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We study the crack-tip stress in a two-dimensional network model with a practical nonlinear stress–strain relation. As
a result, we find a scaling crossover in the relation between the crack-tip stress and mesh size from a linear to nonlinear
scaling regime, leading to a simple scaling law for the fracture strength of the network. The present results may be
pertinent to the strength of materials with voids. In this context, the results are independent of the detailed geometry of
voids, and the scaling law for the strength suggests that nonlinearity in a high stress–strain region is essential for material
strength.

1. Introduction

Materials start failing at a crack tip because stress is
concentrated at the tip.1,2) The control of stress concentration
is a key to enhance the toughness of materials, as seen in
many tough biological materials.3–5) For example, in the
layered structure of nacre,6,7) and in the spiral structure of
a crustacean’s exoskeleton,8–10) stress concentrations are
reduced by virtue of their remarkable structures.11) In spider
webs, which represent a natural lightweight tough struc-
ture,12) stress concentrations are absent.13)

The inclusion of voids may be another strategy employed
by nature to strengthen biological materials. In the stereom in
adult skeletal plates of echinoderms or holothurians (e.g., sea
cucumbers) many voids in the structure14) may contribute to
the resilient mechanical response. Voids in apples may also
play an important role in their toughness.15) The void
structure of the skeleton of biosilica in certain sponges may
also reinforce the structure.16) In addition, recent studies have
revealed that many biological materials, for example, spider
webs12) and nacre,17) exhibit nonlinearity in their stress–strain
relation.

Although there have been many studies on the stress
concentration in materials with voids, scaling laws for
fracture mechanical properties for nonlinear materials with
voids have yet to be explored. (Specifically, a linear or
nonlinear material here refers to a material for which the
stress–strain relation is linear or nonlinear, respectively.) For
linear materials, simple relations between failure stress and
void size have been suggested, for example, from the results
of an experiment,18) and a scaling law between the maximum
force and void size has been shown using a lattice model.19,20)

For cellular solids, a number of scaling laws have been
proposed,21) on the basis of beam theory considering the
moment of forces. (A cellular solid is a material composed of
small cells, such as solidified polymer foams and materials
with a honeycomb structure, where each cell can be closed or
opened, i.e., each cell is composed of ridges and faces or only
of ridges.) However, most of the results are limited to cases in
which the cell structure can be characterized by the width and
length of edges and the thickness of faces. In addition, most
of the studies on cellular solids are based on linear fracture
mechanics except for a few examples.22) For nonlinear
materials without voids, the crack tip singularity has been
analyzed23,24) using a nonlinear model that can describe

elastoplastic materials with the understanding that no
unloading occurs. For nonlinear materials with voids, local
processes such as nucleation, growth, and coalescence, and
detailed analysis or numerical behaviors have been actively
studied.25–28) In addition, a relation between crack-tip stress
and size of voids was proposed.29) However, the nonlinear
stress–strain relation employed in the study is applicable only
to a limited class of materials.

In this study, we employ another nonlinear stress–strain
relation that has been used to describe many realistic
materials.23,24) As a result, we find a scaling crossover in
the relation between crack-tip stress and void size. In this
article, this crossover is first conjectured on the basis of
scaling arguments independent of the detailed geometry
of voids, and then confirmed by a simple network model.
The crossover allows us to confirm that a failure stress
formula derived for a simpler nonlinear model is also valid
in more practical nonlinear models with an appropriate
interpretation, highlighting a number of design principles
that might be useful for developing artificial materials with
voids.

2. Conjectures Based on Nonlinearly Extended Griffith
Theory

We consider the classic Ramberg–Osgood model for
work hardening, where the following two different relations
between stress (σ) and strain (ε) match each other at a
crossover strain "c as shown in Fig. 1(b):

� ¼ E" " < "c

�E"1=n " > "c

�
; ð1Þ

where E is the linear elastic modulus, �E is the nonlinear
modulus (� ¼ "1�1=nc ), and n is a positive number larger than
one.

2.1 The case of "c ¼ 0

In this simple nonlinear case, Griffith’s well-known
expression for failure stress was generalized into a nonlinear
form29) that has been confirmed experimentally.30) Griffith’s
failure stress is given as �F �

ffiffiffiffiffiffiffiffiffiffi
E�=a

p
at the level of scaling

laws (i.e., setting the numerical coefficient to one for
simplicity), where γ is the fracture energy (per area) and a
is the size of a line crack: The failure stress becomes smaller
as the crack size increases. The nonlinear generalized version
is given as
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�F � �E
�

�Ea

� �1=ðnþ1Þ
: ð2Þ

Note that this relation reduces to Griffith’s failure formula
when n ¼ 1 and � ¼ 1.

At the level of scaling laws, this nonlinear formula can be
justified as follows. We introduce a line crack of size a in an
infinitely large (thick or thin) plate subject to the plane strain
or stress conditions and consider the energy balance at an
equilibrium: the elastic energy released by virtue of the
existence of the crack is balanced with the energy required to
create fracture surfaces. Dimensionally, the elastic energy is
estimated as �"a2 per unit thickness of the sample because
the characteristic elastic energy per unit volume scales as �",
whereas the fracture energy is estimated as �a per unit
thickness. In the balance, �"a2 � �a, the stress σ satisfies the
second expression in Eq. (1) because the first expression is
never satisfied when "c ¼ 0. In this way, we obtain the failure
stress �F in Eq. (2).

Equation (2) has been shown to be physically equivalent to
the well-known singularity at the crack tip for the present
nonlinear model:23,24)

�ðrÞ � �0ða=rÞ1=ðnþ1Þ when r � a: ð3Þ
Here, r is the distance from one of the crack tips and �0 is the
remote stress.

From Eq. (3), we can conjecture a formula for the crack-tip
stress in materials with voids. The divergence of �ðrÞ in the
limit r ! 0 is never attained in real materials. If the sample
possesses a void structure characterized by the size d (which
is larger than the characteristic sizes of practically unremov-
able defects), the continuum description breaks down at the

scale of d, i.e., Eq. (3) no longer holds below r � d (if there
are a number of length scales characterizing the void
structure, the cutoff scale d is identified with the largest
scale). The cutoff of the singularity at the scale of d might
imply that the stress field in the system has the maximum
�M that scales with the cutoff value of stress �ðr ¼ dÞ as
�M � �0ða=dÞ1=ðnþ1Þ. This conjecture has been confirmed in a
simple network model.29)

2.2 The case of "c ≠ 0

In the above derivation of �M in the case of "c ¼ 0, we
assumed that the stress σ satisfies the second nonlinear
expression in Eq. (1). However, when "c ≠ 0, the mechanical
behavior can be completely linear when ε is small. In such a
case, the relations � ¼ E" and �M � �0ða=dÞ1=2 should be
satisfied instead. This happens when the maximum stress set
by the remote stress �0 in the linear regime is smaller than the
crossover stress: �0ða=dÞ1=2 < E"c. This condition for the
linear regime is cast in the following form:

"0 � �0=E < "cðd=aÞ1=2: ð4Þ
In contrast, when the nonlinear version �M �

�0ða=dÞ1=ðnþ1Þ is valid, the condition "0 > "c should be
satisfied because, in this case, the nonlinear stress–strain
relation is valid near the crack [i.e., in the region r ≲ a in
Eq. (3)].

In summary, when "c ≠ 0, we conjecture, from the above
naive scaling arguments, the following scaling crossover for
a � d (where k1 and k2 are numerical coefficients):

�M ¼ k1�0ða=dÞ1=2 "0 < "cðd=aÞ1=2
k2�0ða=dÞ1=ðnþ1Þ "0 > "c

(
: ð5Þ

For later convenience, we further rewrite Eqs. (1) and (5)
in the following forms:

~� ¼ ~" for ~" < 1

~"1=n for ~" > 1

�
; ð6Þ

~�M ¼ k1ða=dÞ1=2 for ~"0 < ðd=aÞ1=2
k2ða=dÞ1=ðnþ1Þ for ~"0 > 1

(
: ð7Þ

Here, we have introduced the renormalized variables
~� ¼ �=E"c, ~�M ¼ �M=�0, ~" ¼ "="c, and ~"0 ¼ "0="c. In these
representations, the forms are universal in the sense that they
are independent of "c.

The relations derived above are universal in a different
sense in that they are independent of the geometry of the
voids. This is because, in the derivation, we tacitly assumed
that the modulus E is independent of d when introducing "0
in Eq. (4), which can be justified only by comparing systems
with the same E value. In general, the elastic modulus E is
dependent on the geometry of voids in a complex manner:
Even if the modulus E is expressed, for example, simply as
E ¼ �Es (ϕ is the volume fraction of the material and Es is
the modulus of the material without voids), ϕ depends on the
detailed geometry of the voids. This implies that if we deal
with systems with different E values, the relations will
become geometry-dependent, containing extra d-depend-
ences originating from the d-dependence of E in the
definition of "0 in Eq. (4). In other words, even though the
above relations are valid only for comparing systems with the
same E value, the relations are universal or geometry
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Fig. 1. (a) Stress σ normalized by the modulus E vs strain normalized by
the crossover strain "c, employed in the present calculations. (b) Schematic
illustration of the meshwork with a crack of half-size a for numerical
calculations before (left) and after (right) a stretch with strain "0. The initial
system size is L, the mesh size is d, and the maximum stress in the system
is �M.
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independent. For further understanding of this point, the
paragraph below Eq. (8) and the Appendix should be helpful.

To confirm such geometry-independent relations in numer-
ical calculations, we use the simplest model on the basis of
the following principle. Since the relations are conjectured
through geometry-dependent arguments, if we can confirm
relations in a specific geometry, we can expect that the
relations will be valid irrespective of the detailed geometry.

In other words, we consider that materials with voids can
be characterized by a length scale corresponding to the
typical size of voids, d, and that the simplest minimum model
describing such systems will be the lattice model of lattice
size d. This is because we can draw the above conjecture
(proved below by the lattice model) simply by using a very
general property in a geometrically independent manner: the
material in question has a certain length scale below which
the continuum description fails. Accordingly, if we can show
the conjecture in a specific (and the simplest) geometry, we
can expect that the scaling structure will be the same for the
lattice model and for materials with voids whose largest
length scale is d.

3. Simulation Model

In order to confirm the crossover of the scaling exponent
from the linear value 1=2 to the nonlinear value 1=ðn þ 1Þ
suggested in Eq. (5), we perform numerical calculations for a
two-dimensional meshwork with mesh size d [Fig. 1(a)]. This
system is composed of nodal points. Each nearest-neighbor
pair is connected with a spring of length d as in Ref. 29 but
the loading mechanical property of the springs is governed by
Eq. (1). Note that we consider below only stretched equi-
librium states so that no unloading curves are necessary. In
the calculations, we keep the bulk elasticity fixed while
changing the mesh size following the assumption of a fixed E.
The trick useful for this is explained in the Appendix.

We introduce a line crack of size a propagating in the x-
direction in the nodal system by removing springs located at
the crack [Fig. 1(a)]. We then stretch the system at both
edges in the y-direction with a fixed strain of magnitude "0
and obtain the equilibrium state by a relaxation method.29) As
expected, the maximum force fM appears in the spring located
at the crack tip [see Fig. 1(a)]; the maximum stress is defined
as �M ¼ fM=d.

For numerical convenience, we fixed the crack size a to
40d0 (for the condition a � d to be satisfied) and changed
the mesh size d from d0 to 2d0 to 4d0, whereas the system
size L was fixed to 400d0 � 400d0 (for the condition L � a
to be satisfied). Here, d0 is the unit length used for the
numerical calculations. In fact, physically, it is not compul-
sory to introduce the quantity d0. It is physically equivalent to
have fixed the system size L and introduced a crack of size
a ¼ L=10, and made calculations for three different values of
mesh size d (i.e., L=400, L=200, and L=100), in order to
investigate the effect of a change in the void size on the
maximum stress appearing in the system. (At the same time,
we can consider that we have changed the ratio a=d while
fixing d, with L always much larger than a).

4. Results

The crossover of the scaling regimes for the maximum
stress is confirmed in Fig. 2(a), for n ¼ 2 and "c ¼ 1, where

we plot the normalized maximum stress �M=�0 as a function
of the normalized mesh size d=a for three values of the
remote strain "0. When the value of "0 is large, as in
Fig. 2(a1), the calculated data are close to a straight line and
the negative of the slope of the line corresponding to the
scaling exponent is close to 1=ðn þ 1Þ ¼ 1=3, as predicted in
Eq. (5), with k1 ¼ 0:817. When the value of "0 is small, as in
Fig. 2(a2), the calculated data are again close to a straight
line and the exponent obtained in the same way is close to
1=2, as predicted, with k2 ¼ 0:867. When the value of "0 is
between the values of those in (1) and (2), the data are not
perfectly on a straight line, as in Fig. 2(a3); the slope defined
by the first two points are smaller than the slope defined by
the second and third points. This slight difference in the
slope can be understood as follows. When d=a is smaller
(the first two points), the condition for the linear regime
"0 < "cðd=aÞ1=2 is less satisfied, which explains why the
slope defined by the first two points is smaller, i.e., closer to
the nonlinear regime, than the slope defined by the second
and third points in Fig. 2(a3).

The universal feature, or the independence of the results
from "c, seen in Eqs. (6) and (7), is confirmed in Fig. 2(b).
In the figure, the crossover of the scaling regime for the
maximum stress is demonstrated as a function of the
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Fig. 2. (a) Normalized maximum stress �M=�0 as a function of normalized
mesh size d=a for three values of remote strain "0: (1) 26, (2) 2�6, and
(3) 2�2. Here, the crossover strain "c is 1 and the nonlinear exponent n
is 2. The slopes �1=2 and �1=3 correspond to the predictions of Eq. (5).
(b) Crossover of the scaling exponent for the maximum stress �M=�0 as a
function of the remote strain "0="c. The crossover is expressed as the
universal curve for three different values of crossover strain "c.
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renormalized remote strain "0. We see here that the crossover
curves collapse onto a single master curve. The scaling
exponent takes the linear value of 1=2 when ~"0 < ðd=aÞ1=2,
whereas it approaches the nonlinear value of 1=3 when
~"0 > 1; between the two regimes, there is a transition region.
Note that ðd=aÞ1=2 is approximately 0.1 because we
determine the slope from the first two points (d=a ¼ 1=40
and 2=40) in the plots, as we did in Fig. 2(a). This explains
why the transition region starts at approximately ~"0 � 0:1.
We have also verified the crossover for n ¼ 3 through
numerical calculations, with the exponent changed from 1=2
to 1=4.

Equation (7) thus confirmed suggests that even if the strain
is not so large and the tip stress is governed by the linear
scaling law (or by the nonlinear law when the strain is below
the failure threshold), the alleviation of the concentrated
crack-tip stress by the cutoff scale d is advantageous in terms
of fatigue tolerance.

5. Discussion

Here we introduce an inherent material strength, �s, in
such a way that the material starts to break when the local
stress exceeds �s. This stress is a material constant on a scale
much smaller than the void size d. In other words, �s is the
inherent material strength of a sample without voids of the
same material. In view of the nonlinear Griffith formula,
Eq. (2), this critical stress �s can be identified with the failure
stress �F of the material in the absence of macroscopic
cracks, namely, �s � Eð�=Ea0Þ1=ð1þnÞ where a0 (� d) is the
size of Griffith flaws, i.e., the size of defects which act as a
small crack in a system without macroscopic cracks. Note
here that, as shown explicitly in the Appendix, in our
numerical model where the bulk elasticity is fixed, the stress
�s is the same for different d values.

The introduction of the inherent material strength �s allows
us to obtain a formula for strength. The assumption of the
stress–strain relation in Eq. (1) tacitly requires the condition
�s > E"c (otherwise the material is simply linear). Thus, the
crack tip stress at the moment of failure is always given by
the nonlinear expression �M � �0ða=dÞ1=ðnþ1Þ. This, with the
failure condition (set by the definition of �s) �M � �s,
provides the following expression for the failure strength:

�F � ðd=aÞ1=ðnþ1Þ�s for a � d: ð8Þ
We stress here that Eq. (1) is robust in the following two

aspects. (I) As seen from the above derivation, this formula is
valid for almost any nonlinear material only if the stress–
strain relation near � ¼ �s is approximately described by the
relation � � "1=n. In fact, this formula was derived and
confirmed using a simpler nonlinear model ("c ¼ 0),29,31) but
here we find that the same formula is obtained for the present
more practical nonlinear model. In addition, in Eq. (1), we
consider a piecewise nonlinear stress–strain relation com-
posed of two scaling regimes, but Eq. (5) is not limited to this
case; even if a piecewise relation is composed of several
scaling regimes, as has been discussed for spider silk,12)

Eq. (5) is valid only if the final scaling regime near � ¼ �s is
described by � � "1=n. In other words, high nonlinearity in
a large stress–strain region is very important for achieving
a high material strength. (II) This formula is also valid
irrespective of the geometry of voids when comparing

materials with the same E value [for the reason described
in the Appendix]. In other words, if we change the void size
while keeping the porosity m � 4�r3=3 at a fixed value (m is
the number of voids per unit volume of the material), then,
although a series of materials with different r (but with the
same porosity) have the same bulk elasticity, the ones with
larger voids are stronger. In fact, Eq. (8) is compatible with
previous results for open-cell and closed-cell solids,21) and
this equation extends the previous results to nonlinear cases in
which voids are not necessarily described by open or closed
cells: if, in their formulas, we neglect the d-dependence
originating from the d-dependence of the bulk elastic
constant, their formulas reduce to the linear version of Eq. (8).

The scaling law in Eq. (8) for the failure stress �F implies
the following design principles for strong materials with
voids: it is advantageous to make the void scale d and the
nonlinear index n larger if the bulk elastic modulus is fixed to
a constant value. Note that the optimized size for the mesh
size d should be determined from some other practical
requirements for the material. For example, if the material
needs to be transparent, d should be slightly smaller than the
wavelength of light in question.

The strength discussed here is for samples with macro-
scopic cracks (not for samples without macroscopic cracks
whose strength is dictated by small flaws or defects) when the
samples possess a largest characteristic void size that is much
smaller than the macroscopic cracks. In other words, we
consider that the development of macrocracks is practically
unavoidable in a material and further consider that under
what conditions we can use the material with macroscopic
cracks safely without leading to failure, as usually done in
fracture mechanics. In such a case, the cutoff of the crack-tip
stress singularity occurs on the largest characteristic scale of
the voids, and our suggestions are not undermined by the
existence of nanometer-size flaws, which are not removable
in practice.

We expect that our result will be applicable to real ductile
materials with voids to some extent, although there is a
natural limitation because the effect of energy dissipation is
neglected in our demonstration. Here, we point out that the
nonlinear stress–strain relation employed above is frequently
mentioned as the simplest model for plastic materials. When
the index n is large enough, stress increases linearly with
strain to a certain point above which stress becomes constant,
and this constant value can be regarded as a yield stress. In
this sense, our result may provide a useful starting point even
when we consider the strength of ductile materials with voids.

The design principles confirmed here in a rather robust
way might be useful, to some extent, even for plastic nets
used in anticlogging, buildings, bridges, and space structures,
especially because our results are independent of the detailed
geometry of voids and applicable to many practical nonlinear
models. The principles might suggest how the combination of
voids and nonlinear elastic property found in nature provides
high strength. Connections with biological materials, how-
ever, should be explored in the future, which may require the
involvement of biologists.
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Appendix

The inherent stress �s should be generically unchanged
when the void size is varied with the bulk elasticity fixed
even in the network model. We first explain this for the two-
dimensional (2D) case and then for the three-dimensional
(3D) case.

A.1 Two-dimensional case
We first consider a specific example, in which a 2D system

of mesh size d is composed of nonlinear springs of natural
length d that break when the applied force on them exceeds
fs. Then, the failure occurs when the maximum force
fM ¼ �Md with �M � �0ða=dÞ1=ðnþ1Þ matches fs. By compar-
ing this balancing equation with Eq. (8), we see that �s scales
as fs=d because �0 in the balancing equation is identified
with �F.

We now multiply the mesh size by m to obtain a system
with a larger mesh size md. The new system is composed
of springs of natural length md. To retain the same bulk
elasticity, each spring of length md should be a composite
spring comprising m2 original springs of length d, i.e., m
serial connections of m parallel connections of springs of
length d. In this way, the original system with mesh size d
and the new system with mesh size md are composed of the
same number of original springs of natural length d. Thus, the
two systems are expected to have the same bulk elasticity.
This is mathematically shown to be true in Ref. 29 (and is
explicitly shown below for the 3D case).

For the composite springs of length md, each of which
is m serial connections of m parallel connections of the
original spring of length d, the critical force for failure
should be generically given simply by mfs. Then, the
failure occurs when the maximum force �Mmd with �M �
�0ða=ðmdÞÞ1=ðnþ1Þ matches mfc. This means again that �s
scales as fs=d, which is independent of m. These arguments
justify the naive assumption.

A.2 Three-dimensional case
The above arguments can be generalized for the 3D system

of mesh size d. To understand this, we first check that, even
in the 3D case, the same bulk elasticity can be kept when the
mesh size is increased to md by using the same number of
original springs of length d. Here, the original spring is a
nonlinear spring following the relation, F ¼ k�x1=n, where F
is the applied force at the ends and �x is the elongation.
Since the number of nodal points is decreased from the
original number N3 to ðN=mÞ3 by the increase in the mesh
size, a composite spring of length md should be a composite
of m3 original springs, i.e., a composite of m serial
connections of m2 parallel connections in the 3D case. When

this composite spring is stretched by �x, the original springs
of length d are all stretched by �x=m so that the force Fc

at the ends of the composite spring is given by Fc ¼
m2kð�x=mÞ1=n. The stress defined by � � Fc=ðmdÞ2 should
be expressed as � ¼ �"1=n with the strain given by " ¼
�x=ðmdÞ. Then, a simple mathematical manipulation leads to
an m-independent elastic modulus, � ¼ kd1=n�2. This justifies
that the same bulk elasticity is maintained upon increasing
the mesh size by using the same number of original springs.
Then, we readily understand in the 3D case that �s scales
as fs=d

2, which is again independent of m [e.g., fM ¼ �Md
or �Mmd in the 2D case is replaced with fM ¼ �Md

2 or
�MðmdÞ2]. In this way, Eq. (8) with constant �s for materials
with the same bulk elasticity is also valid in the 3D case.
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