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Why is nacre strong? Elastic theory and fracture mechanics for
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Abstract. Nacre, stratified ceramic layers surrounded by organic matrix, is a tough material found inside
certain seashells. We construct a coarse-grained elastic energy for such an anisotropic system and present
an analytic solution for a notch crack normal to the stratified sheets. This analysis proves the reduction in
stress concentration which was announced in our earlier work (P. G. de Gennes and K. Okumura, C. R.
Acad. Sci. Paris 1, Ser. IV, 257 (2000)) and the related increase in toughness.

PACS. 87.68.+z Biomaterials and biological interfaces – 46.50.+a Fracture mechanics, fatigue and cracks
– 83.70.Dk Composite solids

1 Introduction

A number of natural materials derive their strength from
a composite structure. Timber and abalone are typical
examples. The former is composed of cellulose fibers in
soft lignin while the latter possesses a layered structure of
brittle ceramic and soft organic matrix. These composite
structures (fibers and layers) appear in biomimetic materi-
als [1–4]. Automobile tires nowadays, for example, employ
laminated sheets made of fiber composites.

In this article, we propose a simple view on one of the
laminated structures found in nature, i.e. nacre. Certain
seashells like abalones contain an inner coverage of nacre.
The nacre displays a high fracture toughness (compara-
ble to those of some high-technology structural ceramics)
[5–7]. The unique nacre structure is composed of alternat-
ing (nanometer-scale) layers of thin peptide matrices and
CaCO3 (aragonite) platelets, where 95 volume % of the
composite is the inorganic material (see Fig. 1).

Several toughening mechanisms of the nacre have been
examined in the literature and exploited to produce strong
materials [7,2,8]: 1) crack blunting/branching, 2) microc-
rack formation, 3) internal stresses, etc. All these effects
may be significant. Our aim here is limited; we concen-
trate on one possible reason —weakened tip-stress con-
centration, which is clearly an important factor.

For later convenience, some scales are introduced here;
the thicknesses of hard inorganic layer and that of the
soft organic layer are denoted dh and ds, respectively. The
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Fig. 1. Nacre structure: the (inorganic) hard-layer thickness
dh is of order of micrometer while the soft-layer (organic) thick-
ness ds of nanometer. The y axis is perpendicular to layers and
the sample is long in the z direction. The cracks in the (y, z)-
plane and in the (x, z)-plane are called the perpendicular and
the parallel fractures, respectively.

Young modulus of the hard and soft layers are denoted
Eh and Es, respectively, and we put

Es = εEh,

where ε is very small, and is probably around 1/5000
(Eh is about 50 GPa , while Es may be estimated as the
value of polymeric rubber, i.e. 1 MPa). In the following,
we concentrate on one configuration, i.e. perpendicular
fracture (see Fig. 1) under the plane strain condition, i.e.
ezx = ezy = ezz = 0. Here, eij is the strain derived from
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Fig. 2. Perpendicular crack in the small ε limit. The crack is
abruptly ended at a soft layer; no stress concentration at the
tip is expected.

the displacement field ui, i.e.

eij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
,

where (x1, x2, x3) ≡ (x, y, z). Experimentally, it is sug-
gested that the fracture toughness is significantly en-
hanced mainly in the perpendicular fracture; the perpen-
dicular case is relevant when the sheets are bent macro-
scopically [5,6].

In such a layered system the stress concentration at
the crack tip is weaker than in usual isotropic elastic ma-
terials [9]. This can be understood when a limiting case is
considered; suppose that ε is infinitely small and the soft
layer acts merely as a lubricant. In this case (as shown in
Fig. 2), the fracture profile stays flat and the fracture is
abruptly stopped at one thin layer; there is no stress en-
hancement at the tip and the fracture advances only when
the remote stress σ∞ is comparable to the intrinsic yield
stress of the aragonite, which can be estimated as [10–13]

σYS �
√
Ehγh

ah
, (1)

where ah is the typical size of a Griffith cavity in pure
aragonite, and is small for the well-crystallized aragonite
of nacre. Here, γh is the surface energy of pure aragonite,
roughly corresponding to the energy (per area) required
to breaking chemical bonds.

In the following, we try to translate this physical idea
into an analytical theory; we propose a coarse-grained
elastic energy for the anisotropic material and analyze the
fracture profile in the perpendicular case.

The ensuing analysis is based on three conditions,

ε � 1,
ds � dh,

ε = εd/ds � 1,

where, d = ds + dh � dh.

2 Elastic energy for nacre in the thin layer
limit

On the microscopic level, the Young modulus E and the
Poisson ratio ν are dependent on y in our anisotropic and
inhomogeneous system; the stress must be continuous but
the strain field is not continuous. Thus, it is necessary to
distinguish the strains in the soft and hard parts; i.e. e(s)ij

and e
(h)
ij . However, assuming that the thickness of layers

is thin (in the sense that we can neglect the stress change
over a few layers), we can introduce a coarse-grained strain
field with the following elastic energy (see appendix):

f =
E

2(1− ν2)
e2xx +

E0

2
e2yy +

E0

1 + ν
e2xy +

νE0

1− ν
exxeyy,

(2)

where

E = Eh,

E0 = εEh.

We have assumed for simplicity that the Poisson ratio is
the same for both layers. As we shall see below, the size ξ of
the region of stress concentration is large when compared
to the repeat period: the coarse-grained picture is justified.

The strain-stress relation results from this energy by
the relation σij = ∂f/∂eij :

σxx =
E

1− ν2
exx +

ν

1− ν
E0eyy, (3a)

σyy = E0

(
eyy +

ν

1− ν
exx

)
, (3b)

σxy =
E0

1 + ν
exy. (3c)

3 Stress and strain in perpendicular fracture

We consider a nacre plate with a perpendicular notch
crack (much larger than the layer thickness) under a ten-
sile stress in the x direction. We deal with the single edge
notched tension (SENT) instead of the three-point bend-
ing configuration (see Fig. 3 (a-1)).

3.1 Simplification of the elastic energy

Introducing the Fourier components,

uα(r) =
1

(2π)2
∑
q

eiq·ruα(q),

we have

fq = |ux(q)|2
[

E

2(1− ν2)
q2x +

E0

4 (1 + ν)
q2y

]
+ |uy(q)|2

[
E0

2
q2y +

E0

4 (1 + ν)
q2x

]
+ux(q)uy(−q)qxqy

[
E0

2(1 + ν)
+

νE0

1− ν

]
,
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Fig. 3. Analogy between a notch and a variable condenser. (a-1) Notch crack in nacre. (a-2) Corresponding equi-displacement
lines. (b-1) Variable Condenser. (b-2) Corresponding equipotential lines. Equi-displacement lines are drawn in the case where ε
is of the order unity.

where fq is introduced by

F =
∫
drf =

1
(2π)2

∑
q

fq.

By minimizing this energy with respect to ux(q) and
uy(q), we have two linear equations for ux(q) and uy(q); 2

1−ν2 q
2
x +

ε
1+ν q

2
y ε

(
1

1+ν +
2ν

1−ν

)
qxqy(

1
1+ν +

2ν
1−ν

)
qxqy

1
1+ν q

2
x + 2q

2
y


×

(
ux(q)

uy(q)

)
=

(
0
0

)
. (4)

To eliminate uy(q), we use the second equation in equa-
tion (4), which is obtained by minimizing F with respect
to uy(q), to get

fq = |ux(q)|2
[

E

2(1− ν2)
q2x +

E0

4 (1 + ν)
q2y (1− Ψ)

]
,

where

Ψ =
1
4

(
1

1 + ν
+

2ν
1− ν

)2
q2x

q2x + 2 (1 + ν) q2y
.

By requiring (ux(q), uy(q)) �= 0 in equation (4), we have,
via 2×2 matrix determinant equation, two set of solutions.
For one of the solution, we have ux ∼ εuy; ux is negligible
for uy. This solution is inappropriate under the tensile
remote stress σ∞ in the x direction. The other solution is
relevant:

q2x ∼ −εq2y, (5)

uy ∼ −√
εux. (6)

From equation (5), we see that Ψ is the order of ε and
can be neglected. This implies that the energy is reduced
to the following form:

f =
E

2(1− ν2)

(
∂ux

∂x

)2

+
E0

4 (1 + ν)

(
∂ux

∂y

)2

. (7)
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Note that this energy is formally obtained by setting
uy = 0 in equation (2).

3.2 Equilibrium strain and stress fields under a remote
tensile stress

At equilibrium, the problem reduces to the following
Laplace equation obtained by minimizing the volume in-
tegral of equation (7) with respect to ux:(

∂2

∂x2
+

∂2

∂ŷ2

)
ux = 0,

where

ŷ =

√
2

ε (1− ν)
y.

When the crack tip position is the origin of the axes the
appropriate boundary conditions are (see Fig. 3 (a-2))

ux = ±u0 at x = ±L,
ux = 0 for x = 0, y < 0,

∂ux

∂x
= 0 for x = 0, y > 0.

The last condition corresponds to σxx = 0 at the crack
surface. This boundary value problem can be solved via
conformal transformation, by noting the analogy with a
variable condenser (see Fig. 3) [14,15]. The result is (for
both cases of x > 0 and x < 0)

ux =
2u0

π
Im

[
log

(
eiπz/(2L) +

(
eiπz/L − 1

)1/2
)]

,

with

z = x+ iŷ.

Here, the branch of log z with z = reiθ is such that θ = 0
for real positive z, while that of z1/2 is such that z1/2 = i
for z = −1. With this choice of the branches, we have the
displacement field shown in Figure 3 (a-2).

The crack shape, u(±)
x ≡ ux(x = ±0), is given by (for

y > 0)

u(±)
x = ±2u0

π
arctan

(√
eπŷ/(2L) − 1

)
,

as shown in Figure 4. In the vicinity of the origin, it re-
duces to a scaled parabolic form:

u(±)
x = ±2u0

π

√
y

ξ
,

where ξ is defined as

ξ =
2
√
ε

π
L.

crack shape
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stress at x=0

stress at x=L
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Fig. 4. Crack shape and stress distribution for a perpendicular
crack.

Here, we note that ξ is much smaller then the macroscopic
scale L.

The stress fields are calculated from equations (3a)-
(3c). From equation (6), we can neglect the contributions
from uy field to obtain

σxx = σ∞Re

[
eiπz/(2L)(

eiπz/L − 1)1/2

]
, (8)

where

σ∞ =
E

1− ν2

u0

L
. (9)

The other components, σyy and σxy, are the order of ε and√
ε (compared with σxx), respectively, and are neglected

in the present approximation.
The stress functions at the crack surface (x = 0) and at

the fixed edge (x = L) are shown in Figure 4. At the crack
surface all the stress components are zero as expected. The
nonzero stress distribution lies in the region y < 0:

σxx = σ∞
e−πŷ/(2L)(

e−πŷ/L − 1)1/2
, (10)

and the tip singularity is given as (for y < 0)

σxx = σ∞

√
2ξ
−y . (11)

At the edge, away from the notch, the stress becomes con-
stant; we can interpret this constant value as the remote
tensile stress σ∞ as already suggested by the notation.

Equation (10) implies that the stress change is rather
small for y � ξ, where ξ ∼ √

εL is much smaller than the
macroscopic scale but still large compared to the repeat
distance d: This justifies our continuum modeling.
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Comparing equation (11) with the familiar stress anal-
ysis of Irwin for a crack of the size a for the isotropic elastic
material,

σxx = σ∞

√
2a
−y ,

it may be legitimate to call ξ the effective crack size. In the
case of nacre, this effective crack size is small compared
with the macroscopic scale L as announced in [9]. Thus
the stress intensity factor (the coefficient of the pressure
singularity) is small. We can expect an increase of the
material’s resistance.

3.3 Fracture toughness and strength

3.3.1 Pure aragonite

For the isotropic pure aragonite, the energy stored in the
un-fractured part (away from the crack) is given by

f0 =
1− ν2

2
σ2
∞
E

,

per unit volume. This results from the classic elastic for-
mulae for an isotropic system under plane strain condi-
tions. Following Griffith’s idea of the energy balance, at
the moment of failure the energy f0 × 2L is equal to twice
the surface energy of the aragonite, i.e.

(
1− ν2

) σ2
∞
E

L = 2γh.

From this we have the failure stress for the pure aragonite,

σ
(0)
F =

√
2Ehγh

(1− ν2)L
. (12)

3.3.2 Nacre

For nacre with a perpendicular fracture, evaluating the
energy stored in the un-fractured part by equation (7) as
above, we obtain

f =
E

2(1− ν2)

(u0

L

)2

.

Following Griffith’s idea, the fracture energy is given by
G = f × 2L when σ∞ = σF. With the aid of equation (9)
this results in

G =
(
1− ν2

) σ2
F

E
L. (13)

The stress singularity at the crack tip in equation (11)
should be cut off at the distance δ(∼ d) for a consistent
continuum theory where the maximum stress is given by

σ1 = σ∞

√
2ξ
δ
. (14)

This can be interpreted as the stress on the first unbroken
aragonite sheet. The fracture tip will advance if and only
if σ1 > σYS, where σYS is the yield stress of the pure
aragonite and is given in equation (1). This in turn gives
the failure stress,

σF = σYS

√
δ

2ξ
, (15)

From equations (15) and (13), the fracture energy is given
by

G =

(
1− ν2

)
δ

2
√
εah

γh. (16)

This is the main result of this paper; it exhibits the en-
hancement of the fracture energy of nacre compared with
that of pure aragonite (see the discussion in Sect. 4).

From equations (15) and (12), we can also see the en-
hancement of the fracture strength:

σF ∼
√

δ√
εah

σ
(0)
F . (17)

4 Discussion

Equations (16) and (17) suggest that both the fracture
energy and strength are enhanced if δ > ah (considering
the required condition for ε, i.e. ε � 1.) Let us examine the
orders of magnitude. The cut-off length δ is related to the
coarse graining and is of the order of the layer thickness
d, i.e. δ ∼ 1µm. The size of the Griffith cavity for the
pure aragonite is smaller than δ because the aragonite
is nearly crystallized, and may be around ah ∼ 50 nm.
The parameter ε is estimated at 1/250, when 95% volume
is aragonite and ε is 5000. These estimates give about
1000 and 30 times enhancement of the fracture energy and
strength, respectively. The surface energy γh is of order
of 1 Jm−2 (one chemical bond per (3 Å)2). The fracture
energy G should then be of the order of 1000 Jm−2.

The work of fracture is enhanced when nacre is wet.
This experimental fact can be also understood from equa-
tion (16); in a wet state, Es may become small while Eh

may stay almost the same to give a decrease in ε.
Of course there may be other processes contributing to

an increase of toughness: apart from the static effects men-
tioned in the introduction, we can also have some enhance-
ment from the following two factors. But the contribution
discussed by equation (16) should always be present.

A) Plastic flow in the organic component [16,17] and
also irreversible slippage of the organic film at the
aragonite interface. These questions will require a
separate study.

B) Vicoelastic effects in the organic component [18]. If,
for the purpose of a simple discussion, we charac-
terize them by a single relaxation time τ , we know
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(from previous work on rubbers [18]) the following gen-
eral features: at distances x (from the fracture tip)
smaller than V τ the elastic moduli stick to their high-
frequency value, and the crack shape is the one dis-
cussed in our papers. At distances x > V τ relaxation
sets in, and the crack shape will be altered. The over-
all G will be increased. We propose to discuss these
features in a separate publication.

In the case of a parallel crack, the elastic energy in
equation (2) is not sufficient. We should include the bend-
ing energy of the plates around the crack tip [19–21]. A
preliminary analysis (which shall be reported elsewhere)
suggests that there is no significant enhancement of tough-
ness in this geometry.
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cially to Achod Aradian, for the warm hospitality during his
stay in Paris. He also appreciates informative discussions with
Elie Raphaël. and thanks the Japanese Ministry of Education,
Science, Sports and Culture for allowing him to stay in Paris.

Appendix A. Derivation of the elastic energy
in the thin layer limit

Considering a few layers under the constant tensile stress
σyy in the y direction where we neglect the displacement
of the hard layer in the y direction while we neglect that
of soft layer in the x direction, a macroscopic strain may
be expressed as

e(y)
yy =

ds

d
e(s)yy =

ds

d

1
Es

σyy, (A.1)

e(y)
xx = e(h)

xx = − ν

Eh
σyy, (A.2)

e(y)
zz = e(h)

zz = − ν

Eh
σyy, (A.3)

where d = dh + ds. Here, we have used the relations such
as exx = [σxx −ν(σyy+σzz)]/E for each layer. The super-
script (y) indicates that the strain is the one under only
σyy. Under σxx only, we have

e(x)
xx = e(h)

xx =
1
Eh

σxx, (A.4)

e(x)
yy = e(h)

yy = − ν

Eh
σxx, (A.5)

e(x)
zz = e(h)

zz = − ν

Eh
σxx. (A.6)

Under σzz only, we have similar relations for e
(z)
ii as above.

Noting that shearing components do not affect eii, we have

eii = e
(x)
ii +e

(y)
ii +e

(z)
ii when all the stress components come

into play, i.e.

eyy =
ds

d

1
Es

σyy − ν

Eh
(σxx + σzz),

exx =
1
Eh

[σxx − ν(σyy + σzz)] ,

ezz =
1
Eh

[σzz − ν(σyy + σxx)] .

Considering a few layers under a constant shear stress
where we neglect the displacement of the hard layer (only
the soft layers are deformed), a macroscopic strain is given
by

exy =
ds

d
e(s)xy =

ds

d

1 + ν

Es
σxy, (A.7)

where we have used the relation exy = 1+ν
E σxy for the soft

layer. Note here that any other components of the stress
tensor do not affect exy.

In the case of plane strain, we have

eyy =
1
Ys
σyy − 1

Yh
σxx, (A.8)

exx =
1
Yh

(
1− ν

ν
σxx − σyy

)
, (A.9)

exy =
1 + ν

Ys
σxy, (A.10)

with σzz = ν(σyy + σxx). Here,

Ys =
d

ds
Es = ε

d

ds
Eh,

Yh =
Eh

ν(1 + ν)
.

On a macroscopic level, the strains thus introduced
and the pressure in these equations can be regarded as
continuous variables; the pressures in equations (A.8) to
(A.10) are not necessarily constants. Inverting these rela-
tions we have

σxx =
ν

1− ν
(Yhexx + Yseyy), (A.11)

σyy = Ys(eyy +
ν

1− ν
exx), (A.12)

σxy =
Ys

1 + ν
exy. (A.13)

From the formula, f = σijeij/2 = (σxxexx + σyyeyy +
σxyexy + σyxeyx)/2, the elastic energy is given by

f =
νYh

2 (1− ν)
e2xx +

Ys

2
e2yy +

Ys

1 + ν
e2xy +

ν

1− ν
Ysexxeyy.

(A.14)
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