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Strength and toughness of bio-fusion materials

Ko Okumura

In nature, there are many strong and tough biomaterials that result from the fusion of soft and hard elements. These materials

include nacre, crustacean exoskeletons and spider webs. Here, we review previous studies on such bio-fusion materials,

emphasizing the importance of simple models to gain a physical understanding of the emergence of strength and toughness from

these structures. Thus, a simple understanding obtained through biologically inspired models provides useful guiding principles

for the development of artificial tough composites by mimicking biomaterials.
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INTRODUCTION

Various animals and plants in nature have developed strong and tough
materials, often with magnificent hierarchical structures.1–4 Nacre, a
glittering layer found on the surface of pearls or inside certain
seashells, is one such example: hard layers are glued together by thin
soft adhesive sheets,5 which results in remarkable strength and
toughness.6 In the exoskeleton of crustaceans, helically oriented soft
fibers are embedded in a hard matrix, which achieves excellent
mechanical performance.7 There are many porous and strong
materials in nature, such as the stereom in adult skeletal plates of
echinoderms or holothurians,8 the skeleton of a particular sponge,9

and the frustules of diatoms.10

In these examples, a common strategy is the fusion of soft and hard
elements (porous materials are considered an extreme case). Spider
webs are such an example, with the web consisting of hard radial
threads and soft spiral threads.
In this review, together with a discussion of references on each

subject, we approach some of these examples of soft–hard fusion
materials found in nature using simple models. As a result, we obtain
scaling laws and gain a clear physical understanding of the mechanical
advantages of the model composite structures. Such a simple under-
standing could be useful because they may provide guiding principles
to develop artificially strong composite materials.

NACRE

Nacre has been well-studied as a representative of tough and strong
biomaterials exhibiting magnificent hierarchical structures,11–14

together with, for example, bone,15–17 and has led to a number of
bioinspired materials.18–23 In the layered structure of nacre, hard
plates of aragonite are adhered together by thin and soft layers of
proteins between the thick and hard plates:11 the fracture surface
energy of nacre was shown to be a few thousand times as high as that

of a monolith of the hard element.6 In recent years, more detailed
substructures have been found.24–26

There has been a controversy regarding the elastic behavior of
nacre’s soft element. The estimation of the modulus ranges from
4 GPa6 to 100 Pa.27 However, the soft protein-based elements have
been observed to behave like gels.5 A typical value of the elastic
modulus of such gels could be approximately 1MPa,28 which is
consistent with the recent observation in Barthelat et al.26

Various mechanisms for nacre’s toughness and strength have been
proposed on the basis of experimental observations, such as stepwise
elongation,29 thin compressive layers,30 rough layer interfaces,31

mineral bridges32 and wavy surfaces of the plates.26

Various theoretical considerations have also been made, which
include (1) elastic models30 based on analytical solutions28,33 and
scaling arguments,34,35 (2) viscoelastic models,36 (3) micromechanical
models,37 (4) several numerical models such as finite-element
models,26,38,39 a fuse network model40 and a model with a periodic
Young's modulus.41

Below, we focus on a simple model of nacre.28 In the model, simple
scaling laws were obtained to predict the correct order of the fracture
energy of nacre based on analytical solutions.28,42

Simple layered model of nacre
In the simplified view, the layered structure consists of thick and hard
layers, as well as thin and soft layers, as indicated in Figure 1. The
model is specified by the hard and soft linear elastic moduli (Eh and
Es) and the thicknesses of soft and hard layers (dh and ds) that satisfy
Eh44Ed, dh44ds. We consider cases in which a macroscopic line
crack much larger than the layer period (d= dh+ds) propagates
perpendicular to the layers as in Figure 1 in the limit of small ε,
where ε is defined by ε= d/ds ·Es/Ehoo1. This factor is indeed smaller
than unity in the case of nacre. Typical values are as follows:
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dh= 0.5 μm, ds/dh, Eh= 50 GPa and Es= 1MPa (the soft layers are like
gels).5 This set gives ε~1/10 000.

Scaling laws for stress concentration and crack shape
The leading-order contribution in terms of ε of the anisotropic energy
of the simple model of nacre results in an anisotropic Laplace
equation. For the equation, two boundary problems, illustrated in
Figures 1a and b, have been solved analytically in Okumura and de
Gennes28 and Hamamoto and Okumura,42 respectively. The full
analytical solutions simplify near a crack tip to give scaling laws. For
the boundary condition illustrated in Figure 1a, the line crack is
located at y= 0 and xo0 under no tensile stress. Under a finite stress
the crack opens, for example, the upper crack surface is obtained as a
deformation field at y= 0+ and xo0, where y= 0+ denotes the limit
approaching y= 0 from above. Similarly, the stress field at y= 0 is
branched into two solutions (the stress for x40 is positive and that for
x40 is negative). Under the boundary condition in Figure 1a, the
deformation and stress (the yy component) at y= 0+ near a crack tip
at the distance r from the tip are given by

uðrÞCu0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr= ffiffi

e
p Þ=L

q
ð1Þ

sðrÞCs0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ðr= ffiffi

e
p Þ

q
ð2Þ

where u0 is the magnitude of remote stress at the edges and σ0 is
defined as σ0≃Eu0/L. Here, the notation X≃Y suggests that X and Y are
equal at the level of scaling laws, that is, equal except for a
dimensionless numerical coefficient. The above scaling laws are valid
in the limit,

dsoodhodooroo
ffiffi
e

p
L ð3Þ

In Equations (1) and (2), the stress concentration is mitigated by
the small factor ε1/4, whereas the deformation near the tip is enlarged
by the large factor ε− 1/4, compared with the non-layered case.
Hamamoto and Okumura42 shows that Equations (1) and (2) are

valid in a wide range. They are also correct for the boundary condition
in Figure 1b in the ‘large’ crack limit a44

ffiffi
e

p
L; when a≃L and even

when aoL, only if a44
ffiffi
e

p
L for small ε, the ‘large’ crack limit is

appropriate, which implies a wide applicability of this limit.

Fracture strength and toughness of nacre
The failure stress of nacre (in the large crack limit) is obtained as

sfCe�1=4
ffiffiffiffiffiffiffiffiffiffi
d=a0

p
sh ð4Þ

where σh is the failure stress for a monolith of the hard material,
showing the large enhancement factor e�1=4

ffiffiffiffiffiffiffiffiffiffi
d=a0

p
for the strength

(d44a0). This equation is derived by matching two stresses: (I) an
intrinsic failure stress of the hard layer of thickness ≃d without any
macroscopic cracks but with small defects of size a0, which act as small
cracks of size a0, and (II) the stress in Equation (2) estimated at r= d,
below which the continuum description is no longer possible (the
maximum stress that appears near the tip should be cutoff in a
continuum model).
This matching condition also leads to the fracture surface energy of

nacre:

GcCe�1=2ðd=a0ÞGh: ð5Þ
where Gh is the toughness of the monolith. The large enhancement
factor ε− 1/2(d/a0) found here for the toughness is estimated to be
approximately 1000 for the typical values quoted above and is
comparable to the classic experimental result.6

Guiding principles
From Equations (4) and (5), we observe some guiding principles for
soft–hard layer composites. For example, when defect sizes in the hard
layers are comparable to the thickness of the soft layers (a0≃ds), large
values of the factors dh/ds and Eh/Es are advantageous.

Finite-element calculations
The above model of nacre was examined using a finite-element
model.43 As shown below, this finite-element study shows that the
scaling predictions given above are robust.
In the finite-element calculations, we examined the above scaling

laws in the ‘large’ crack limit, which requires the conditions

dsoodhodooroo
ffiffi
e

p
LooaooLx ð6Þ

The sample half-length in the x direction Lx is assumed infinite in
the derivation of the analytical solutions; however, it is set to a finite
value in the simulations.
This set of conditions is numerically demanding because there are

many length scales that should be well separated. The parameters were
set as follows: dh= 10ds, the full dimension of the sample 2L= 2Lx= 10
000ds, the half-crack size a= 495ds− 530ds, ε= ε0 (= 1/6500), 6.5ε0
(= 1/1000), 6.5ε0 (= 1/100) and 1. The case ε= ε0 mimics nacre and
ε= 1 corresponds to a monolith of the hard element.
The above parameter settings satisfy only marginally or even slightly

violate the set of conditions in Equation (6). The condition
ffiffi
e

p
Looa

is violated for ε= 65ε0 because
ffiffi
e

p
LCa in this case. The condition

dooroo ffiffi
e

p
L allows only a small range for r especially for ε= 65ε0:

the scaling predictions are guaranteed only in the region 10dsoor-
oo50ds for ε= 65ε0.
As shown in Figure 2, the stress concentration in nacre (ε= ε0) is

significantly reduced compared with a monolith of the hard element
(ε= 1). In addition, the numerical results provide a simple physical
understanding of the stress concentration reduction: the deformation
in the hard layers, which governs the stress, is reduced in exchange for
large deformation in the soft layers,44 as demonstrated in Figures 3a
and b (This mechanism is similar to that found in the shear-lag
model).45

The predicted scaling laws are shown to be valid and robust through
the expected collapse shown in Figures 3c and d. In addition, the

Figure 1 Two boundary conditions solved analytically for a semi-infinite
plate. (a) Semi-infinite plate of nacre with a semi-infinite crack propagating
in the direction perpendicular to the layers. (b) Semi-infinite plate of nacre
with a crack of the finite size 2a. In both cases, the magnitude of the strain
at the edges at y=±L is fixed as u0 (the upper and lower ends of the plates
are subject to non uniform tensile stress, which is implied by the four thick
arrows). The stress at the fracture surfaces is set to zero.
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assumption invoked above when deriving Equation (4), that is, the
stress should be cutoff at a crack tip at approximately r= d, is also well
confirmed in Figure 4a. Furthermore, a mechanism of crack arrest by
the soft layers is demonstrated in Figure 4b; In Figure 4b, the tip stress
increases as the tip propagates from a soft layer to hard layers and
decreases when the tip arrives at the next soft layer, implying that
crack tips tend to stop at a soft layer.

EXOSKELETONS OF CRUSTACEANS

In the cuticle of the exoskeleton of lobsters, which is a tough and
strong layer, bundles of chitin-protein fibers are embedded in a
calcium carbonate matrix. The bundles are oriented parallel to each
other at the surface of the cuticle, and the orientation rotates
toward the inside. However, compared with the well-studied
nacre, the hierarchical structure, which is universal in crustaceans,46

Figure 2 Stress distribution in a sample with a line crack in the center, obtained by the finite-element calculation. (a) Monolith of the hard material
contained in nacre. (b) Model of nacre consisting of layers of hard and soft materials. Stress concentration near the crack tips are significantly reduced in
(b). Produced from the data in Hamamoto and Okumura.43
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Figure 3 Crack shape and stress distribution around the right tip of the horizontal line crack obtained from the finite-element calculation. (a) Crack shape
near the right crack tip located at r=0. The deformation is more enhanced by soft layers as ε decreases. (b) Stress distribution near the right crack tip
located at r=0. The stress is more reduced as ε decreases. (c) and (d) Collapse of the data in (a) and (b), respectively, by the scaling laws, as predicted by
the theory. Reprinted from Hamamoto and Okumura43 © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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and its mechanical properties have been studied only recently.7,47

Artificial biomineralization has been studied to mimic the
structure.49–51 Here, we review a simple model of the helical
structure,52 in which only the leading contribution is considered in
the limit of a small parameter ε′.
The exoskeleton of crustaceans is covered with three cuticle

layers: the epicuticle, exocuticle and endocuticle layers, from the
surface to the inside. The epicuticle is a waxy layer that lacks a special
structure; however, the exo- and endocuticles possess a remarkable
helical structure consisting of bundles and matrix, as already discussed.
The exo- and endocuticles can be regarded as a composite of soft

and hard elements similar to nacre: the bundles are softer than the
matrix. However, the elements are not simply layered but composed
of bundles, embedded in a matrix, forming a helical structure. The
helical pitch of the endocuticles is several times larger than that of the
exocuticle. The volume percentage of the soft and hard elements are
nearly the same, which is not the case for nacre.
Based on these features, we introduce the elastic modulus of the

bundles Eb (≃1 GPa) and of the matrix Em (≃100 GPa), together with
the volume fractions of the bundle ϕb= (1+δ)/2 and of the matrix
ϕm= (1− δ)/2, and we require the following conditions:

EbooEm and doo1 ð7Þ

Considering the two modes of deformation illustrated in Figure 5,
in addition to the aid of the standard arguments for fiber
composites,53 the corresponding hard and soft moduli (E 0

h and E 0
s,

respectively) are evaluated as

E 0
hCfbEb þ fmEm ð8Þ

1=E 0
sCfb=Eb þ fm=Em ð9Þ

We introduce a small parameter ε′ as

e0 ¼ E 0
s=E

0
hoo1: ð10Þ

The fracture toughness of the parallel structure should be direction
dependent and those in the soft and hard directions shown in Figure 5
are introduced as Gh and Gs. They satisfy

Gh44Gs; ð11Þ
which should be intuitively natural for fiber bundles (see Okumura52

for the detailed supporting discussions).
We next consider the helical structure in the exoskeleton. As the

elastic modulus periodically changes along the axis of the helical
structure,41,54–57 we consider, at a coarse-grained level, a layered
structure in which the elastic moduli of the hard and soft layers are
characterized by E 0

h and E 0
s and the helical pitch d corresponds to the

thickness of both of the layers.
Through this two-step coarse-graining process, we can now estimate

the fracture toughness by applying the results obtained for the simple
model of nacre. This estimation is possible because the nacre theory is
developed in the limit ε= (Es/Eh)(dh/ds)oo1, which is also satisfied in
the present case in which Es ¼ E 0

s44Eh ¼ E 0
h , that is, ε′oo1, and

dh= ds= d.
From Equation (5), the fracture toughness of the helical structure,

when a line crack of size a that is larger than d is running
perpendicular to the layers, is thus obtained as

G=GhCðd=a0Þðe0Þ�1=2 ð12Þ
with

ðe0Þ�1Cð1þ dÞð1� dÞEm=Eb ð13Þ
Here a0 is the size of the Griffith flaws in the hard layer, which may

be comparable to the radius of the bundles (≃0.5 μm) and is certainly
smaller than the pitch length of the helical structure d: typically, d≃10
and 50 μm for the exo- and endocuticles, respectively. A typical value
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Figure 4 Results from the finite-element calculation. (a) Confirmation of the
scaling law for the maximum stress when crack tips are located at soft
layers. (b) The crack tip stress, that is, the maximum stress, as a function of
crack tip positions, showing the tendency for crack tips to stop at soft layers
in which the tip stress is small. The vertical lines represent the boundary
between soft and hard layers. Reprinted from Hamamoto and Okumura43 ©
2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 5 Bundle embedded in a matrix (the matrix is not shown) in the
'parallel structure' under tensile force in longitudinal (a) and transverse (b)
directions. When the composite is under tension as indicated by the arrows,
the composite is hard and tough in the longitudinal direction and soft and
weak in the transverse direction. The dashed line indicates a possible crack
surface.
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of Gh may be approximately 1 J m–2, which leads to the estimation
G≃500–1000 J m–2.
Equation (12) predicts that the helical composite is reinforced

compared with the parallel structure in any direction: the toughness of
the helical structure is larger than the toughness of the parallel
structure in the toughest direction, Gh. Note here that Gh appears in
Equation (12) instead of Gs because, for a crack tip in a soft layer to
advance, the tip has to break the next hard layer.
From Equations (12) and (13), we can draw a number of guiding

principles for toughening materials with helical structures. For
example, to enlarge the factor d/a0, it is advantageous to use thinner
bundles forming a helical structure with a larger pitch; to make the
factor ε′ smaller, it is advantageous that the matrix is hard and the
bundles are soft, and that the volume fraction of the hard and soft
elements is of the same order ((ε′)− 1 has a sharp peak as a function of
δ). These principles, the helical pitch larger than bundle thickness, the
combination of soft bundles and a hard matrix and an equal volume
fraction of the soft and hard elements, are indeed used in the
exoskeleton of crustaceans as already described.
Equation (12) also explains another clever feature of the crustacean:

in the exoskeleton, the exocuticle with a small helical pitch covers the
endocuticle with a large helical pitch. This feature is significantly
advantageous in a mechanical sense, as understood from Equation
(12). This expression is valid for a crack of size a that is larger than d.
In this case, however, a helical structure with a long pitch d cannot be

protected for small cracks. In the exoskeleton, as illustrated in
Figure 6, the exocutile protects the inside from smaller cracks with
smaller toughness, whereas the endocuticle protects the inside from
larger cracks with larger toughness; note that the stress concentration
is significant for larger cracks.
Overall, the helical structure composed of thin fibers is a very smart

structure. Bundles or fibers are generally extremely tough in the
longitudinal direction but extremely weak in the transverse direction.
For example, the toughness of glass fibers increases in the longitudinal
direction when the radius decreases. Then, bundles oriented parallel
throughout a matrix would be a smart structure for the longitudinal
direction. However, as shown in the simple theory, by forming a
helical composite structure with a matrix, the helical composite
becomes tougher than the parallel composite even in the toughest
direction of the parallel composite.

SPIDER WEBS

Spider silks have been actively studied as a high-performance
polymeric fiber, which leads to various reasons for their mechanical
superiority, such as entropic elasticity,58 water coating,59 breaking
strength,60 gene family,61 liquid–crystalline structures,62 micellar
structures63,64 and hierarchical structures,65 and torsional
relaxation.66 Spider webs seem to be a highly optimized lightweight
structure,67 likely as a result of their evolution from the Jurassic period
or earlier.68 However, the mechanical advantages of the spider orb
webs have been less studied: only their structural vibration,69,70 tensile
pre-stress,71 detailed finite-element modeling70,72 and nonlinear
response73–75 have been studied.
Here, we focus on orb webs among other web varieties76 and

construct a simple model of spider webs,77 to show the physical
principles of the mechanical advantages. The simple model of spider
webs is composed of radial and spiral threads, as in Figure 7. The
model is under a global strain of 0.1, as in real webs.72 Under pre-
tension, the force distribution is not homogeneous, and the maximum
force acts on the radial springs at the edges, as indicated in Figure 7.
One of the aims of this study is to investigate the importance of the

combination of hard and soft elements. Orb spider webs are
composed of spiral and radial threads, in which the spiral threads
are thinner and softer than the radial threads.
To this end, we examined the maximum force at the edge radial

springs in the web under pre-tension. A web with a small maximum

Figure 6 Double protection by the exocuticle with a small helical pitch and
the endocuticle with a large helical pitch. The exocuticle protects the inside
for small cracks with a small toughness, whereas the endocuticle protects
the inside for large cracks with a large toughness.

Figure 7 Force distribution in the simple model of spider webs under tension. The spring constant of spiral threads per unit length is the same as that of
radial threads in the left, whereas the former is smaller than the latter in the right (K/k is 1 in the left and 10 in the right). Reprinted from Aoyanagi and
Okumura77 © 2013, American Physical Society.
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force is considered to be strong because materials generally begin
failing at the position where a strong local force acts.
As demonstrated in Figure 7, the web is stronger, that is, the

maximum force is smaller, when the stiffness contrast is larger. The
(normalized) maximum force at the edges is 0.3 in the left and 0.14 in
the right.
Surprisingly, the stiffness difference appears to be optimized in real

webs because of at least three mechanical factors, providing high
adaptability to spiders. One factor is revealed in the left plot in
Figure 8, in which the maximum force at the edges (a measure of the
weakness of the web) is shown as a function of the stiffness difference
K/k. The maximum force sharply decreases in a range of small K/k but
changes only slightly when K/k is larger than approximately 14, which
is a typical value of the stiffness difference in real webs.72 Considering
the difficulty for spiders to create two types of threads whose
mechanical properties are quite different, the typical value of the
stiffness difference (14) may be regarded as a result of optimization.
Other mechanical advantages of the large stiffness difference are
demonstrated in the middle and right plots in Figure 8, in which the
strength of the web is less susceptible to changes in the number of
either spiral or radial threads when K/k is larger. These properties
allow high flexibility for survival of spiders: spiders can span webs by
freely selecting the numbers of spiral and radial threads, according to
the spacial and biological environments, for example, to a typical tree
branch spacing or to a typical prey size.
In addition, it was shown that no stress concentration occurs in the

simple model of the web. Even if a part of a spiral thread is removed
from the model web, the forces acting on the parts of spiral threads
near the missing part are not enhanced in a new equilibrium state.
This result explains that spider webs function well even if some parts
of spiral threads are missing, which illustrates the robustness of
spider webs.

DISCUSSION

We have demonstrated several examples of biocomposites reinforced
by structures, in particular, by the fusion of soft and hard elements. In
the case of nacre, in addition to the soft–hard combination, the
hierarchical structure is important for the reinforcement. A number of
scaling laws predicted from the theory were found to be robust.
Although the scaling laws are generally expected to be valid only in
limiting cases, these scaling laws can be valid in a wide practical range.
The model of nacre could also aid in understanding the sophisticated
structure found in the cuticles of crustaceans. We have also explored
mechanical advantages of the combination of the soft and hard threads
in spider webs. The scaling laws collectively presented in this review,

together with physical understandings and guiding principles for smart
design based on simple models, may inspire researchers to create
tough materials and to construct more elaborate models. In this
respect, some other simple ideas for nonlinear and porous materials
that have also been discussed, for example, in Nakagawa and
Okumura;78 Aoyanagi and Okumura;79 Soné et al.80; Kashima and
Okumura81 may also be useful.
In this review, we have observed that simple linear models can

explain the essential physics in many cases. However, nonlinear
treatments could be essential in some cases. We envision that the
nonlinear extension will have an important role in the future study of
biomaterials based on simple scaling arguments.
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