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Abstract. Recently, two regimes of viscous friction on textured surfaces were proposed in the context of
penetration of liquid film into the texture (EPL 79, 56005 (2007)): the Poiseuille and Stokes regimes. With
this idea on viscous friction, we theoretically discuss instabilities on a liquid film on textured surfaces when
the film is forced to move with external forces. When a film recedes due to a pressure drop, we find scaling
laws for instabilities to be checked in future experiments. When a circular film expands due to centrifugal
force we find that the expanding film is stable against rim fluctuations (within the linear stability analysis)
with its radius determined by a simple equation. Our discussion sheds light on the curvature of the front of
the moving liquid film on textured surfaces and how the film thickness is kept fixed to the texture height
on textured surfaces, aspects which have not been discussed in previous studies.

PACS. 68.08.Bc Wetting – 47.20.Ma Interfacial instabilities (e.g., Rayleigh-Taylor)

1 Introduction

It has become possible to make regular patterns on nano
to submicron scale on substrates. Characterization of
wettability of such surfaces has been actively studied
(e.g., [1–7]). One important issue has been wetting tran-
sition of a drop deposited on such surfaces, e.g., from the
Cassie state (in which air is trapped between the drop bot-
tom and the surface) to the Wenzel state (in which liquid
penetrates and replaces the air in the Cassie state); some
aspects on this are discussed, for example, in [8–16].

Another issue of interest should be imbibition: liquid
spontaneously penetrates into the texture just as we put
a piece of tissue paper in contact with a coffee. Recently,
the dynamics of such imbibition on surfaces textured with
forest of pillars of height h has been studied [17] where
the radius of a pillar and the interspacing between two
adjacent pillars are b and l, respectively (see fig. 1).

The experimental results of imbibition were consistent
with the assumption of two regimes of viscous friction:
Poiseuille and Stokes regimes. The former appears when
the film thickness is small (h < l) where we can regard
that a thin film of thickness h (equal to the pillar height)
is advancing on a textured surface: velocity distribution
is parabolic with velocity zero at the substrate bottom
and at the maximum on the film surface as in a typical
Poiseuille flow. The latter Stokes regime is appropriate
when the film thickness is large (h > l) where we can
regard that the film of thickness h feels friction from each
cylindrical pillar with the pillars well separated (b ≪ l).
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Fig. 1. Geometry of textured surface: top view on the left and
side view on the right.

In this paper, based on these two regimes of friction,
we discuss instabilities associated with a liquid film whose
thickness is kept fixed to h due to pillars, via linear-
stability analysis with simple scaling arguments to clarify
the physics behind the mathematical analysis. As a result,
we find some predictions which might be tested in future
experiments.

We think that the important message of the experi-
ment in [17] is the fact that, at least for explanation of
macroscopic dynamics, we can neglect local deformation
of the film surface around pillars (except for a moving
edge) with pillar height h determining the thickness of the
film. This point is examined in more detail by providing
original arguments in the next section.

However, as becoming clear in the next section, this
simplification occurs only when the pillar height h and the
inter-distance l are larger than the pillar radius b and when
these parameters are smaller than the capillary length. In
addition, the dimension of the film area considered is much
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Fig. 2. Microscopic views on a film on a textured substrate.
(a) A film pinned by the top edges of pillars. (b) A film not
pinned by the edges.

larger than the texture scale where a continuum descrip-
tion of the texture is possible. In fact, these parameters
in [17] are summarized as b = 2μm, h = 10–20μm, and
l = 10μm, while the penetration length of the film is of
the order of millimeters, and thus the required conditions
are satisfied approximately (since the surface tension γ
of the oil used in [17] is about 20mN/m, the important
quantity pc introduced below is a few kPa). We remind
here that the analysis of the present paper is applicable
only when these conditions are met.

2 Microscopic deformation of the film surface

We consider a film on a textured substrate pinned by the
top edge of pillars (fig. 2a). At the edge the angle θ can
take an arbitrary value in the range

θE < θ < θE + π/2, (1)

where θE is the contact angle, without violating the local
force balance at the contact line, i.e., Young’s relation,

γ cos θE = γS − γSL, (2)

where γ, γS , and γSL are the interfacial energies between
liquid-air, solid-air, and solid-liquid, respectively. A more
global force balance (in the quasi-static limit) of the por-
tion of liquid enclosed by the dashed line and the liquid
surface in fig. 2a leads to a relation

2πbγ cos θ = l2Δp, (3)

when the inside pressure is p0 − Δp (the effect of gravity
can be neglected since h is much smaller than the capillary
length). In other words, when the inside pressure is the
same as the outside pressure p0 the surface should be flat,
i.e., θ = π/2, where the liquid-air surface area becomes
minimum. In addition, the pressure difference Δp should
be in the range pc cos θE < Δp < pc sin θE , where

pc = 2πγb/l2, (4)

because of eq. (1). If the pressure difference is outside
of the above range, the film cannot exist because the
quasi-static force balance cannot be attained.

When a film is not pinned at the edge of pillars as in
fig. 2b the global balance is possible only when Δp = pc

while the surface energy decreases as the pinning height
gets closer to the maximum height (i.e., the pillar height,
h). This is because if we compare panels a) and b) of
fig. 2, the extra solid-air surfaces of the top part of pillars
are covered and replaced by solid-liquid interfaces with
the replacement energy γSL − γS per unit area, which is
negative when the contact angle θE is less than π/2 due to
Young’s relation in eq. (2). Thus, the film should be pinned
at the edge of pillars to minimize the surface energy.

The pressure difference Δp can be interpreted as the
Laplace’s pressure jump γC, where C is the curvature of
the surface. In this case the curvature of the surface is
given by 2πb cos θ/l2, which is at most 2πb/l2. The small
dent δ in the middle between the pillars (fig. 2a) scales as
Cl2 ∼ b. The film thickness on the textured substrate can
be assumed to be h, because h ≫ b.

When we take the effect of contact hysteresis into ac-
count, eq. (1) is changed to θr < θ < θa + π/2, where
θr and θa are the receding and advancing angles, respec-
tively, but the physical essence remains intact. In the fol-
lowing, however, for definiteness and for simplicity, we as-
sume that the contact angle is zero where a microscopic
wetting film is expected ahead of the macroscopic contact
line and, thus, there is no effect of contact angle hysteresis.

In summary, 1) the film is pinned at the edge of pillars,
2) the surface of the film adjusts its microscopic shape by
changing θ to be compatible with the pressure difference
Δp, 3) the average film thickness can be still assumed to
be h, and 4) the inside pressure p of the film should be in
the range

p0 − pc < p < p0, (5)

otherwise, the film cannot exist (note that a film of molec-
ular thickness can exist).

These statements suggest that the curvature at the
advancing front of a film on a textured substrate should
be given by

C0 = 2πb/l2 (6)

and the boundary condition at the advancing front of the
film should be given by

p = p0 − pc at the advancing front. (7)

Here, the advancing front implies that the pressure de-
creases as we approach the front along the moving direc-
tion and the pressure drop drives the film. As a matter
of fact, in the previous theory of penetration the pres-
sure at the moving front can be shown to be p0 − pc (see
appendix A), which is consistent with the condition in
eq. (5).

Based on these consideration and on the support by
the previous work [17], we assume that the film on tex-
tured surfaces is fixed to a constant h in the following
macroscopic discussions.

3 Instability of a receding film on textured

surfaces

We consider a liquid film of thickness h on a textured
surface on the horizontal x-y plane receding in the “+x”
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direction (the pillar’s bottom and top are located at z = 0
and z = h, respectively): at the initial time t = 0, the liq-
uid occupies the region x > 0 and the liquid-air interface
(receding edge) placed at x = 0 is moving in the “+x” di-
rection with speed U . The instability of the receding edge
(the liquid-air interface) is the problem. Experimentally,
this can be realized by absorbing a liquid film on a tex-
tured surface at one end in a controlled way (we do not
have to attain a time-independent U ; see sect. 5).

We can deal with this situation by extending the dis-
cussion of Saffman and Taylor [18]. We discuss below only
physical essences through naive scaling arguments, while
a complete mathematical derivation is given in sect. 5. We
stress here that the purpose of the discussions below is not
to present a fully justifiable derivation, but rather, to pro-
vide a possible physical interpretation of the mathematical
analysis in sect. 5.

Let us first discuss viscous friction associated with liq-
uid motion. Around the pillars (at least at places remote
from pillars), the flow generates velocity gradients over
a distance h, as in the Poiseuille flow inside a thin film,
which results in a friction between the moving liquid of
thickness h and the bottom solid surface. This (average)
friction f1 acting on the bottom of a film element of vol-
ume hdxdy scales as

f1 ∼ −(ηU/h)dxdy (8)

(if pillars are not too dense).
Near a pillar, a film element is dragged by pillars; a

pillar causes a friction force to the fluid just as a sphere
in a flow does. For such a Stokes flow, velocity gradients
exist over a distance around b (the pillar radius) and the
friction of the order of ηU/b per unit area takes place on
the surface 2πbh of a pillar, from which we obtain a force
f2 acting on the film element of volume hdxdy scaling as
the quantity, (ηU/b) · bh multiplied by the number of the
pillars in the element dxdy/l2:

f2 ∼ −(ηUh/l2)dxdy. (9)

More exactly, the force per unit length of pillar in this
Stokes friction, −ηU , comes with an extra numerical pref-
actor which contains weak logarithmic dependence on
physical parameters: e.g., in the case of an infinite cylinder
the factor contains a term ln[η/(bUρ)] with ρ the liquid
density, in the case of a finite cylinder of length h a term
ln(h/b), and in the case of regularly spaced (with a dis-
tance l) cylinders of infinite length a term ln(l/b) [19,20].

Comparing these two friction forces (f1/f2 ∼ l2/h2) we
find two distinctive regimes: 1) For short pillars (h < l),
the Poiseuille friction at the film bottom is dominant and
2) for long pillars (h > l) the Stokes friction from pillar
surfaces is dominant.

The friction f1 + f2 acting on the film element of vol-
ume hdxdy is balanced by a force, [p(x)− p(x + dx)]hdy,
originating from the pressure difference in the flow direc-
tion, i.e., in the x-direction (we are interested in time
scales where the initial inertial dynamics is over). We find
Darcy’s law in the two regimes

	U = −κ	∇p, (10)

where

κ =

{

h2/(3η), h < l,

∼ l2/η, h > l.
(11)

In the case of the original discussion by Saffman and Tay-
lor, they considered a Hele-Shaw cell of thickness h where
the coefficient 1/3 in eq. (11) is replaced with 1/12 be-
cause in the present case the appropriate boundary condi-
tion for velocity at the film upper free surface is not v = 0
but ∂v/∂z = 0.

Once Darcy’s law is established, we can discuss the
physical origin of instability when a small disturbance is
created at the liquid-air interface: the small disturbance on
the receding edge line tends to be enhanced under Darcy’s
law. To understand this, let us neglect the pressure jump
at the liquid-air interface originating from surface tension
and clarify the effect of the viscous force. When there is no
disturbance on the receding edge line described by x = 0
at t = 0, the pressure inside the liquid at the position x is
simply given by

p = p0 − (U/κ)x, (12)

where p0 and U/κ are the atmospheric pressure and a
pressure gradient ∂p/∂x (which is a constant for x), re-
spectively. By considering the case when the interface is
deformed in the shape given by x = ε cos(2πy/λ) at t = 0,
we find, for example, at y = 0, that the receding edge is
located at x = ε and the pressure on the left (p0) is higher
than that on the right (p0 − Uε/κ) so that the receding
edge tends to move in the right direction; at y = λ/2, on
the contrary, the receding edge located at x = −ε and
the pressure on the left is lower than on the right so that
the receding edge tends to move in the opposite direction;
the sinusoidal receding edge curve is unstable and tends
to be more deformed because of Darcy’s law. Note that,
if the film is advancing (in the “−x” direction) instead
of receding (in the “+x” direction), this effect of viscos-
ity tends to stabilize the disturbance and thus instability
occurs only for receding films; for example, since for an
advancing film (in the “−x” direction) U is in the oppo-
site direction, i.e., the minus sign in eq. (12) is replaced
with the plus, at y = 0, the advancing front is located at
x = ε and the pressure on the right (p0 + Uε/κ) is higher
than that on left (p0), so that the advancing front tends
to move in the left direction: the advancing front tends
to be stabilized. This is the reason why instability is not
observed in the previous experiment [17].

Contrary to viscosity, capillarity always tends to sta-
bilize the disturbance because any deformation of the line
implies an increase of the liquid-air interface of height h
(whose interfacial energy is γ). The interface element lo-
cated from y = −λ/2 to y = λ/2 is subject to surface
tension of magnitude γh at the two edges (of length h)
whose x component scales as −γhε/λ and tends to move
in the left direction; the adjacent elements tend to move in
the opposite direction such that the receding edge tends
to return to a straight line. In terms of pressure, this ten-
dency is evaluated as ∼ γε/λ2 (the force ∼ γhε/λ acting
on one element divided by the area ∼ hλ), which scales as
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the Laplace pressure ∼ γε/λ2 as expected. Note that the
contribution from the second curvature of the order of the
film thickness h is unchanged before and after this small
deviation ε, so that we can neglect this contribution from
the present argument.

Comparing these two factors, viscosity which tends to
enhance the disturbance and surface energy which tends
to suppress the disturbance, we have a criterion for insta-
bility in terms of pressure: Uε/κ � γε/λ2, which reduces
to

λ � λc, (13)

with

λc ≡
(

γ

ηU

)1/2

L; L =

{

h, h < l,

l, h > l,
(14)

where L is h in the Poiseuille regime and l in the Stokes
regime. If the wavelength is longer than λc, the distur-
bance is enhanced while it is suppressed in the opposite
case.

In reality, small disturbance is not created in a simple
form such as x = ε cos(2πy/λ), but in a complex form
expressed by superposition of these simple forms, out of
which the mode with the fastest growing speed survives.
This fastest mode gives the characteristic length scale to
be compared with experiments. By doing the standard lin-
ear stability analysis, we can determine the fastest mode
as, for example, λ∗ = 2π

√
3λc, in the Poiseuille regime (see

sect. 5). We can confirm explicitly, at least for examples
given in this paper, that the onset length of the insta-
bility λc and the wavelength of the fastest mode λ∗ are
different only with a numerical pre-factor; for experimen-
tal confirmation of the scaling relations, both quantities
are identical. Because of this reason we identify λc with
λ∗ in this paper.

Equation (14) is one of the scaling laws to be com-
pared with experiments. For typical parameters (e.g.,
η = 10mPa s, γ = 20mN/m, U = 0.2mm/s, and h or
l ∼ 10μm), λc is of the order of mm.

In the present case of receding film, the pressure in-
side the liquid decreases as we go away from the receding
edge in the x-direction, so that it may be possible that
pillars are no longer able to keep the thickness h consid-
ering the discussion in sect. 2; this may happen x = xc,
with Uxc/κ ≃ pc. Typical value of xc ≃ 2πbγ/(ηU) for
h ∼ l is around 0.1m where gravity comes into play (e.g.,
η = 10mPa s, b = 2μm, γ = 20mN/m and U = 0.2mm/s)
so that this effect does not affect the analysis of instability
in sect. 3 (and similarly in sect. 4 below).

4 Instability of a circular growing hole in a

film on textured surfaces

In this section, we consider a case where the straight-line
interface in the previous section is replaced with a cir-
cular interface. In this case, we find the same Darcy’s
law. On the r-θ plane the pressure acting on a film el-
ement of volume hrdθdr in the r-direction is given by

p(r)hdθ − p(r + dr)h(r + dr)dθ + pdθhdr (with the last
term being the contribution acting on the two sides
(of area hdr) of the volume element), which reduces to
−(∂p/∂r)drhdθ; the force balance, for example, in the
Poiseuille regime is given by

−(∂p/∂r)hdθ − (ηU/h)rdθdr ≃ 0, (15)

which reduces to eq. (10). In a similar way, we recover
eq. (10) also in the Stokes regime.

When we describe the initial circular interface by r =
R at t = 0, due to the incompressibility of the liquid the
flow flux Q = 2πrUh should be a constant for spatial
coordinates; the velocity U is now dependent on spatial
coordinates: by noting that U at r = R in this case can
be expressed as Ṙ, we obtain

U = Ṙ
R

r
=

Q

2πrh
, (16)

with Q and h independent of spatial coordinates. From
eqs. (10) and (16), the pressure inside the liquid at a po-
sition r is simply given by

p = p0 +
Ṙ

κ
R log

R

r
, (17)

where p0 is the atmospheric pressure, if we neglect the
pressure jump at the liquid-air interface originating from
surface tension. Note that in the ensuing analysis R(t) can
be a general function of t (see sect. 5). Let us consider a
case when the interface is deformed in the shape given by
r = R + ε(t) cos(nθ) at t = 0, where the wavelength λ is
defined by

λ = 2πR/n; (18)

for example, at θ = 0, the receding edge (in the “+r” di-
rection) is located at r = R + ε and the pressure on the

inside (p0) is higher than that on the outside (p0 − Ṙε/κ,
i.e., eq. (17) at r = R + ε), so that the receding edge
tends to move in the outside direction; at θ = π/n, on the
contrary, the receding edge located at r = R − ε and the
pressure on the inside is lower than on the outside, so that
the receding edge tends to move in the opposite direction;
the sinusoidal receding edge curve is unstable and tends
to be more deformed because of Darcy’s law. The surface
energy tends to stabilize the disturbance as before. The
tendency in terms of pressure γε/λ2 in the previous sec-
tion is unchanged with λ = 2πR/n, when λ ≪ R (i.e.,
n ≫ 1). Thus, just as before, viscosity tends to enhance
the disturbance and surface energy tends to suppress the
disturbance; comparing these effects in terms of pressure,
we have the same criteria for instability: Ṙε/κ ≃ γε/λ2,

which results in eq. (14) with regarding U as Ṙ; from
eq. (18) the fastest mode is given by an integer closest to

nc ≃
(

ηṘ

γ

)1/2
R

L
≃

(

ηQR

γ

)1/2
1

L
, (19)

where L is h in the Poiseuille regime and l in the Stokes
regime. Note that the number of fingers scales as eq. (19).
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The above expression is valid for n ≫ 1 (see sect. 5); for
the previous typical parameter set, nc ≃ 10 when we start
with an initial radius R ≃ 1 cm.

We might consider that dewetting of a liquid film on
a textured surface would correspond to the situation con-
sidered here but this may not be correct; according to
the standard theory of dewetting film [1], the moving part
of the film is essentially a rim around the circular hole
created as a result of accumulation of dewetted film, so
that virtually no Poiseuille flow is developed in the film
far from the rim. However, the instability of the dewetting
rim on the textured surface should be surely an important
problem.

5 Instability of spin coating on textured

surfaces

In this section we consider instability of a circular inter-
face which is forced to expand by centrifugal force due to
rotation of the textured surface. We start discussing this
case of spin coating in the Poiseuille regime, which is gen-
eralized immediately for the Stokes regime. Although in
sects. 3 and 4 we limit ourselves to scaling arguments,
in this section we give a more mathematical account:
the linear-stability analysis of spin coating discussed here
practically includes the cases discussed in sects. 3 and 4
as shown below.

The density and viscosity of air are neglected against
those of the liquid (ρ and η); we consider only the flow of
the liquid. The liquid follows the Navier-Stokes equation
in the frame rotating with an angular velocity vector 	ω

ρ

(

D	v

Dt
+ 	ω × 	v + 	ω × (	ω × 	r )

)

= −	∇p + η∇2	v. (20)

In the lubricant approximation the first inertial term on
the left-hand side is neglected compared with the second
viscous term on the right-hand side. The second Coriolis
term on the left-hand side is neglected against the third
centrifugal term because the ratio ∼ v/(ωr) is small when
the velocity in the rotating frame 	v is small compared
with the rotational speed rω. With this set of approxi-

mation, we find that the height-averaged velocity 	U satis-

fies 3η	U/h2 = ρω2	r − 	∇p, with 	∇p being z-independent;
in the standard treatment of spin coating [21] or rotat-
ing Hele-Shaw cell [22,23] all the quantities are made z-
independent by taking average when needed. This is gen-
eralized for spin coating on textured surfaces both in the
Poiseuille and Stokes regimes by using κ in eq. (11)

	U/κ = ρω2	r − 	∇p. (21)

The velocity in eq. (21) can be generated from a potential
	U = 	∇φ, with

φ = −κ

(

p − 1

2
ρω2r2

)

. (22)

The equation of the conservation of the flow ∂h/∂t +
	∇ · (h	U) = 0 reduces to an incompressibility equation for

the averaged velocity 	∇ · 	U = 0, because h is assumed to
be a constant equal to the pillar height. In other words,
the velocity potential φ satisfies the Laplace equation

∇2φ = 0, (23)

where the boundary condition is determined from the con-
tinuity of the normal velocity and the pressure jump at the
moving front of the liquid:

	n · 	U = U0, (24)

p = p0 + γC, (25)

where U0 and C are the normal velocity and the curvature
at the moving front; the curvature C is given, for example,
by the sum of the curvature in the r-θ plane and that in
the r-z plane: C = Crθ + Crz.

For a circular moving front of radius R, the interface
velocity is given by U0 = Ṙ where the dot stands for the
time derivative; the local shape of the actual interface may
be delicate, but, since our basic equation (21) tacitly as-
sumes that physical quantities are z-independent, we seek
a solution with a simplest boundary shape which is natural
on a macroscopic scale: the unit vector normal to the front
is given by 	n = (1, 0, 0) in the (r, θ, z) coordinate and the
curvature is given by C = C(0) ≡ 1/R+ Crz. Here, to be
compatible with the arguments deriving eqs. (6) and (7),
the second curvature Crz should be set as

Crz = C0, (26)

which is larger than 1/R, so that eq. (25) reduces to eq. (7)
as desired [24].

The solution to the Laplace equation satisfying the
present θ-independent boundary condition is given in the
form φ ≡ φ(0) = A log(r/R) + B, where A and B are
determined by the boundary conditions; we find

φ(0) = ṘR log
r

R
+ κ

(

ρω2R2

2
− p0 + pc

)

. (27)

Since A has to be a constant for spatial coordinates, the
front velocity Ṙ can be expressed as

Ṙ =
Q

2πhR
, (28)

where Q and h are space-independent. The pressure distri-
bution for a circular interface r = R is given from eqs. (27)
and (22)

p(0)(r) = p0 − pc −
ρω2

2
(R2 − r2) +

Ṙ

κ
R log

R

r
. (29)

Practically, to maintain the constant film thickness h
with the film expanding, we need to feed liquid; for ex-
ample, we place a tube of radius rc at the center of the
film and control the central pressure to a value p0 + Δ
(note that from the arguments in sect. 2, the maximum

of Δ should be zero). In such a case, the front velocity Ṙ
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in eqs. (27) and (29) is not a direct controlling parame-
ter but is passively determined by the boundary condition
p(0)(rc) = p0 + Δ, which determines Ṙ,

Ṙ

κ
R log

R

rc
=

ρω2

2
(R2 − r2

c ) + pc + Δ. (30)

The expression for p(0)(r) in eq. (29) with Ṙ given
by eq. (30), which contains a constant term and terms
proportional to +r2 and to − log r, has a minimum

r∗/R =

√

Ṙ/κ

ρω2R
, (31)

if r∗/R < 1 (in a practical parameter range where R/rc

is 10 to 100, we can assume r∗ > rc). However, if this is
the case, the minimum should be lower than p(0)(R) =
p − pc, which is not allowed if we remind the discussion
in sect. 2; pressure inside the film cannot be lower than
p−pc. This leads to a condition, r∗/R > 1, or equivalently,
the condition

Ṙ/κ > ρω2R. (32)

In summary, the pressure deviation, p(0)(r) − p0,
monotonously decreases from the maximum Δ at r = rc

to the minimum −pc at r = R.
At this point, the relevance of eq. (26) can be shown

from another point of view: this equation must hold for the
present theory to be consistent with the previous theory.
When ω = Δ = 0 and rc � R (and R is large), the velocity
given in eq. (30) should recover the result obtained in the
penetration theory discussed in appendix A from view-
points different form the original work [17]. This is guar-
anteed by the above setting in eq. (26); putting R = rc +η
in eq. (30), we obtain

η̇η/κ = pc, (33)

which reduces to eq. (A.4) with eq. (A.6). Note also here
some remarks on differences from previous studies in [26].

Let us now consider the case when the circular moving
front r = R is deformed to r = ζ ≡ R + ε(t)einθ; the

unit normal vector 	n ∝ 	∇(r − ζ) is given to first order
in ε by 	n = (1,−∂θζ/R, 0) in the (r, θ, z) coordinate; the
normal velocity of front is given to first order in ε by
U0 = 	n · (dζ/dt, 0, 0) ≃ dζ/dt. In this way, we obtain

U0 = Ṙ + ε̇einθ. (34)

A possible solution to the Laplace equation now with a
θ-dependent boundary condition is given in the form φ =
φ(0) + D(r/R)neinθ + E, where D and E are determined
by the boundary condition. We find D from eq. (24)

nD = Rε̇ + Ṙε. (35)

Under this deformation of the rim (r = ζ), the curva-

ture Crθ is modified from 1/R and calculated as |	∇ · 	n|
while Crz is unchanged. From eq. (35) and eq. (25), we
obtain E = 0 and the equation

ε̇

ε
= − Ṙ

R
(n + 1) + κn

[

ρω2 − γ

R3
(n2 − 1)

]

. (36)

In the Poiseuille regime, this reduces to eq. (10) of ref. [23].

For large n, with the wave number q = n/R, we find

ε̇

ε
∝ −Ṙ/κ + ρω2R − γq2. (37)

The scaling structure of the right-hand side reflects that
of eq. (21): the first, the second and the third terms on
the right-hand side of eq. (37) stand for the effects of vis-
cosity, centrifugal force, and surface tension, respectively;
when the right-hand side is positive, the mode is unstable;
the centrifugal force is the source of destabilization while
viscosity and capillarity tend to suppress the instability.
Note, however, that Ṙ in eq. (37) is not a parameter con-
trollable in experiment but is determined by centrifugal
force and surface tension as seen in eq. (30). In this sense,
the dynamics is determined essentially as a competition
of centrifugal and surface forces.

The fastest-growing mode, for example for large n, can
be found by minimizing the right-hand side of eq. (36)
with respect to q after replacing R with n/q. As a mat-
ter of fact, however, from eq. (32), the left-hand side of
eq. (37) is always negative: the instability is not expected.
The physical reason is that, in order to keep the film thick-
ness constant, the rotation speed cannot be too large; the
effect of rotation which likes instability cannot be stronger
than that of capillary which likes stability; as a result, in-
stability disappears. However, when we put a plate on top
of a texture surface to fabricate a Hele-Shaw cell with a
forest of pillars inside, instability caused by rotation can
appear; in such a case the pressure tuning is attained not
by the pillar’s top edges but by the two plates of the cell:
in practice no upper bound like pc exists in such a case.

The expression for velocity in eq. (30) might be able to
be compared with experiments (although it is not directly
related to instability). As already discussed, this repro-
duces the penetration laws derived in [17] when the rota-
tion is absent. For a typical parameter set (ρ = 103 kg/m3,
ω = 10Hz, R = 1 cm, γ = 20mN/m, η = 10mPa s,
b = 2μm and h or l ∼ 10μm), the second capillary term
on the right-hand side is dominant and the front velocity
Ṙ is around 0.3mm/s. As understood from eq. (32) which
can be expressed as Δ + pc > ρω2R2(log R/rc − 1/2),
we cannot observe the regime where the rotation effect is
dominant because there the film cannot keep its thickness.
However, this implies that if we try to increase the rota-
tion speed, the disk radius R is tuned to a critical value
R = Rc determined by

ρω2R2
c =

Δ + pc

log Rc/rc − 1/2
. (38)

In addition, this critical disk thus obtained is stable as seen
above. This point would be interesting to be compared
with experiments; e.g., the critical radius of the disk gets
smaller with increase in the angular velocity [27] (note
that a film of molecular thickness can be developed outside
the critical radius).

The above discussion up to eq. (36) actually includes
the situation in the previous sections. The situation in
sect. 4 corresponds to the case where the centrifugal term
is absent and the sign of the velocity Ṙ is reversed (in
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the case of spin coating the liquid occupies the region r <
R, while in the case of sect. 4 the region r > R); here,
the source of instability is viscosity which is opposed by
capillary

ε̇

ε
≃ Ṙq/κ − γq3 (39)

and the fastest mode is given by

3γ

(

2π

λ

)2

= Ṙ/κ, (40)

from which we obtain eq. (14) for the circular geome-

try (with U replaced with Ṙ), or eq. (19). The case in
sect. 3 corresponds to the case where ω = 0, R → ∞ and
Q → ∞, with Ṙ = Q/(2πhR) to be a finite value U to

find eq. (39) but with Ṙ replaced with U , which leads to

eq. (14). Note that in eqs. (36) and (37), Ṙ and R can be

time-dependent; we do not have to keep the velocity Ṙ to
be time-independent in experiments, as mentioned before.
Likewise, U in sect. 3 is not necessarily time-independent.

6 Conclusion

We considered instability of liquid film moving on textured
surfaces in different situations. We discuss the instability
of receding film both when the receding edge is a straight
line and a circular curve; we find scaling laws to be checked
in future experiments in eqs. (14) and (19).

When the film is expanding via centrifugal force, we
determine nontrivial boundary conditions by the original
arguments given in sect. 2, which are summarized below.
As a result, we find that instability is suppressed and find
that the film may attain a critical state for strong rota-
tion speed, for which we propose an equation to be checked
with experiments in eq. (38). The physical reason for the
disappearance of instability is as follows: the physical ori-
gin of a constant film thickness is capillary force which
opposes instability and if centrifugal force which likes in-
stability exceeds capillary force as we go away from the
center the film terminates; as a result inside the film the
effect of the capillary force always exceeds that of the cen-
trifugal force so that instability is suppressed.

In sect. 2, we could give insights on the curvature of
the edge of the moving film and the origin of constant film
thickness: the film thickness is kept fixed because the top
edges of pillars lift up the free surface of the film against
the pressure drop inside the film; since the maximum lift-
up force a single pillar can apply on the liquid surface is
2πbγ cos θ, with 0 < θ < π/2 when the contact angle is
zero, the force for a forest of pillars on the textured sub-
strate where the pillars are arranged in the square lattice
with lattice constant l should be in the range between 0
and pc = 2πbγ/l2 per unit area; the pressure p inside
the film pinned by the pillars should be in the range,
p0 − pc < p < p0; in other words, the film on the tex-
tured surface should disappear when the inside pressure
goes outside of this range.

In this paper, we have assumed that the effect of pin-
ning and depinning from each pillar is not important to
explain the macroscopic viscous dynamics on textured sur-
faces because this fact is established experimentally [17];
however, theoretical understanding on this is an important
topic, which will be discussed elsewhere.

K.O. is grateful for David Quéré for useful discussions. He also
thanks MEXT, Japan for KAKENHI.

Appendix A.

To estimate the curvature of the edge of the film moving
on the textured surface, we discuss a penetrating film. We
start from the classical Washburn law describing the dy-
namics of the capillary rise to see that the curvature of the
front (which is known in this simple case) can be recovered
by comparing derivations from different viewpoints. The
first viewpoint is pressure; when a liquid column is ad-
vancing from a liquid bath in the z-direction via capillary
tube of radius ρ, the lubricant equation ∂p/∂z = η∇2U is
dimensionally estimated as

γC

z
≃ η

U

ρ2
, (A.1)

where C is the curvature at the front; since U = dz/dt,
eq. (A.1) results in the well-known Washburn law

z2 = Dt, with D ≃ γCρ2/η; (A.2)

here, we know C = 2/ρ from a geometrical condition when
the contact angle at the front is zero but this can be “de-
rived” by comparing the above result with that by the
second derivation. The second derivation is from the ener-
getic viewpoint; dissipation mainly occurs in the moving
liquid column of volume πρ2z; dissipation per unit time
can be estimated as πρ2z · η(U/ρ)2 for the liquid column,
which should be balanced by the surface energy gain per
unit time, dE/dt = (γSL − γS)2πρdz/dt = 2πγρU be-
cause the contact angle is assumed to be zero; from the
balancing equation we obtain, writing the correct numer-
ical coefficient,

z2 = γρt/(2η); (A.3)

comparing this with eq. (A.2) we rediscover the curva-
ture 2/ρ. (The third viewpoint is force; the moving liquid
column is lifted upwards at the top by a surface tension
with a force f1 = 2πργS , while dragged downwards at the
bottom with a force f2 = 2πργSL; the net capillary force
f1 − f2 = 2πργ should be balanced by a viscous force
8πη(U/ρ)ρz (note that pressures on the liquid column at
slightly above the top and at the bottom are both p0),
which leads to again eq. (A.3).)

For a penetrating film on a textured substrate,
eq. (A.1) based on the pressure viewpoint is replaced with

γC

z
≃ ż/κ, (A.4)

so that we obtain

z2 = Dt, with D ≃ γκC. (A.5)
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From the energetic viewpoint, dissipation per unit length
of the moving film of volume zh can be estimated as per
unit time, zh · η(U/L)2, with L defined in eq. (14), which
should be balanced by the surface energy gain per unit
time; the energy gain for displacement of the front by dz
is given as dE = γdz + r(γSL −γS)dz, with γ = γS −γSL,
where the roughness parameter r is given by (2πbh+l2)/l2:
the change per unit time is given by dE/dt ≃ 2πbhγU/l2;
then, balancing the dissipation and energy, we obtain the
result obtained in [17] from the force viewpoint: z2 ≃ γκt ·
2πb/l2; comparing this with eq. (A.5), we obtain

C ≃ 2πb/l2 (A.6)

in both the Poiseuille and Stokes regime. The third force
viewpoint is discussed in the original paper [17].

This result for the curvature for the film on the tex-
tured surfaces can be interpreted in the following way.
At the advancing front the pressure is lower than the at-
mospheric pressure p0 by the amount pc = γC and this
pressure drop drives the liquid film.
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