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Abstract. – Nacre, often found inside sea shells such as oysters, has a spectacular resistance
to fracture, which results from their construction out of alternating layers of soft and hard
material. The fracture resistance is greatest for cracks moving perpendicular to the layers, but
cracks parallel to the layers also have difficulty in progressing, and this fact has not been well
explained. In this letter, we consider small parallel fractures in nacre-like material and show
the possibility that the fracture energy is increased over a value due to the near-tip processes
by a factor λ that is given by the ratio of short- and long-time viscoelastic moduli of the soft
matter. Small cracks running along the layers take a scaling form we call a “lenticular trumpet”
that has not previously been observed.

Introduction. – Nacre is a composite material with solid layers (aragonite) separated by
thin slices of soft organic matter (proteins) (fig. 1). It has a spectacular toughness where a
fracture propagates normal to the layers [1–4]. This toughness can be explained from the
absence of stress concentration in this structure [5, 6]. In the present letter, we consider a
different problem, where the fracture plane is parallel to the layers. The fracture properties
have some similarity with those of a smectic liquid crystal, which have been discussed under the
name of lenticular fracture where the bending effects of the layers are taken into account [7,8].
Our aim here is to consider the dynamics, when the soft layers behave like a viscoelastic fluid.
But we shall start with a reminder of the statics: we summarize previous results obtained
from the addition of the bending term in a simpler scaling argument.

The crucial feature is that, for a fracture cavity of size X along the layers, the elastically
distorted zone has a size Y (perpendicular to the layers) which does not scale like X, but
rather like

Y � X2/l (1)
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Fig. 1 – Nacre-type structure of materials: hard layers (elastic modulus Eh, thickness dh) are glued
together by soft layers (modulus Es, thickness ds). Cracks in the (y, z)-plane and the (x, z)-plane are
called perpendicular and parallel fractures, respectively (the z-axis is perpendicular to this page).

for small cracks (X � l), where l is a characteristic length,

l2 = KB/E0. (2)

Here KB is the bending modulus and E0 (= Esdh/ds) is an elastic modulus associated with
the soft layers. In the following it is essential to note that eq. (1) always holds at the scaling
level. (For larger cracks (X > l) the relation (1) turns back to X � Y ; this regime will be
discussed elsewhere [9].)

For stratified materials, the following relation has been shown [8]:

l = d/
√
ε, (3)

where
ε =

Es

Eh
· dh

ds
(4)

in the small-ε limit (see fig. 1 for notations). In the case of nacre, the small-crack condition
X � l is rather severe (l � 50d). Thus, the following considerations might be more practical
for some artificially synthesized layered composites where Es (associated with the soft weak
gel) is very small so that l � d.

The small-crack condition X � l makes the situation different from the smectic liquid
crystals: we have Y � X because l corresponds to an atomic scale (X/l � 1 in eq. (1)) in the
liquid-crystal case, [7] while, in the present case (X/l � 1), we have X � Y . The anisotropic
strain field is distributed widely in the x-direction compared to that in the y-direction (see
fig. 2 below) in our case.

The potential energy (per unit length in the z-direction) of the crack is dimensionally
given as

F � KB

(
u

X2

)2

XY − σuX + GX. (5)

Here, u is the displacement in the y-direction, σ the pulling stress (along the y-axis) and G
the fracture energy (energy required to create a new unit area). (It has been shown that
the dominant component in strain and stress tensors are indeed the y components (u and σ,
respectively) [8].) Note here that the first elastic term can be equally expressed as E0(u/Y )2

due to eq. (1); this term actually results from a local balance between these two elastic contri-
butions and eq. (1) originates from this balance condition [7]. On minimizing F with respect
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Fig. 2 – Scaling image of strain (stress) and deformation fields. Solid lines and broken lines are
positive and negative deformation contours. Magnitudes of stress or strain are indicated by a gray
scale (the darker the area, the larger the stress). The smaller the distance from the tip, the more
anisotropic the behavior. Beyond a distance larger than l, the usual isotropic behavior is recovered.
(Fracture studied in this paper is always limited to the case where X � l.)

to u, then, F (X) has a maximum corresponding to the onset of fracture. At this critical state
of fracture we have

u ∼ X, σ ∼ X−1, σu � G, (6)

where the last equation announces that the product σu gives the fracture energy. These frac-
tures are very different from the conventional parabolic fractures in the linear elastic fracture
mechanics [10] where the scaling laws are replaced with u ∼ X1/2 and σ ∼ X−1/2. In a more
precise analysis, we have obtained forms for u(x, y) and σ(x, y), [8] which are consistent with
eqs. (6) and (1).

Equation (1) states that, at the scaling level, one point away from the tip by a distance X
along the x-axis and another by a distance Y along the y-axis have the same order of strain
(or stress), as long as Y � X2/l; the situation can be schematically represented as in fig. 2.

We now proceed to the dynamics with employing a complex modulus of the form [7]

µ(ω) = E0 + (E∞ − E0)
iωτ

1 + iωτ
, (7)

where the ratio
E∞
E0

= λ

is assumed to be large as it is in a weakly cross-linked system. Here, E0 is related to a
small modulus associated with weak cross-links (E0 = Esdh/ds), while E∞ to a large modulus
originating from entanglements. Equation (7) is a result of taking viscoelastic effects in soft
layers through a complex modulus of the same form (but with E0 and E∞ replaced by Es

and λEs) [9].

Crack shape and fracture energy. – We consider a parallel crack propagating with a
constant speed V . When V is smaller than the sound velocity (� √

E0/ρ), the equation of
motion at the scaling level, ρDv/Dt = −∇σ (with the density ρ and the local velocity v),
reduces to a static equation: ∇σ = 0. This is even true in our linear rheological model. In
addition, the stress components must also satisfy a compatibility equations, which directly
result from the definitions of strain fields (i.e. derivatives of deformation fields). But these
geometric conditions, again, have the same scaling structures for our linear rheological model.
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Fig. 3 – Three spatial regimes for our viscoelastic model. Due to the scaling relation X2 � Y l, the
regions appear as anisotropic. The smallest region characterized by d has to be excluded from our
arguments based on a continuum theory. Note that for a crack smaller than this figure with V τ <
L < λV τ only the regions I and II are developed while for an even smaller crack with d < L < V τ
only the region I is developed; this figure corresponds to a fully developed crack (L > λV τ). Note
also that the degree of anisotropy of the boundaries separating regions are subject to the ratio of V τ
or λV τ to the length l; the smaller the ratio, the more anisotropic the behavior.

Thus, the scaling relation for the stress in eq. (6), σ ∼ 1/X ∼ 1/
√
Y , remains unchanged even

in our viscoelastic model. These observations will be more precisely addressed elsewhere [9].

Another important observation here is the scaling identification of a distance X along the
x-axis from the tip and the frequency ω via the speed V :

X � V/ω; (8)

small distances correspond to high frequencies, while long distances to low frequencies —the
farther away from the tip, the more time for relaxation. In addition, from eq. (1), the same
magnitude of strain with the point specified by the above X is developed at a point separated
from the tip by a distance Y (� X2/l) along the y-axis; these points have the same time
(1/ω � V/X) to relax. Thus, a distance Y from the tip sees the same frequency ω but a
slower propagating speed Vy � V X/l (Y � Vy/ω). In other words, we can imagine that
fig. 2 correspond to a sequential propagation of the stress field (from the center outwards).
We also note that, seen from a new coordinate (x′, y′) = (x2/l, y), the system returns to an
isotropic system. For example, eqs. (6) are changed into the conventional parabolic form:
σ ∼ 1/

√
X ′ ∼ 1/

√
Y ′ and u ∼ √

X ′ ∼ √
Y ′, etc.

Our viscoelastic model in eq. (7) has three regimes depending on frequencies: I, at high
frequencies (1 � ωτ) it is like a solid with a large modulus µ(ω) � E∞; II, at intermediate
frequencies (1/λ � ωτ � 1) it is like a liquid with viscosity µ(ω) � iωη, and III, at small
frequencies (ωτ � 1/λ) it is like a soft solid with a small modulus µ(ω) � E0. Due to the
correspondence between a distance and a frequency in eq. (8), a fracture can be thus spatially
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Fig. 4 – Lenticular and parabolic viscoelastic trumpets.

divided into three regions (fig. 3):

(I) d � X � V τ : hard solid (modulus E∞),
(II) V τ � X � λV τ : liquid (viscosity η),
(III) λV τ � X: soft solid (modulus E0). (9)

We consider a small-crack size L with L � λV τ � l (larger-crack sizes (L � l) will be
discussed elsewhere [9]); then, all the three regions I–III are fully developed. The soft-solid
region III corresponds to low frequencies, and thus, to the static limit; in this region (l � X �
λV τ), eqs. (6) hold. In the liquid zone (II), the stress field scales as σ � ωηu/Y � ηV lu/X3

and at the same time it should scale as σ ∼ Y −1/2 ∼ 1/X even in this liquid region as stated
above. Thus, the strain should scale as u ∼ X2 and the product as σu � X. The coefficients
can be determined by the matching at X � λV τ (the boundary between III and II):

σu � GX

λV τ
(liquid zone). (10)

In the hard-solid region of E∞, we find σ � 1/
√
Y and u � √

Y as in eqs. (6) but with
σu � G0 (via the same manner as in deriving eqs. (6)). Here, G0 is associated with the hard
solid appearing near the tip. Matching this latter product σu with that in eq. (10) at X � V τ ,
we find G ∼ λG0. The overall separation energy G for a fully developed crack is enhanced
from G0 associated with local processes near the tip. Note here that this expression for G in
our continuum theory is valid only for d < V τ .

The crack shape resulting from this analysis is summarized as follows:

u ∼



X, for λV τ < X,

X2, for V τ < X < λV τ,

X, for X < V τ.

(11)

It is just like a trumpet with a lenticular edge (fig. 4a), as has been suggested by the name of
the model, but different from previously known shapes; it is neither similar to the conventional
parabolic form nor to an isotropic parabolic trumpet predicted [11] and observed [12] in certain
polymer systems (fig. 4b).

We complete our arguments by considering smaller fractures. When V τ < L < λV τ , only
the hard-solid and liquid region are present; the soft solid has yet to develop. In this situation,
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the fracture energy is given by eq. (10) at X = L, i.e. G � G0L/(V τ); the toughness decreases
with velocity. When L < V τ , only the hard-solid region is developed and the fracture energy
is given by G0. Thus, with increase in V , the fracture energy starts from a larger plateau
value λG0, and then decreases to reach a smaller plateau value G0:

G(V ) �



λG0, for d/τ < V < L/(λτ),
G0L/(V τ), for L/(λτ) < V < L/τ,

G0, for L/τ < V.

(12)

This behavior can be confirmed more precisely from a general formula:

G(V )
G0

� E∞
∫

dω
ω

Im
[

1
µ(ω)

]
, (13)

which can be analytically calculated for the present model (just as in the previously known
isotropic case [13]). It should be emphasized here that this formula is unaltered even in our
anisotropic materials, which is by no means trivial; eq. (13) here can be shown in the following
manner. We start from a relation:

G(V )V �
∫

dx
∫

dyσė �
∫

dXY σX ėX . (14)

In order to estimate ėX , we again use the dimensional identification in eq. (8): ėX � ėω �
ωσω/µ(ω) � ωσX/µ(ω) and

G(V ) �
∫

dω
Y σ2

X

ωµ(ω)
� E∞G0

∫
dω

1
ωµ(ω)

. (15)

Here, we have used a more precise form of eq. (6), σX � √
E∞G0/Y , which should be valid for

any frequency [9]. Since the real and imaginary parts of 1/µ(ω) are even and odd functions,
respectively, we arrive at eq. (13).

Conclusion and discussion. – In this paper, we present a physical picture for fractures
in nacre-type materials via scaling arguments. Viscoelastic effects for parallel fractures are
taken into account via the simplest viscoelastic model for a weakly cross-linked polymer. We
expect that for slow crack propagation speeds (l � λV τ) a small crack (L � l) takes a new
trumpet shape different from previously reported shapes. The overall fracture energy G is
enhanced from G0 (associated with the hard-solid region originating from the entanglement
effects) by a large factor λ for the fully developed cracks. With increase in velocity V , G is
found to decrease from this large plateau value λG0 to a smaller plateau value G0.

Since G0 is associated with the local process near the tip and in such a region there is no
time for polymer molecules to perform the reptations, this energy might be comparable to
that required to break chemical bonds and the value of G0 experimentally observed in [12]
(order of J/m2) is consistent with this interpretation.

The same line of study leads to the fracture energy of large cracks (L � l) enhanced by the
same factor λ, although the crack shape is different. This case will be discussed elsewhere [9].
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