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Nucleation scenarios for wetting transition
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PACS. 68.08.Bc – Wetting.
PACS. 05.70.Np – Interface and surface thermodynamics.
PACS. 81.65.-b – Surface treatments.

Abstract. – The wettability of textured surfaces is strongly dependent on the contact state
of a small drop deposited on them. We consider transitions via nucleation between two repre-
sentative contact states of Cassie and Wenzel when there exists hysteresis in the contact angle.
We find that the effect of the hysteresis is significant: a drop can be trapped by various states
which are neither Cassie nor Wenzel states in the conventional sense.

Introduction. – Recently, wetting properties of surfaces artificially textured at submicron
or nano scales have attracted a considerable attention; the possibility to tune textures to attain
desired purposes has been actively explored by experiments, simulations, and theories [1–16].
On such textured surfaces, the contact state of a liquid drop controls the wetting property.
Possible contact states include the Cassie state (fig. 3a below) where air is trapped between
the bottom of the liquid drop and the solid surface and the Wenzel state (fig. 3c below) where
liquid at the contact may penetrate into the texture; the latter Wenzel drop is very sticky,
showing high contact angle hysteresis, while the former Cassie drop easily rolls on the surface
by small perturbation. The transition between them is discussed in this paper.

We consider a model surface textured by a forest of cylindrical pillars arranged in a square
lattice with a lattice constant L, where the radius and height of the pillars are b and h,
respectively, as in fig. 1. The surface roughness r is given as the ratio of the actual area to
the projected area: r = 1+ 2πbh/L2. The solid fraction φ of the contact circle at the bottom
of the Cassie drop can be represented by φ = πb2/L2.

On the textured surface, we deposit a spherical liquid drop of radius R0 small enough to
neglect gravity. At equilibrium, the shape of the drop is characterized by the radius of the
contact circle given by X ≡ R sin θ together with the contact angle θ as in fig. 2. Here, the
radius R is determined by equating the volume of the drop in fig. 2 with the original volume,
4πR3

0/3 (the volume of liquid penetrated into textures is always negligible: R0 � b, h, L):

R/R0 = 41/3(2− 3 cos θ + cos3 θ)−1/3. (1)

The contact angle θ is determined to minimize the surface energy for a given contact
state. As a result, the contact angles of the Wenzel drop and of the Cassie drop are given
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Fig. 1 – Top view of the surface textured by pillars.

Fig. 2 – A drop placed on a surface. The liquid-air interface of the drop shall be called a spherical cap,
whose area is SC . The area of the bottom planer contact circle of radius R sin θ shall be denoted SB .

by cos θW = r cos θ0 and cos θC = φ cos θ0 − (1 − φ), respectively, where the contact angle of
the original flat surface is θ0 [17]. The corresponding R takes a value RW ≡ R(θW ) for the
Wenzel state and RC ≡ R(θC) for the Cassie state, with R(θ) defined in eq. (1).

The surface energy E1 of a drop placed on a textured surface with the contact angle θ is
simplified when θ = θW or θC [18]:

E1/E0 = 2−2/3
(
2− 3 cos θ + cos3 θ

)1/3
(2)

which is an increasing function of θ. Here, E0 ≡ 4πR2
0γ is the surface energy of the original

spherical drop where γ is the surface energy of the liquid.
When θW < θC , the Wenzel drop surface energy is lower than the Cassie drop energy

because E1 in eq. (2) is an increasing function of θ: in terms of energy the Wenzel state is
expected. In experiments, however, even when θW < θC , the drop could be in the Cassie
state at first and then changed into the Wenzel state by small perturbation: the Cassie state
could be a metastable state separated from the stable Wenzel state by an energy barrier.
This barrier problem was studied by two groups [9,18] in the same spirit, without taking into
account the contact angle hysteresis (CAH). In this study, we examine the barrier under the
influence of CAH in a different mode of transition. We note that the effect of CAH is recently
considered also in ref. [19] in a different context of impact of drops.

Nucleation of Wenzel contact. – For the barrier estimation, we assume that the transition
from the Cassie to Wenzel state starts from the center (see fig. 3): a nucleus of a Wenzel contact
is formed at the center for some reason and then it begins to grow. Here, the Wenzel contact
is a region inside which liquid is penetrated into the grooves as in the Wenzel state and outside
which air is trapped as in the Cassie state. We expect this nucleation scenario when there
exists a certain inhomogeneity around the center (possibly due to a slight effect of gravity
and/or to a defect of texture). We consider below the case where θW < θC , because this
situation has been often discussed in the literature.

Once nucleation growth starts, the radius x of the Wenzel contact gets larger while the
radius X of the apparent contact circle could move independently (of x) in general (we consider
below only the region X ≥ x; the surface energy always increases as x exceeds X, because
of the creation of an extra liquid-air surface in addition to liquid-solid surface): intermediate
states can be specified by the parameters x and X (fig. 3b).

Surface energy of intermediate states. – We can calculate the surface energy Es(x,X) of
the state specified by (x,X). The result can be cast into the following form:

Es(x,X)/γ = SC(X)− cosΘ(x,X)SB(X), (3)
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Fig. 3 – Cassie-Wenzel transition by nucleation. Air is trapped at the contact in the Cassie state (a),
while liquid penetrates into the texture in the Wenzel state (c). The transition between the two states
progresses with the growth of a circular region (Wenzel contact) of radius x at the bottom (b). The
radius of apparent contact circle X (> x) may change during this process.

where SC(X) and SB(X) are the area of the spherical cap and of the bottom circle for a given
X (see fig. 2). Note that the radius R and the angle θ in fig. 2 can be determined from the
condition of volume conservation of the drop for a given X, and thus SC(X) and SB(X) can
be calculated for a given X via numerical root finding. The parameter Θ(x,X) is given as

cosΘ(x,X) = fW cos θW + (1− fW ) cos θC , (4)

where fW = x2/X2 is the area fraction of the nucleus at the contact (fig. 3b). Note that
the parameter Θ(x,X) is in general different from the angle θ in fig. 2 (the latter angle is
determined by geometry while the former by area fractions of the Wenzel and Cassie contacts
under the drop); otherwise eq. (3) would be reduced to a simpler form given in eq. (2).

The energy E ≡ Es(x,X) numerically obtained is plotted in fig. 4 for typical parameters
(specified in the first line of table I). On the left plot, the point on the surface PC = (x = 0,
X = XC , E = EC) represents the Cassie state where XC ≡ RC sin θC(= 0.302R0) and
EC = Es(0,XC) because this state is specified by (x,X) = (0,XC). Likewise, the point
PW = (XW ,XW , EW ) on the surface represents the Wenzel state where XW ≡ RW sin θW (=
0.914R0) and EW = Es(XW ,XW ). When a drop is initially in the Cassie state at PC , it tends
to follow the steepest descent path on the surface to minimize the energy down to the final
Wenzel state at P ∗.

We have checked that the steepest path here is the shortest line (i.e., the straight line
on the right contour plot) connecting PC and PCW = (XC ,XC , E′), followed by the shortest
line connecting PCW and PW (There is no energy barrier in this transition pathway once the
initial nucleation patch is created, where the patch energy is about γL2). This suggests the
following fate of this drop: X (specifying the position of a macroscopic circular contact line)
remains to be the initial Cassie value XC until x (size of the nucleus) reaches XC and, after
this, x(= X) grows to the final value XW .

It would be difficult to see that the steepest descent path from PC to PCW is the shortest

Table I – Parameters used in numerical estimates. h, b, L are given in µm while the angles are in deg.
The equilibrium contact angle is θ0 = 110 deg and the radius of the drop is R0 = 1mm in both cases.

h b L r φ θW θC XC/R0 XW /R0

5 1.5 10 1.47 0.0707 120 163 0.302 0.914
10 1.5 10 1.94 0.0707 132 163 0.302 0.767
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Fig. 4 – Energy landscape without CAH. The energy surface on the left is cut by the three planes
defined by the equations x = 0, X = XW (= 0.914R0), and x = X, respectively, to show the region
of interest. The steepest descent paths from PC to PCW and from PCW to PW are the shortest lines
connecting them, as indicated on the right contour plot of E/E0.

line between them on the scale of fig. 4, but there exists a steep valley along the line on the
scale of thermal energy (see below). This would be reasonable since the Cassie state is the
minimum of the variable X at x = 0.

The criterion for the nucleation growth can be discussed in terms of competition between
the energy of the circular surface of the nucleus and that of the peripheral surface of the
nucleus. The former is given by −πx2γ (cos θW − cos θC) while the latter by 2πxhγ (1− φ).
This leads to a critical size of the nucleus of the order of h in our parameter range. This
indicates that the smallest initial patch (x � L) is already above the critical size so that the
peripheral energy could be neglected below.

Energy associated with CAH. – If CAH is nonzero, one has to apply a force γδ(i) (per
unit length of the contact line) to move the contact line on pillar surfaces and on the bottom
flat surface (the plane where pillars are built). Here, CAH is specified by δ(i):

δ(i) = cos θ(i) − cos θ
(i)
A . (5)

Note that the equilibrium contact angle θ(i) and the advancing angle θ
(i)
A on the pillar surface

(i = p) or the bottom flat surface (i = b) might be different from those on the original flat
surface (e.g., the surface of pillar side is often very rough, as often shown in a microscopic
photograph). We neglect below the CAH on the pillar top for simplicity, which is appropriate
for φ � 1.

The energy required to move the contact line of length 2πb around a pillar from the
top down to the bottom by a distance h is given by 2πbhγδ(p). This expression is actually
independent of the direction of invasion (e.g., when a pillar is invaded from the side the contact
line of length h moves by a distance 2πb, resulting in the same energy, 2πbhγδ(p)). The energy
of friction with pillars for a nucleus of radius x is thus given by

Ep(x) = 2πbhγδ(p) · πx2/L2. (6)

Similarly, the energy of friction with the bottom flat surface is given by

Eb(x) = 2πx2(1− φ)γδ(b). (7)
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Fig. 5 – Energy landscape with a moderate CAH (∆ = 15deg). The steepest descent paths from PC

to PCW and from PCW to P ∗ are again the shortest lines connecting the adjacent points.

Fate of drops with CAH. – It is convenient to consider the total energy required to attain
a state represented by (x,X): E(x,X) = Es + Ep + Eb. The required energy is uniquely
determined by (x,X) for the process in which x keeps increasing, although E(x,X) is not the
potential energy (the friction force is not conservative): The energy landscape indicates the
direction of change of our nucleation process on the (x,X)-plane. This E for a moderate CAH
(∆ ≡ θ

(i)
A − θ(i) = 15deg, independent of i), with the other parameters given in the first line

in table I, is shown in fig. 5. Here, we find the following scenario: the drop starts from the
point PC = (0,XC , EC) to PCW = (XC ,XC , E′) and down to P ∗ = (X∗,X∗, E∗), following
the steepest descent path, and may stay there: the drop at P ∗ has to climb an uphill to go
to PW (unlike the situation in fig. 4) because external energy is required to move the contact
line. The trapped state represented by P ∗ is neither the Cassie nor the Wenzel state in the
conventional sense: liquid is fully penetrated at the whole contact circle as in the Wenzel state
but the contact angle θ∗ is different from θW (θW < θ∗ < θC).

With a stronger CAH but still in a realistic range (∆ = 30deg), the drop starting from
PC = (0,XC , EC) sees an uphill in any direction (fig. 6): the Cassie drop remains to be in the
state without an energy input from the exterior, as may be typically observed in experiments.
When the drop gets an energy from outside, it would seek the easiest uphill up to PW on the
surface of the left plot in fig. 6. When the applied energy is used up to go the uphill up to
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Fig. 7 – Energy landscape for h = 10µm: (left) ∆ = 0deg and (right) ∆ = 15 deg.

somewhere between PC and PW , it cannot roll down the slope and stay there because such a
movement is always accompanied by the movement of the contact line and thus requires an
energy (here, E is not a potential energy).

When the pillar becomes higher (fig. 7; see the second line in table I for parameters),
although there exists no barrier from the Cassie state to the Wenzel state (once nucleation
starts) if CAH is absent, the effect of CAH (if it exists) is stronger (than in figs. 5 and 6).
This is due to an increase in dissipation associated with higher pillar walls: the Cassie state
tends to be meta-stabilized more easily.

We here comment on the roll of thermal fluctuations in this problem. The energy scale kT
(the Boltzmann constant times temperature) is much smaller than a typical surface energy:
kT/E0 � (a/R0)2 � 10−14, where a is a molecular scale. This implies the trapped state in
the above is metastable for thermal fluctuations. In addition, the thermal energy is too small
to create the initial nucleation patch, which requires an energy γL2 (L � µm): kT/γL2 �
(L/R0)2 � 10−9. This implies that, even without CAH, there is a barrier of the order of γL2

between the Cassie and the Wenzel states, if there exist no defects in the texture.

Conclusion. – We have considered a nucleation of the Wenzel contact from the center
of the Cassie state, as a representative case with inhomogeneity at the contact circle, in
the regime where the Wenzel state has lower surface energy. The transition pathway from
the Cassie to Wenzel state without CAH is clarified: the macroscopic circular contact line
(specified X) is pinned till a nucleus size catches up with the size of the initial Cassie contact
circle (specified XC). With CAH, the landscape of the energy, which includes the hysteresis
term, is helpful to understand the fate of a drop on a textured substrate: the macroscopic
contact line (specified X) of a drop always prefers the pinning in the above sense during
transitions by nucleation. We find that a drop could be trapped in a state which is neither
Cassie nor Wenzel state, with a modest CAH. With a larger CAH, but still in the range of
typical values, the drop can be trapped by various states depending on the energy applied to
the drop as an external perturbation. Similar effects are also important in the homogeneous
transitions considered in [17], which will be discussed elsewhere.

Our calculation suggests that the contact state of a drop on textured surface strongly de-
pends on hysteresis. Simplification of being either in the Cassie or Wenzel state is precise only
when CAH is unrealistically small. Experimental confirmation of our indication is possible.
We could note that the CAHs of the Cassie and Wenzel states are quite different: such CAHs
for intermediate states may be a good indirect measure of various contact states (e.g., we
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expect that the CAH for the P ∗ state is between those of the Wenzel and Cassie states); we
can confirm our scenario by measuring such CAHs of a drop (which is gently deposited first
and then gets an energy) for various sizes of the energy input. A more qualitative confirmation
would require direct observation of the contact state with changing an energy supply.
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