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Toughness of double elastic networks
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Abstract. – We consider isotropic composites comprising of soft and hard elastic networks.
We examine the minimum elastic model of purely elastic, intertwined but energetically inde-
pendent networks. We obtain toughness enhancement factors in various situations, which may
provide guiding principles to make strong composites of soft and hard materials.

Introduction. – Many materials in nature such as timber, teeth and nacre draw their
strength from composite structures, which include, quite often, soft and hard elements. Since
the soft/hard combination seems crucial (at least empirically) for the strength, it is important
to understand the physical reason in a simple way. One of the natural parameters may be
the ratio of the hard and soft elastic moduli, µh/µs, which is larger than one. In our previous
works on nacre [1], which is also a soft/hard composite, we have shown that the fracture
energy scales like the square root of µh/µs under certain conditions.

Recently, another type of promising composites are synthesized: double-network (DN) gels
comprising of two independently cross-liked networks [2]. They show a remarkable toughness
when one network is soft and the other is hard; they have the potential to work as an arti-
ficial joint of human being. The DN gels are significantly different from nacre in that they
are isotropic; nacre is a strongly anisotropic layered system. Actually, anisotropy has been
sometimes considered as the essential property of composite materials; most of theories of
composites have been developed for anisotropic systems [3].

Inspired by this situation, we propose the minimal model of isotropic and elastic compos-
ites. We find, for example, that the enhancement factor is simply proportional to µh/µs (see
eq. (16) below) under a certain condition, which is different from the anisotropic case. The
present work also concerns elastic particle-reinforced composites.

Equal-strain approximation. – Consider a composite comprising of two independent in-
terpenetrated networks “h” and “s”. These networks are symbolically illustrated in fig. 1. A
typical semi-microscopic mesh size is denoted by ξi (i = h or s) and, on scales smaller than ξi,
we can consider a continuum elastic modulus µi. Both networks are assumed to be isotropic
and incompressible and so is the composite. In the decoupling limit where the two components
are energetically independent, the elastic energy per unit volume is given by

f = φhµhe2
h/2 + φsµse

2
s/2, (1)

where φi stands for the volume fraction at the level of scaling laws (the factor one-half is
merely for convenience); the non-tensorial treatment of strain and modulus is justified later.
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Fig. 1 – Symbolic representation of two networks. A hard network “h” and a soft network “s” are
interpenetrated with each other in the composite.

Fig. 2 – Griffith problem. A through-thickness crack of size a in an infinitely wide plate is subjected
to a remote tensile stress σ.

In this section, we assume that, at equilibrium, the stress of the hard network σh balances
with that of soft σs because the two networks are locally in contact with each other (this
equal-stress condition is further discussed later); the stress of the composite σ is given by

σ = σi = µiei (no summation). (2)

Under eq. (2), f can be written as

f =
φhσ2

h

2µh
+

φsσ
2
s

2µs
=

σ2

2µ
=

µe2

2
, (3)

where the composite modulus µ is given by

1
µ

=
φh

µh
+

φs

µs
(4)

and the strain of the composite e is defined through

e =
σ

µ
=

µi

µ
ei (no summation). (5)

Since the composite is isotropic, on scales larger than ξi, we can construct the Griffith
problem as usual for a crack of length a when a � ξi (see fig. 2). We start from the potential
energy per unit length of the crack front:

F ∼ µ

(
u

a

)2

a2/2 − σua + γa , (6)

where γ is the fracture energy of the composite. The first term is an elastic energy of strain
(∼ u/a) localized over a volume (∼ a2) around the crack tip, the second the work done by
the external remote stress σ, and the third the surface energy. Minimization with respect to
the displacement u leads to the Hooke-type stress-strain relation

σ ∼ µu/a (7)
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and the minimized energy

F ∼ −σ2a2

2µ
+ γa . (8)

The maximum of this quadratic function F of the variable a corresponds to the critical con-
ditions for failure, under which the following relations are satisfied:

σ ∼
√

γµ/a , u ∼
√

γa/µ , σu ∼ γ. (9)

The first equation announces the stress distribution near the tip:

σ(r) =
√

γµ/r = σ
√

a/r , (10)

where r is the distance from the tip. As shown above, the scaling arguments sketched in this
paragraph [4] heuristically reproduce the essentials of the linear-elastic fracture mechanics [5].

Equation (10) can be understood as follows. The local stress σ(r) should be a function of
r and a and approaches the remote value σ at r ∼ a: σ(r) = σ · (r/a)n. The exponent n is
determined to be −1/2 by requiring the scaling property that σ(r) becomes independent of a
when r is small.

The above continuum theory is valid only when the scale in question (r or a) is larger than
the largest mesh size. The maximum stress of our continuum theory is cut off at this size
ξ ≡ max{ξi}; the critical stress can be estimated as

σm ∼
√

γµ/ξ . (11)

On the other hand, the remote failure stress of the non-meshed hard material (ξh = 0) is
expressed as

σh ∼
√

γhµh/ah , (12)

where γh is the fracture energy of the non-meshed hard material and ah is a typical microscopic
size of defects or Griffith cavities with

ah 
 ξ . (13)

This inherent remote failure stress is appropriate even for the meshed hard network (ξh �= 0)
on semi-macroscopic scales up to r ∼ ξ; on scales r 
 ξ, the hard network is isotropic and
homogeneous except for the cavities (∼ ah).

Assume that the soft network is very soft (and almost like a liquid),

µh � µs , (14)

but persistent (the hard network breaks before the soft one). Then, a criterion of failure may
be that the maximum stress of the composite, σm, reaches the inherent failure stress σh. Note
that σh is a “remote” stress and the scale r ∼ ξ is already “remote” on the cavity scale ah.
This condition (σm ∼ σh) results in

γ ∼ ξ

ah
· µh

µ
γh ≡ λγh , (15)

where the enhancement factor of the fracture energy can be rewritten as

λ =
ξ

ah

(
φh + φs

µh

µs

)
∼ φs

ξ

ah

µh

µs
. (16)
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Under eqs. (13) and (14), this λ is large.
Although we are mainly concerned with the work of fracture, the macroscopic fracture

stress and strain (i.e., in the presence of a macroscopic fracture with size a, where a � ξ) can
also be derived as in the following example: the remote fracture stress σF of the composite can
be expressed as σF ∼ √

γµ/a, while that of the non-meshed hard material is given by σh,F ∼√
γhµh/a; the comparison of these two stresses results in a large stress enhancement factor:

λσ ≡ σF/σh,F =
√

µλ/µh =
√

ξh/a . (17)

Equal-strain approximation. – In this section, we assume the equal-strain condition
(eh ∼ es). Then, eq. (4) is replaced by

µ = φhµh + φsµs . (18)

In this case a failure criterion for the composite is set not for stress but for strain because
it is the strain that is common to the two networks; we compare the maximum strain of the
composite,

em ∼
√

γ

µξ
, (19)

with the inherent failure strain of the non-meshed hard material,

eh ∼
√

γh

µhah
. (20)

Matching of these stresses leads to another energy enhancement factor:

λ =
ξ

ah
· φhµh + φsµs

µh
∼ φh

ξ

ah
. (21)

Combinations of failure points of constituting networks. – The above results are modified
depending on the combination of the inherent failure stress σF

i and strain eF
i of the non-meshed

soft and hard materials. The criterion employed in the equal-stress assumes σF
h < σF

s and
thus eF

h < eF
s : the hard network breaks before the soft one (the soft network is persistent);

otherwise, an extra energy cannot be stored efficiently in the soft network to increase the
work of fracture. This situation is illustrated in fig. 3a. In this case, γs > γh (the hatched
area is proportional to γs). The criterion employed in the equal-strain implies eF

h < eF
s . This

case includes both situations in fig. 3a (γs > γh) and b (γs < γh): no restriction between the
magnitudes of γh and γs.

Let us consider the opposite case where the soft component breaks first. Even in this case,
since it is the hard element that supports the shape of the composite, failure is achieved only
when the hard network breaks down. But this time the soft network is virtually absent at
the moment of failure; φs = 0 in eq. (1). Then, the enhancement factor is given by the final
expression in eq. (21), regardless of the equal-strain or equal-stress condition.

Particle-reinforced composites. – As symbolically illustrated in fig. 4, consider the elastic
matrix combined with elastic particles. Even if the particles are not spheres but the directions
are randomly distributed, the system should become isotropic from a macroscopic continuum
view if the scale in question is large enough.

When hard particles of size ξh are embedded in the soft matrix, failure of the composite is
accomplished when the soft matrix breaks down (this time, the matrix is the softer component
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Fig. 3 – Failure points of ideal networks in strain-stress curve. The dots stand for (microscopic) failure
points of each network where the upper line corresponds to the hard material (µh > µs).

Fig. 4 – Particle-reinforced composite. Elastic particles of size ξh are distributed in an elastic plate
with interparticle distances ξs.

and thus it cannot be truly like a liquid). Under the equal-strain condition, the enhancement
factor in eq. (21) is replaced with

λ =
ξ

as
· φhµh + φsµs

µs
∼ ξ

as
· φhµh

µs
, (22)

where λ is defined such that γ = λγs; this factor stands for enhancement not from γh but
from γs. In the above, we have assumed that hard components (or particles) break after the
matrix, that is, γh > γs (see fig. 3c); otherwise, the above factor is replaced with λ = φsξ/as

because the hard component is virtually nonexistent. Under the equal-stress condition, we
find, instead,

λ =
ξ

as
·
(

φs + φh
µs

µh

)
∼ φs

ξ

as
. (23)

In this case, even if particles break apart after the matrix, the enhancement factor is given by
λ = φsξ/as.

As opposed to the meshed networks, here, we do not have the freedom to set the volume
fraction independent of ξi; at the level of scaling relations, φh ∼ ξ3

h/ξ3
s and φs ∼ ξ3

s /ξ3
h. When

the particles are sparsely embedded (ξ = ξs > ξh), the enhancement factor in the equal-strain
and -stress cases is given by

λ ∼ ξh

as
·
(

ξh

ξ

)2

· µh

µs
and

ξ

as
·
(

ξ

ξh

)3

, (24)

respectively. The second expression implies that an increase in the particles fraction φh (i.e., a
decrease in ξ) will result in a decreased toughness. Such a decrease in toughness with increased
filler content is observed in many particle-reinforced composites. We note that λ can be less
than one in some cases (λ does not always imply an enhancement): for example, the second
factor in the first expression in eq. (24) contains the ratio ξh/ξ, which is less than one.

If the particles are densely spread, we may set ξ � ξh � ξs to find

λ ∼ ξ

as
· µh

µs
and

ξs

as
. (25)

As above, these expressions provide guiding principles to develop strong particle-reinforced
composites.
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Tensor properties. – We have ignored the tensor characters of our elastic problem. In
this section, we consider this point in the case of equal stress; the equal-strain case can be
treated in a similar way. In the tensor form, the stress-strain relation is described by Hooke’s
law:

σ(i) = E(i)e(i), (26)

where i = 1 or 2 stands for the 1st or 2nd networks. Here, the stress σ(i) and strain e(i)

are both second-rank tensors, while the elastic modulus E(i) is a four-rank tensor whose
typical magnitude of the non-zero elements corresponds to µi in the above. The energy of the
composite material per unit volume in the decoupling limit is given by

f =
φ1

2
Tr

(
σ(1)e(1)

)
+

φ2

2
Tr

(
σ(2)e(2)

)
. (27)

The tensorial equal-stress condition, σ = σ(1) = σ(2), leads to the expression

f =
1
2

Tr(σe) (28)

with tensor relations

e = φ1e
(1) + φ2e

(2), (29)
σ = Ee, (30)

where the inverse of the four-rank tensor E is given by

E−1 = φ1

[
E(1)

]−1 + φ2

[
E(2)

]−1
. (31)

Equations (29) and (31) are rules of mixtures of composite materials in tensor forms. Note
that the conventional rules of mixtures of composite materials have been constructed from
the anisotropic slab model and they are for a specific component of a tensor [3].

If the model is isotropic and incompressible, eq. (30) reduces to σij = µeij , where µ is a
scalar modulus, and eqs. (28) and (31) reduce to eqs. (3) and (4) under the interpretation
Tr e2 ∼ e2, etc.

Discussion. – 1) Physical interpretation of toughness.
The enhanced toughness in the double elastic network comes from a cut-off factor ξ/ai

and/or a modulus factor µh/µs, in addition to the volume fraction φi. This situation makes
a good contrast with our previous treatment of nacre in that the analytical dependence on
these parameters is not the same [1].

The cut-off factor ξ/ah, for example, in eq. (16), can be understood as reduction (or cut-
off) of the stress concentration (stress concentration occurs only for sharp cracks). Even when
the second network is absent, we can expect this factor: the meshed structure strengthens
toughness if the fracture size is larger than the largest mesh size. Note that this cut-off factor
appears under either the equal-stress or equal-strain condition.

The modulus factor µh/µ with φs in eq. (16) suggests that a large extra work is required to
attain the same stress-strain state for the hard network when combined with the soft network,
which implies a larger work of fracture for the composite; when the stress is applied to the two
networks, the soft network stores larger amount of energy (σ2/µs � σ2/µh when µh � µs).
The modulus factor µh/µs with φh in eq. (22) has a meaning different from this; failure is
judged not by the stress but by the strain, and the strain threshold can be large: an extra
large elastic energy due to the hard network is required.
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The failure criterion invoked in this article, for example to derive eq. (15), comes from
the matching of a macroscopic continuum stress σ(r), which is valid only down to r ∼ ξ,
with a semi-macroscopic stress σh, which is valid only up to r ∼ ξ, at the moment of failure
at the mesh size. This is similar in spirit to the criterion first employed in (a) of [1]; there
we balanced a macroscopic stress with an inherent failure stress of an aragonite plate at the
cut-off length.
2) Equal-stress and equal-strain assumptions.

When the composite is pulled in one direction it is compressed in perpendicular directions
to preserve the volume, and then the compression may tend to adjust two networks to keep the
equal stress for the two networks at the cost of strain mismatch. This consideration is in favor
of the equal-stress condition. On the other hand, we can think of other factors favorable to
the equal-stress approximation. Detailed structures behind the simplified view in fig. 1 may
determine a certain stress-strain state (equal-strain, equal-stress or other states). Specific
cases will be discussed elsewhere.
3) Comparison with real double-network gels.

The experimental data given in [2] demonstrate that both networks are highly nonlinear
even from an elastic point of view, and there viscoelasticity may come into play. In addition, we
should be careful with how to map or coarse-grain hydrogel networks to the present model.
Depending on the real interpenetrated structure, one may or may not consider the water
volume fraction, 1 − φh − φs, explicitly and associate µi with a single chain or with a locally
developed hydrogel (chains + water). These points require a separate work.

Conclusion. – We constructed the minimum theory for isotropic composites comprising of
soft and hard elastomers, including particle-reinforced materials in the two limiting situations:
equal-strain and equal-stress conditions. We obtain expressions for the toughness enhancement
factor in various situations, which provide guiding principles to develop strong composite
materials. We find that, in general, the ratio of the two elastic moduli and the mesh sizes,
in addition to the volume fraction of each element, are especially important in controlling
toughness. Our result implies also that even a meshed structure possesses a larger fracture
energy than the non-meshed counterpart when the crack size is larger than ξ; this particular
result does not depend on the equal-stress or equal-strain condition.
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