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Abstract – We study drag force acting on an obstacle in granular media, focusing on a high-
velocity region where only a few direct studies are available. The granular media are two-
dimensional and consist of small-sphere particles. A larger-disk obstacle moves in the medium at
different constant speeds. The drag force is found to be proportional to the square of the velocity.
We explain the observed relations by developing original scaling arguments and by demonstrating
a clear data collapse. As a result, we conclude that the friction we observed is physically different
from a hydrodynamic inertial friction, which has been discussed in dilute granular flows and in
impact experiments. The high-velocity drag friction observed in this study may be attributed to
another mechanism, where the formation of the dynamical force chains plays a crucial role.

Copyright c© EPLA, 2010

Introduction. – Understanding and modeling of gran-
ular materials, which can significantly contribute to indus-
tries, agriculture and construction [1], are highly nontrivial
and a plenty of efforts has been made in many different
fields of physical sciences [2–4] including geophysics [5]. An
important issue is the drag force exerting on an obstacle in
a dense granular medium. Creep motions of an obstacle,
related to jamming transitions, have been studied exten-
sively [6,7] where the drag force is found to be independent
of [8,9] or logarithmically dependent on [10,11] velocity.
Oppositely, extremely high-velocity motions of the order
of 1m/s have been also studied actively in the context
of impact experiment where drag force in dense granu-
lar media can be constructed indirectly (the speed of the
obstacle changes during the impact) [12,13]. Contrary to
these two extreme velocity ranges, motions of an obstacle
in a relatively high-velocity range of the order of a few
100mm/s have been less studied although the indepen-
dence from velocity of the drag force is reported under a
strong influence of gravity [14].
In this paper, we directly study a drag force at relatively

high velocities (∼ a few 100mm/s) in dense granular flows.
By using a horizontally placed two-dimensional cell, the
dynamics is virtually free from the influence of gravity. We
find a squared velocity dependence of the drag force. This
seems at sight similar to the hydrodynamic inertial force
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discussed in the impact experiments [12,13] or in dilute
granular flows [15–17]. However, we conclude that, unlike
in the previous observations, the drag force we observed
is not a hydrodynamic one and reflects the effect of non-
binary collisions. This conclusion is drawn by developing a
simple and original scaling argument based on the spirit of
the Bagnold theory [18,19] and by demonstrating a good
agreement between our theory and experiment.

Experiment. –

Experimental details. To measure the drag force, we
fabricated a transparent cell from two acrylic plates of
thickness 3mm, motivated by [20]. These plates are sepa-
rated in parallel by spacers of thickness 2mm at the four
edges to make a cell of length Lx = 430mm, of width
Ly = 120mm and of depth 2mm (fig. 1(a)). We filled this
cell with commercial particles of aluminium oxide and a
disk obstacle. The average diameter of the particles 2d
and the thickness of the obstacle are both slightly smaller
than the cell thickness. The disk obstacle is actually a
commercial washer of radius R with a hole of radius R0
at the center. We changed the radius R from 10 to 15mm
with keeping the 2D packing fraction φ of smaller parti-
cles to a constant value 0.797. Here, φ is estimated as
φ= πd2N/S, where N (roughly around 10000) and S are
the number of particles and area allowed for particles
(i.e., S =LxLy −πR

2), respectively; note that in the
present case the 2D granular system consists not of disks
but of less voluminous spheres. The alumina balls are
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Fig. 1: Experimental setup. (a) Two-dimensional cell made
of acrylic plates filled with an obstable (washer) and smaller
spheres. (b) The cell mounted on a slider with an obstable
inside the cell connected to a force gauge through a non-
extensible fishing line. The cell can move in the arrow direction
at different constant speeds while the force gauge is fixed to the
desk.

polydispersed; the maximum radius (of randomly selected
100 particles used in the experiments) was 1.13mm and
the minimum 0.93mm with the mean and polydispersity
Δ being 1.05mm and 0.042, respectively. Here, polydis-

persity is defined as Δ=

√

〈d2〉− 〈d〉
2
/〈d〉 with 〈d〉 denot-

ing the average of the radii of the granular particles. We
attached the cell on a moving stage of a slider (EZS3D060-
K, Oriental Motor) which allows us to slide the cell at
different constant speeds; an obstacle is connected to a
force gauge (FGP-0.5, NIHON DENSAN SIMPO) via a
fishing line (which is almost non-extensible) to monitor
drag force exerted on the obstacle (fig. 1(b)); we move
the cell on a fixed table with the disk obstacle fixed while
we shall discuss the movement of the disk obstacle in the
frame fixed to the (moving) cell in the following, if not
specified.

Results of drag force measurements. A typical result
for the relation between drag force and elapsed time
obtained from a single-continuous-drag experiment at a
fixed speed is given in fig. 2(a). The force fluctuates
tremendously but when such results from 10-drag experi-
ments at the same speed are superposed as in fig. 2(b) the
average force-time curve exhibits less fluctuations and a
clear stationary region with a well-defined average, except
the initial transient region and the final region; in the final
region the force increases due to the right edge of the cell.
When we plot the average F thus obtained for a fixed

disk radius R as a function of the velocity V , we find
unexpectedly smooth curves as in fig. 3, in spite of severe
fluctuations in fig. 2. Here and hereafter F denotes the
average of drag forces. These non-linear relation between
F and V indicate that this medium is non-Newtonian.
By plotting this average force F as a function of V 2 in

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  500  1000  1500

F
 [
N

]

t [ms]

 0  500  1000  1500

t [ms]

average

 (a)

 (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

F
 [
N

]

Fig. 2: (Colour on-line) Drag force exerted on an obstable
of radius 10mm as a function of time at moving velocity
200mm/s. (a) Result obtained from a single-drag experiment.
(b) Superposition of the results from 10-drag experiments with
the average curve which exibits less fluctuation with a distinct
stationary regime (indicated by an arrow) in the middle.

fig. 3(b), we can clearly confirm the relation

F = F0+αV
2, (1)

where F0 corresponds to the intersect of the straight lines
with the vertical axis in fig. 3(b).

Theory. –

Scaling arguments. The law (1) thus established
experimentally can be explained as follows. Mimicking the
basic idea of Bagnold, we regard the dynamical component
of the drag force, F −F0, as change in the momentum
of the obstacle per time where the momentum change is
caused by collision with smaller particles:

F −F0 = νMΔV. (2)
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Fig. 3: (a) Plots of the average drag force as a function of
moving velocity for different radii of the obstacle (R = 10, 11,
12, 13 and 15mm) where each data point is obtained from
ten-drag experiments as in fig. 2(b). Here and hereafter, the
notations, R15, R13a, R13b, and so on denote the data for
particles of radii R= 15mm and of R= 13mm for two data
sets, and so on. (b) Plots of the average drag force as a function
of squared velocity using the same data in (a), which establishes
eq. (1).

Here, M and ΔV are mass and average velocity change
(per one collision) of the obstacle while ν is number of
collision per time:

M = 2πρ(R2−R20)d, (3)

ν = 2RV φ/(πd2), (4)

where ρ is the density of the obstacle. Thus, if ΔV scale
as V we immediately obtain F −F0 ∼ V

2, as expected.
This last point can be justified at the level of scaling

law if we consider a linear collision between the obstacle
of mass M and another “particle” of mass m with the
initial velocities V and v and with the final V

′

and v′.

When the restitution coefficient is e, from the momentum
conservation, we obtain

ΔV ≡ V −V ′, (5)

=
m(1+ e)

m+M
(V − v) . (6)

Thus, when V ≫ v as we can directly observe in our
experiments, ΔV certainly scales as V as desired. Note,
however, that, if the mass m were much smaller than the
mass M , although the velocity change ΔV would scale as
V in eq. (6), the former would become much smaller than
the latter; the situation would be similar to a granular
Brownian motion [21] and the drag force would be linear
in the velocity. Below, we show that the massm is actually
of the same order as the mass M .

Dynamical phase separation: percolated cluster. We
now discuss the order of m in the present case, or, size
of the “particle” with which the obstacle of mass M
collides in a single collision. We could simply identify this
particle with a single alumina particle of radius d, which
means m= 4πd3ρ′/3 with ρ′ the density of the smaller
particle. However, we insist here that in the present
case another consideration is appropriate: each time the
obstacle collides with a small particle the particle is
connected via force chains to other surrounding particles,
and such force chains develop around the obstacle only in
a region of size of the obstacle. Thus, though nontrivial, we
assume that m scales asM (ρ/ρ′ is a constant of the order
of unity): at each collision (with the rate ν), the obstacle
collides with a transient percolated cluster of only available
length scale R (and of mass M).
As a matter of fact, if we observe the movement of small

particles around the obstacle in the coordinate fixed to the
obstacle, we clearly notice the particle medium is separated
into two domains or phases.
In the first region which is within a distance around

R from the obstacle, small particles move incessantly and
randomly due to collisions around the obstacle. In this
region particles develop dynamically changing force chains
to form the percolated cluster.
In the second region which is outside of the first region,

small particles homogeneously move at constant velocity
(i.e. not moving at all in the coordinate fixed to the cell
forming static force chains).
The dynamical force chains are cut at the boundary of

the two regions or phases (at a distance around R from
the obstacle). Only particles within the percolated cluster
region join the collision. In other words, the medium is
dynamically separated into two phases.

Comparison with the experiment. This nontrivial
assumption is strongly supported by our experimental
data. When we do assume m≃M we have ΔV ≃ V so
that eq. (1) can be cast into the following scaling law with
a numerical coefficient k:

F/F0− 1 = (kV/V0)
2. (7)
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Fig. 4: Rescaled plot of fig. 3(a). All the data in fig. 3(a)
collapse onto a master curve as predicted by eq. (7). The curve
representing the master curve corresponds to k= 0.638.

Here, the characteristic velocity V0 is given by

V 20 =
F0d

4φρR (R2−R20)
. (8)

Indeed, data in fig. 3(a) collapse on to a single master
curve representing eq. (7) in fig. 4, justifying the nontrivial
assumption. Here, the numerical constant k can be esti-
mated as 0.638, of the order of unity as expected.
It is possible that the size of the percolated cluster

depends not only on M but also on φ. This means the
coefficient k can be a function of φ. This point is now
under study.

Image analysis of the percolated cluster. To justify
further the above picture of percolated cluster we
performed a series of image analysis. We visualize the
region where dynamical force chains are connected with
the granular particles within the first shell around the
obstacle in the following way. Here, the thickness of the
first shell is defined as the diameter of particles, 2d. We
created a binary (black and white) image by subtracting
two snapshots separated by the time during which the cell
moves by the distance 2d (in the frame fixed to the desk).
As a result, the regions in which the particles move and
do not move become black and white, respectively. The
size of the black region thus visualized gives a measure of
the percolated cluster.
A typical example of the binary image is shown in

fig. 5(a). From the black area πR2
c
we estimate an effective

radius Rc of the cluster. The radius of the largest circle
in fig. 5(a) corresponds to Rc in this case. Although the
shape and size of the black area fluctuate significantly as
the bare forces in fig. 2, the average (of 30 such binary
images for a fixed drag velocity) is again well defined.
Such an average radius Rc is plotted in fig. 5(b) as a
function of the obstacle (outer) radius R for a fixed drag
velocity V = 100mm/s. This demonstrates that the cluster
size scales as the obstacle size. The slope of the dashed
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Fig. 5: (a) A binary image suggesting the size of the percolated
cluster by a black region. The two smaller circles indicate the
size of the washer (obstacle). The largest circle stands for the
size of the cluster estimated from the black area. The thickness
of the black vertical bar on the right corresponds to the first-
shell thickness, 2d. (b) The average size Rc of the percolated
cluster as a function of the obstacle size R.

line fitting the data is 1.69, of the order of the unity, as
expected. This analysis predict that the factorm/(m+M)
in eq. (6) is nearly a constant about 0.7.
The fitting line intersects with the vertical axis around

at Rc = 10mm. This indicates that when the size of the
obstacle become of the same order of granular particles
there still remains a strong velocity correlation within a
distance of several times of particles around the obstacle.
This indication is consistent with the previous studies
on velocity correlations in granular media which do not
contain larger obstacles (see, e.g., [22]).

Discussion. –

Comparison with previous studies. A direct study on
drag friction at a constant speed in a two-dimensional
geometry [14] reported no velocity dependence of the
drag force in a velocity region similar to our experiment.
However, in this experiment the intruder was fixed at
depth of 500mm; the experiment was performed under
a strong influence of gravity. As a result the drag friction
was understood by a Coulombic friction saturated to the
Janssen’s value [23,24], which is independent of velocity.
On the contrary, the gravity effect is completely removed
in our experiment so that the drag force in our experiment
must have a different physical origin; the different velocity-
dependence in [14] is not surprising but natural.
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The squared-velocity dependence of the drag force
has been discussed in simulations on dilute granular
media [15–17] and also in impact experiments [12,13].
However, if we compare the squared velocity term in
these previous studies and that in the present study, we
find that their physical origins are rather different. In
the previous studies, this term has been understood as a
hydrodynamic inertial force of granular medium. Accord-
ingly, the proportional coefficient scales as cross-sectional
area. In three-dimensional (3D) cases this implies a force
term ρ′R2V 2 (with R the size of a spherical obstacle)
as indicated in impact experiments [12,13]. This inertial
friction in the present two-dimensional (2D) case implies
a force term ρ′RdV 2 as implied in [15–17]. This is
different from the non-hydrodynamic force proposed
in eq. (7), which essentially scales as ρ(R3/d)V 2 in
2D (and ρ(R5/d3)V 2 in 3D). As a matter of fact,
the order of magnitude of the hydrodynamic friction
ρ′RdV 2 is too small to explain our experimental results;
the hydrodynamic and non-hydrodynamic frictions
can be easily distinguished experimentally because
the difference (or ratio) of the order of (R/d)2ρ/ρ′ is
large enough. Furthermore, we confirmed that the data
cannot be collapsed via the hydrodynamic friction.
Our friction is non-hydrodynamic as demonstrated in
fig. 4.
The hydrodynamic friction is expected when collision

is essentially binary. Indeed, this can be confirmed from
eq. (2) because the factorm/(m+M) in eq. (6) is replaced
by m/M for binary collision. In the dilute limit or in
the short collision time limit, this binary assumption
should be almost exact. Accordingly previous results have
been explained well by the hydrodynamic friction. Note
that in the impact experiments, compared with ours, the
granular size is much smaller and the velocity range is
much larger. Both factors tend to reduce the collision time,
almost validating the binary assumption. However, when
the collision time becomes longer we expect the granular
nature of the medium is enhanced and the dynamical
force chains formed on the time scale of collision come
into play a significant role in the drag friction. The
present results imply that there is a regime in which
these chains percolated in the whole fluidized region. In
such a non-hydrodynamic case, the momentum transfer
per collision becomes larger, compared with the binary
or hydrodynamic case. This is the reason why the order
of magnitude of the friction in our case is much larger
compared with the hydrodynamic friction but our friction
still scales as squared velocity.

Other possible contributions to friction force. We
confirmed that the friction between the disk-obstacle
surfaces and cell plate and that between the thread and the
cell are negligible compared with the typical drag force in
question. This is confirmed by comparing drag forces with
and without small particles. The latter force is negligible
to the former.

The other possible unwanted friction is the friction
between particles and top cover or the bottom plate of
the cell. To experimentally confirm that this friction is low,
we also did experiments with covering the surface of the
cell plate with a Teflon sheet. This significantly changes
the friction coefficient of the plate. However, we find no
difference in the obtained data to confirm the low friction.
The reason of this low friction is understood as follows.

We use light sphere particles instead of cylindrical disks
used, e.g., in [11,25]. Sphere balls contacts with plates
only by a point (while disks by a plane). In addition, the
force acting on the contact point is weak because particles
have light weight and the cell depth is slightly larger than
particle diameter 2d. As a result the balls are very easy to
roll on the plate causing only little friction with the plates.
Due to this low friction, we can put a lid to avoid

particles pop out from the cell in the high-velocity region
of interest. This implies small movements in the direc-
tion perpendicular to the cell plane although severely
restricted. However, we can neglect this in the present
context. This is because our theory is based on momen-
tum change in the drag force direction and the movement
in this direction is independent of that in the direction
perpendicular to the cell plane. This is guaranteed by the
low friction between particles and plates.

Importance of homogeneity in polydispersity. As
explained below we can fix the homogeneity in poly-
dispersity of balls along the trail of the percolated
cluster during multiple drags. This homogeneity is very
important for reproducibility. Indeed, although φ is fixed
in this study, if we change (homogeneous) polydispersity
the force-velocity curves are shifted (e.g., compare R10a
and R10b in fig. 3(a)). However, when renormalized using
F0 all the data collapse on to the same curve, as seen in
fig. 4.

Way of fixing (homogeneous) polydispersity. We can
fix (homogeneous) polydispersity on the trail by perform-
ing a set of multiple-ten-drag experiment for a given R
and for various V without opening the top cover. This is
because the segregation after multiple ten drags is negli-
gible. We pull manually the resetting line (see fig. 1(a)) to
the left to move the obstacle back to the original position
and gently tap the cell for homogenization, before starting
a new drag. This procedure guarantees the reproducibility
of the data, indicating that the (homogeneous) polydisper-
sity is fixed well on the trail. However, the polydispersity
generally changes once we open the top cover and refill the
contents even if φ is fixed; in such a case the reproducibil-
ity is no longer guaranteed.

Slow-velocity regime. Our present study concentrates
on a high-velocity region; eq. (7) does not capture the
full velocity dependence. As a matter of fact, at velocities
smaller than 100mm/s the force-velocity data points
deviate off below the curve extrapolated from the curve in
the larger velocity region (not shown in fig. 3). In addition,
this granular medium always exhibits a finite yield stress
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at V = 0 whose value is roughly half of F0. We have yet
to study in detail the small velocity region, including
dependence of F0 and of the yield stress on volume fraction
or on polydispersity.

Conclusion. – We have demonstrated that an aver-
age drag force on an obstacle in a 2D granular system
follows eq. (7) through a distinct data collapse with an
aid of simple but nontrivial arguments. The arguments
give an insight into the granular nature of the friction.
A moving obstacle creates a fluidized region around itself
causing a dynamical phase separation. Inside the fluidized
region dynamical force chains are developed on the time
scale of collision. Due to the force chains collision to a
single small particle (i.e., binary collision) is difficult to
happen. Rather, the obstacle collides with a percolated
cluster connected by the force chains at each collision.
This non-hydrodynamic nature reflecting the existence of
force chains predicts a drag force scaling as ρ(R3/d)V 2

in the present 2D case (and ρ(R5/d3)V 2 in 3D), differ-
ent from the inertial force (ρ′RdV 2 in 2D and ρ′R2V 2

in 3D) implied in the previous studies. It is this non-
hydrodynamic force that explains our experimental results
quite well. The drag force transition from the hydrody-
namic to non-hydrodynamic squared-velocity dependent
friction should be an important future problem for funda-
mental understanding of the granular dynamics.
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