consideration.
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APPENDIX A: THE PATH INTEGRAL
ON THE UNIFIED TIME PATH

N

.&; p, (q;pg —q, ) ——e;p; ——e,q, + e, J;q;
i=o

(A4)

Here we applied the midpoint difference prescription,
that is, 2q, = qi+1 + qi. The integration over pi leads
to

In this appendix we introduce the concept of the path
integration on the unified time path. We assume m =
h = 1 and consider, as a typical example,

(q'lKclq)—:(q'lTce '~~ + ~ +~ l~jlq). (A].)
where

N
dqi

27re;i 1~2
i=O

[ ]
if~dtZ (t)

iAq

(A5)

t; =)
k=o

t, —tq ——) .ek (A2)

As mentioned in Sec. II, we divide the unified time path
into N + 1 pieces (to ——O, tq, . . . , t~, t~+q ———iPh) and
introduce e s; e; = (eo, tq, . . . , e~) such that

Aq —— dtl'. t

N 21 2 (d . 2= ). (q'+~ —q.-) —~' (q'+i+ q') + e'J'q'
2ei 8i=o

(A6)

Since we aim at deriving the expression in the limit of
large N, we &eely deal with ei as if it were an infinites-
imal quantity and N as infinity in the following. Then
we obtain the following self-evident generalization of the
familiar expression after inserting complete sets of q and
p-

If we introduce

ai =

and the vectors

l QJ
bi =

2ei 8 (A7)

qm+1 =q
dpo dqN

(q l&clq) = ~qi" ~qx
27r 2'

where

q = (R~ . . ~qN)~
~N —1d = boqo —J2 —J3 . . . , JN 1 bNqN+1 ) A8'2 '2 ' '

2

Aq is expressed as

&~ = &oqo+ ape+~+ q M(1, Ã)q —2d q, (A9)

where the N x N matrix M(1, N) is given through

M(j, k) =

a, 1+a,.
—b ~

2
0

—b-
2

a~ + a~+1
—b~+1

0 0
—b -+1 0

aq+1 + aq+2

—bg 2 ay 2+ ay 1 —bg —1
—4—i &I —i+Os )

(A10)

(q'l&clq) =
1V -

(
.)~ - 1/2

(2~e, i) '~'
)

i(&oqo+OmqN+1 d IM(1,N)] d) (A11)

with k ) j and we have assumed J1 ——JN ——0 without
loss of generality. Thus, after changing the variable of
integration &om q to x = q —[M(1,N)] d, we can
easily perform the integration;

matrix M(1, N) as D(1,N) From now o.n, we slightly
extend the known method of evaluating the inverse of
M(1, N) [28]. I et us consider the determinant D(j, k)
of the matrix M(j, k). It satisfies the following recur-
rence relation easily obtained by expansion in terms of
the cofactor:

D(j, k) = (aJ, q+ aq)D(j, k —1) —bI, ~D(j, k —2).

(A12)

Here we have denoted the determinant of the N x N If we introduce
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—Ck + Z —
)8 2'

1
pk =

2CA.

CO . (d—CA. —2 —)8 2'
Since the i-j element of the cofactor of the matrix M is
given by, for j ) i,

we can rewrite the above recurrence formula as

D(j, k) —nI, D (j, k —1)

= P„,[D(J, k —1) —~„,D(j, k —2)] (~ ++ P).
(A14)

E,, = D(l, i —1) b~ D(j + 1,%)

we get) for j ) 2)

D(l, i —1)D(j + 1, K),
g, , 2ei

(A21)

It is easy to check that the general solution to this equa-
tion is given by

2esD(j + 1,~).D(1,i —1)
D(1,K)

(A22)

D(j, k) = A o(+H p) (k )j). (A15) Thus we have

Noting the conditions
2sinw(t, —ts) sin~(t —t~)

4) sin —xw

D(j,j) = a, g+ a, , (A16) +(i m j). (A23)

we have A = ns z/in, B = Ps q/in, wh—ich leads to, in
the large N limit,

By recovering m and h we arrive at the result given in
(2.19).

sin~(tq+q —ts+q) (k )j ). APPENDIX B: DERIVATION OP Eq. (2.26)

Thus we have a formula,

(A17)
Equation (2.26) is simply derived by using the relation

d~ g~ ~
—

2 ~, (A+B) tj&j+Jt &z
n

2e, gD(j, k) =

where

2 sin cd (tg —t& ) k) jj, (AIS)
a ~ o 1dx. dx e * ' +' ' (Bl)

D(j k) = DU k)
~ I J E

I=j
(Alg)

and the well-known identity

Thereby the prefactor in (All) is given by

i=O
(27re;i)

- (,)~ - '~'

D(1, K)
1

2vrepiD(1, N)

(A20)
27r sinh |dP ' = (2~)"~' (det a)"'e-'"" '
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