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PACS. 68.08.Bc – Wetting.
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PACS. 81.16.Nd – Nanolithography.

Abstract. – We consider microscopic contact states of a drop deposited on textured rough
surfaces. The energies of three possible (meta)stable wetting states are compared and the
lowest energy state is regarded as the “phase”. We present the “phase diagrams” in the two-
dimensional space of texture parameters, which suggests transitions between the wetting states.
We propose a model which allows the description of transition states between (meta)stable
contact states and quantify the energy barriers between them. Thereby, we theoretically suggest
that the actually realized state is not always the lowest energy state.

Introduction. – Recent technological advances allow us to design micro-scale structures
on solid surfaces, and, consequently, to control the wettability of these solids, as shown both
experimentally [1–8] and theoretically [9–13]. We discuss here the case of physically ragged
surfaces rather than chemically inhomogeneous ones. It has been proposed that there can
be at least three regimes for the contact area of drops on such jagged surfaces (fig. 1) [14]:
(a) a Wenzel regime [15] where the solid/liquid interface exactly follows the solid roughness;
(b) an air-pocket (AP) or Cassie regime, where air patches are confined below the drop, and
(c) a penetration regime where an area surrounding the drop is impregnated by a liquid film.

We consider a small drop (to ignore the gravity) with a volume V = 4πR3
0/3 (fig. 2a).

Denoting γ as the liquid surface tension, the total surface energy of this drop is E0 = 4πR2
0γ.

When it is deposited on a flat substrate, the contact angle θ is given by the relation of
Young-Dupré:

cos θ = (γS − γSL)/γ, (1)

where γS and γSL are the surface tensions of the solid and the solid-liquid interface, re-
spectively. The drop is a spherical cap of constant Laplace pressure whose radius is R
(fig. 2b). Its total surface energy is given by EYD = γSC(θ,R) + (γSL − γS)SB(θ,R), where
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Fig. 1 – Simplified illustration of three regimes: (a) Wenzel, (b) air pocket, and (c) penetration
regimes.

Fig. 2 – (a) Reference state, (b) Laplace’s spherical cap.

SC(θ,R) = 2πR2(1 − cos θ) and SB(θ,R) = πR2 sin2 θ are the areas of the liquid-gas and
solid-liquid interfaces. The radius R is determined by the fixed volume condition:

V = πR3 (1− cos θ)2 (2 + cos θ) /3. (2)

This gives a relation between R and R0 [10], leading to the dimensionless energy of the Young-
Dupré drop, εYD ≡ EYD/E0:

εYD = ε (θ) ≡ 2−2/3
(
(1− cos θ)2 (2 + cos θ)

)1/3

, (3)

which is a monotonously increasing function of θ.
In this paper, we first derive such reduced energies for the three states sketched in fig. 1,

and compare them with each other. Then, we demonstrate the possibility of observing and
maintaining a state of higher energy, thanks to an energy barrier separating this state from
another of smaller energy.

Three wetting states: Wenzel, air-pocket and penetration regimes. – In the Wenzel
regime, the apparent contact angle θW is given as a function of r and θ:

cos θW = r cos θ, (4)

where r is the roughness factor, i.e., the ratio of the actual area wet by the liquid to its
projection; r is larger than unity if the surface is not a perfect plane. The radius RW of the
cap is determined by eq. (2) by replacing (R, θ) with (RW, θW), provided that the scale of
the texture is much smaller than the drop size. The total surface energy of the Wenzel state
is simply given by EW = γSC(θW, RW) + (γSL − γS)rSB(θW, RW) and the reduced energy
εW = EW/E0 can be expressed as a function of θ and r via θW(θ, r):

εW(θ, r) = ε(θW) (5)

with the definition of ε(θ) in eq. (3). Equation (4) suggests a threshold value rm = 1/| cos θ|
for r, above which the contact angle is π (hydrophobic case, i.e., θ > π/2) or 0 (hydrophilic
case). Accordingly, we set εW(θ, r) = 1 or 0 for r > rm.

The Cassie-Baxter model describes the wettability of a chemical patchwork, composed of
two materials of respective proportions f1 and f2 (f2 = 1− f1) and of Young contact angles
θ1 and θ2 [16]. The apparent contact angle θ∗∗ on this patchwork is then given by

cos θ∗∗ = f1 cos θ1 + f2 cos θ2 . (6)

The Cassie-Baxter model can be applied to the air-pocket regime (fig. 1b), the material
being a composite of solid and air. Namely, we have θ1 = θ and θ2 = π (the “contact angle” of
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a drop on air). The fraction of the first component f1 corresponds to the solid surface fraction
φS wet by the liquid. Noting f1 + f2 = 1 in the original model, we find

cos θAP = φS (cos θ + 1) − 1. (7)

The radius RAP of the cap is determined again by eq. (2), by replacing (R, θ) with (RAP, θAP).
The total surface energy is now calculated as EAP = γ[SC(θAP, RAP)+(1−φS)SB(θAP, RAP)]+
(γSL −γS)φSSB(θAP, RAP). Note here that a fraction φS of the bottom area is in contact with
liquid (γSL − γS) while the remaining portion (1 − φS) is exposed to the gas phase (γ). The
normalized energy εAP = EAP/E0 is expressed as

εAP(θ, φS) = ε(θAP). (8)

The Cassie-Baxter model also describes the penetration regime (fig. 1c), for which the
substrate is a composite of solid and liquid [17]. We have θ1 = θ, θ2 = 0 (the “contact angle”
of a liquid on itself), f1 = φS, and f2 = 1− φS, which yields

cos θP = φS (cos θ − 1) + 1. (9)

To calculate the total surface energy associated with this situation, we introduce the area SD

of the penetration “film” developed around the drop, where the cavities are filled with the
liquid while the top of the texture remains dry (see fig. 1c). With this doughnut-shaped SD,
the total surface energy can be written as EP = γSC(θP, RP)+ (γSL − γS)rSB(θP, RP)+ [(r−
φS)(γSL − γS) + (1− φS)γ]SD.

How can we find SD or Σ ≡ SD + SB(θP, RP)? First of all, Σ must be macroscopically
larger than the (apparent) bottom area SB(θP, RP), since eq. (9) assumes the development of
such a wet front (otherwise the angle should be given by eq. (4) or others). In addition, if the
coefficient of Σ or SD in the above expression for EP is negative, i.e.,

C ≡ − (r − φS) cos θ + 1− φS = cos θP − cos θW < 0, (10)

the energy EP is lowered as the film progresses [17]. Then, the doughnut expands as far as
possible, and its only limitation is the solid size or the finite volume of the drop, from which
we can set this to be the lowest energy state if C < 0; we need not to know the exact value
of Σ. This special lowest energy state realized when C < 0 shall be called “large penetration
(LP)”. On the other hand, if C > 0, the drop reduces to a Wenzel drop with the penetration
angle θP (small penetration, SP). To summarize, we find

EP ∼
{

ELP = γΣC (C < 0),
ESP = γπR2

P

[
2(1 − cos θP) − r cos θP sin2 θP

]
(C > 0).

(11)

From eqs. (9) and (11) with the (approximate) formula for the radius RP (i.e., eq. (2) with
(R, θ) → (RP, θP)), we obtain the dimensionless energy εP(θ, r, φS).

We compare εW(θ, r), εAP(θ, φS), and εP(θ, r, φS) as a function of the parameters r and
φS with θ and V fixed in order to determine the lowest energy state. The results are universal
in the sense that they are independent of γ and V .

The results of the comparison are displayed in fig. 3 in the (r, φS)-plane, where the lowest
energy regimes are indicated. For hydrophobic substrates (θ > π/2) either the Wenzel or AP
state has the lowest energy (fig. 3a). On the contrary, for hydrophilic substrates (fig. 3b), it is
the AP regime that does not show up; the AP regime in the hydrophobic case is just replaced
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Fig. 3 – “Phase” diagrams of contact states (a) for a hydrophobic substrate and (b) for a hydrophilic
substrate. W (Wenzel), AP, LP indicate the lowest energy state in the region. Examples of textures
are indicated in the left picture for cos θ = −0.35 (upper horizontal italic scale r is for this θ).

by the LP regime. Figure 3 indicates the transition from the Wenzel to AP (LP) regime with
increase in r and φS for the hydrophobic (hydrophilic) case.

We can confirm analytically that the boundary between the two regimes is given by C = 0
or cos θP = cos θW in the hydrophilic case and by cos θAP = cos θW in the hydrophobic case
(we can understand this noting that ε(θ) is an increasing function of θ). From fig. 3, the AP
state is the lowest energy if θAP < θW in the hydrophobic case [11], while the LP state is
the lowest if θP > θW in the hydrophilic case (indeed, the latter condition or eq. (10) was
originally derived as the condition of penetration of the “film” [17]).

Energy barriers. – Experimentally, AP state can be observed on a hydrophilic substrate
(on hydrophilic substrates decorated with posts, advancing angles larger than 90◦ can be
measured, indicating air trapping). In addition, an AP state can be changed into a Wenzel
state (with fixed r and φS) through an external perturbation, say, by pushing the drop [5].
This seems to contradict the phase diagrams obtained above, and suggests that the trapping
to a metastable state may occur [5,11]. Such states are possible provided that energy barriers
exist [11], and we propose here an extended model (for hydrophobic substrates) in order to
quantify this point.

Imagine a transition from AP to Wenzel state: a simple pathway may start from lowering
of the bottom, liquid-air interface (fig. 4a) towards a state where a very thin air film (with
an infinitely small thickness l1) remains at the bottom of the groove. The thin film is, then,
invaded by the liquid (fig. 4b) until the Wenzel state is obtained.

The area of the liquid-air contact, 1−f , is a constant (f = φS) in the lowering stage (fig. 4a),
while the roughness factor of the liquid surface under the drop (both the liquid-solid and
liquid-air interfaces are counted), r′, is fixed to r′ = r in the invasion stage since l1 is virtually
zero (fig. 4b).

(a'')

l1
l2

(a) (b) (a')

Fig. 4 – Transition states: (a) lowering stage (f = φS and r′ > 1) and (b) invasion stage (f > φS and
r′ = r). States (a′) and (a′′) have larger energies than (a). Here, l1 and l2 are infinitely small.
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To incorporate these parameters r′ and f into the Cassie-Baxter model, we regard f1 (f2)
as the ratio of the liquid-solid (liquid-air) interface under the drop to the (apparent) bottom
area of the drop (i.e., f2 = 1 − f and f1 = r′ − f2). With this identification, since r′ > 1,
f1 + f2 is allowed to deviate from one! In this extended Cassie-Baxter model for a composite
of solid (θ1 = θ) and air (θ2 = π), the contact angle θ∗ is given by cos θ∗ = −f2 + f1 cos θ:

cos θ∗ = f − 1 + (r′ + f − 1) cos θ, (12)

where we set θ∗ = π if the r.h.s. is smaller than −1. Equation (12) can be derived as a
stationary condition of the energy variation for a virtual displacement of the contact line like
the other contact angle formulae of Young, Wenzel, and Cassie.

Equation (12) reduces to the Wenzel angle when (r′, f) = (r, 1) and to the AP angle when
(r′, f) = (1, φS); eq. (12) unifies the two regimes. Moreover, as desired, the lowering stage
(fig. 4a) is described by an increase in r′ with f fixed to φS, and the invasion stage (fig. 4b)
by an increase in f with r′ fixed to r. In addition, even states as in fig. 4a′′ and a′′ and more
general situations are included in the model, as we shall see below.

It is useful to consider the space (r′, f). For convenience, we use the reduced energy ε∗ as
a function of r′ and f with θ fixed, which can be derived as before. With eq. (12) and the
function ε in eq. (3), the result is given by

ε∗ (θ, r′, f) = ε (θ∗) , (13)

where we set ε∗(θ, r′, f) = 1 if cos θ∗ in eq. (12) is smaller than −1. The energy landscape
on the (r′, f)-plane is displayed in figs. 5a and b. The function with a fixed angle θ has
the maximum, 1, in the region f − 1 + (r′ + f − 1) cos θ < −1, and the minimum, ε(θ), at
(r′, f) = (1, 1) where, from eq. (3), ε(θ) ∼ 1 for hydrophobic angles.

The rectangular path A → B → C in fig. 5b describes the simple transition pathway
from the AP to Wenzel state on the specific substrate characterized by (r, φS) = (1.5, 0.6):
the point A in fig. 5b at (r′, f) = (1, φS = 0.6) corresponds to the AP state while C at
(r′, f) = (r = 1.5, 1) to the Wenzel states; A → B and B → C correspond to transition
states in figs. 4a and b, respectively. Likewise the rectangular pathways A → B → D → E
and A → B → D → F → G follows the simple transition (AP → Wenzel) on the substrates
specified by (r, φS) = (2.25, 0.6) and (3, 0.6), respectively (see the inserted drawings of the
surface textures in fig. 6).

Energy barrier curves along these paths in fig. 5b are shown in fig. 6. Generally, from the
landscape in fig. 5, transitions W � AP via the rectangular path always encounters a barrier
for any (r, φS) except for r > rm (no barrier for W → AP when r > rm as in fig. 6c).
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Fig. 6 – Energy barriers curve ε∗ (a) for the texture with r = 1.5 and φS = 0.6 (along the path
A → B → C in fig. 5), (b) for r = 2.25 and φS = 0.6 (A → D → E) and (c) for r = 3 and φS = 0.6
(A → F → G), where cos θ = −0.35. The surface textures are also shown with the plots.

The absolute value of the energy barrier can be huge, which seems consistent with experi-
mental observations in [5]. The vertical axis in fig. 6 is scaled by E0 ∼ γR2

0; noting γ ∼ kT/a2

with a an atomic scale, an energy barrier of the order of E0 is extremely large compared to
the thermal fluctuation (E0/kT ∼ (R0/a)2 � 1).

What is the meaning of paths deviating from the rectangular path? Some paths are the
ones with a higher barrier and the others are unphysical. The above rectangular path is the
minimum-barrier path for the two-level texture design; for example, figs. 4a′ and a′′ are the
cases with f < φS (not on the rectangular path) and have a larger energy than the state in
fig. 4a (on the rectangular path) because γSL−γS is always positive for hydrophobic substrates.
For other texture design, say, triangular grooves, the minimum-barrier path becomes different
from the above physical path (for triangular grooves, we may set f2 → rff instead, where rf

is the roughness ratio of the wet area [12]).
An example of unphysical path in the present texture design is the barrier-free path directly

connecting (1, φS) and (r, 1) on the equal-energy line, that is, in parallel with the line cos θ∗ =
−1. Such a path may not be associated with a physically possible transition state on a fixed
texture (specified by a single set of r and φS).

Conclusion and discussion. – We have explicitly compared the energy of the three wetting
states (W, AP, and P) and obtained the phase diagram in the (r, φS)-plane, where the lowest
energy state is identified with the phase, for both hydrophobic and hydrophilic substrates.
We have proposed an extended model unifying the W and AP states to quantify the energy
barriers between wetting states for the hydrophobic substrates. As a result, we have shown
that a transition W → AP can be without a barrier when r > rm; otherwise, W or AP is a
metastable state where a barrier crossing is required to reach the lower (stable) energy state.
This barrier is typically large compared to the thermal energy, which can be quantified in
the unit of E0 = 4πγR2

0 by compact formulae: the barriers for W → AP and AP → W
transitions are respectively given by ε(θm) − ε(θW) and ε(θm) − ε(θAP), with θW and θAP

given by eqs. (4) and (7) and with θm being the value of θ∗ in eq. (12) at (r′, f) = (r, φS); note
that the functions ε(θ) defined in eq. (3) should be set to 1 if the cosines of the corresponding
angles (θm, θW, θAP) are less than −1. The details of calculations including a unified model
for hydrophilic substrates and for various surface designs will be discussed elsewhere.

Comparison of our results with experiments requires a special care. For example, in [4], the
wetting states on a hydrophobic substrate (θ = 114◦) with textures of φS = 0.11 and φS = 0.36
are experimentally checked by changing r from 1 to ∼ 3, where the W → AP transition occurs
at r 	 1.2 for both values of φS. Here, rm 	 2.46 in fig. 3a and the transition indicated
from this figure occurs at r 	 2.3 and r 	 1.9, respectively. This apparent disagreement is
reasonable if we remind that there is an energy barrier so that experiments do not necessarily
lead to the observation of the the lowest energy state; when r � 2 barriers of the type of
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fig. 6a exist and the barrier crossings become easier when r approaches 1. In other words, for
r 	 1.2–2.3 (or 1.9), the observed AP states are metastable and the drop cannot go over the
barrier toward the lowest energy (Wenzel) state. We encountered the same tendency when
examining other experimental data from [6,7].

The above example reveals the importance of an unambiguous experiment monitoring
which is the observed state and whether the state is stable or metastable, to test our equilib-
rium phase diagrams. Measurement of the contact angle hysteresis (which can be dramatically
different in the W and in the AP regimes) allows us to distinguish the states, and the control
of the (potential) transition between the states might be done by a compression of the drop [5].
Conveniently, the value of the critical pressure above which a transition occurs provides a way
to evaluate the energy barrier between two states. However, the achievement of this program
is far beyond the scope of this letter.
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