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PACS. 64.70.Md – Transitions in liquid crystals.

PACS. 64.60.Qb – Nucleation.

PACS. 61.30.Vx – Polymer liquid crystals.

Abstract. – Single-crystal nematic elastomers undergo a transition from a strongly ordered
phase N to an “isotropic” phase I. We show that: a) samples produced under tension by
the Finkelmann procedure are intrinsically anisotropic and should show a small (temperature-
dependent) birefringence in the high-temperature I phase; b) for the I → N transition via
cooling there is a spinodal limit but for the N → I transition via heating there is no soft mode
at the standard spinodal temperature; c) the N → I transition is reminiscent of a martensitic
transformation: nucleation of the I phase should occur in the form of platelets, making a
well-defined angle with the director.

Introduction. – Nematic rubbers were first constructed in a single domain form by Finkel-
mann and coworkers [1]. They show a spectacular change in shape when they are switched
from low temperatures (T < Tc) to high temperatures (T > Tc). Many properties resulting
from the coupling between nematic order and elastic deformations [2] have been analyzed by
Warner, Terentjev and coworkers [3]. We are concerned here mainly by the transition from
the nematic phase N to the high-temperature phase I.

Two striking facts should be mentioned here: a) the transition is expected to be first order,
but the plots of birefringence vs. temperature T are continuous [4]; b) the transition is very
slow (minutes) [5].

Our aim here is to discuss some effects of the nematic/elastic coupling on the phase transi-
tion. First, we discuss the anisotropy induced by the preparation method. We show that this
preparation imposes a fixed external field coupled to the order parameter: under this field the
plots of order vs. temperature are expected to be continuous. Second, we analyze T -jumps:
for a cooling jump we find a traditional spinodal transition. But for a heating jump we show
that the elastic couplings tend to suppress the spinodal instability. Finally, we discuss the
nucleation of an I phase inside a nematic single crystal, and show that it should take place in
the form of platelets, with well-defined geometrical conditions.
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Anisotropy effects. – In the Finkelmann scheme, a very weak network is prepared first,
and is put under a prescribed deformation ε0zz along one axis [1]. Then a second reaction is
started and the final nematic rubber is generated. The basic energy for this situation is of the
form

F = F0

(
Qαβ

) − ΛQαβεβα + µ
(
εαβ − ε0αβ

)(
εβα − ε0βα

)
, (1)

where summation over the repeated indices is implied. For simplicity, we restrict our attention
to small deformations εαβ . F0 is the standard Landau free energy of the nematic order,
Λ describes the coupling between deformation and order, and the last term is the shear
elastic energy (we consider only incompressible systems: Qαβ and εαβ are symmetric traceless
tensors). The crucial point in eq. (1) is that the elastic energy (with a strong coefficient µ) is
minimal in the original state (ε = ε0). We can shift the definition of deformations, writing

ε = ε0 + e, (2)

where e measures actual deformations from the high-temperature I phase. Then the energy
is (in contracted notation)

F = F0 − ΛQε0 − ΛQe+ µe2. (3)

There is a constant field σ0 = Λε0 acting on the order parameter. This linear term in Q
implies that, in the nominally isotropic I phase, we have a non-zero order Q.

Writing explicitly for small Q

F = A0(T )QαβQβα − σ0
αβQβα − ΛQαβeβα + µeαβeβα (4)

via minimization in terms of eαβ :

eαβ =
Λ
2µ
Qαβ , (5)

we first arrive at the classical renormalization of A0(T ) � a0(T − T0):

F = a(T )QαβQβα − σ0
αβQβα, (6)

where

a(T ) = A0(T )− Λ2

4µ
≡ A0(T )− a0∆Tc. (7)

This minimized energy gives a finite high-temperature order:

QI
αβ =

σ0
αβ

2a(T )
. (8)

This describes a birefringence which is high near the transition point (where a is small) very
much like the Kerr effect in standard nematics. This may be an explanation for the results of
ref. [4].

In the following, we employ a Landau expansion in terms of Q→ Q−QI , and set the free
energy to be zero at this “isotropic” phase, which now corresponds to Q = 0.

Absence of spinodal instabilities. – Can we achieve the transition by soft phonon modes?
Since our materials are essentially incompressible, we must investigate the transverse phonons.
We assume rapid equilibration for the elastic degrees of freedom: we always use eq. (5).

For a transverse phonon of wave vector q and displacement field u (with q · u = 0) the
deformation is

eαβ =
1
2
(
qαuβ + qβuα

)
. (9)
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Fig. 1 – (a) First transverse mode u = (u cos θ, 0,−u sin θ). (b) Second transverse mode u = (0, u, 0).
Note the difference from fig. 2: the director vector is parallel to the z-axis.

a) Consider first the instability of the disordered phase upon cooling (I → N transition).
Here the Landau free energy in eq. (6) for small but nonzero amplitudes reduces to

F = a(T )QαβQβα (10)

and at the spinodal temperature T ∗∗ the coefficient a(T ∗∗) vanishes. Note again that, in this
expansion, Q is actually the difference from QI .

Amplitudes of our transverse phonons are proportional to Qαβ (eq. (5)) and the energy
required for the phonon generation vanishes at T = T ∗∗: the phonons are soft at this temper-
ature.

b) The situation is different for the N → I transition upon heating. Here we start with a
uniaxial nematic phase with nonzero components (Qxx, Qyy, Qzz) = (−S/2,−S/2, S); we can
find a candidate for the spinodal temperature T ∗ for a special value S = S∗, satisfying the
conditions

∂F

∂S
=
∂2F

∂S2
= 0 (at S = S∗ and T = T ∗). (11)

We employ the Landau expansion (which is already minimized for the elasticity)

F − F0 = aQαβQβα − bQαβQβγQγα + c
(
QαβQβα

)(
QγδQδγ

)
, (12)

where b and c are positive (see Chapt. 2 of ref. [6]).
We expand the free energy to second order around the spinodal point. At this point the

coefficient ∂2F/∂Q2
zz = 0 but the other curvature coefficients do not vanish. We find

F (Q)− F (Q∗) =
9b2

64c

[(
Qxx −Qyy

)2 + 4Q2
xy

]
. (13)

The linear term in ∆Qαβ ≡ Qαβ −Q∗
αβ and the ∆Q2

zz term vanish as expected from eq. (11).
In addition, there is no term proportional to Q2

zx and Q2
zy: they are ruled out by the rotational

invariance around the director axis z.
We can now investigate the transverse phonon modes (fig. 1).
The first mode, with q and u in the x-z plane (fig. 1a), induces a component proportional

to Qxx (� qxux = ε sin θ cos θ with ε ≡ qu), but not to Qyy. Thus, it contributes to the
(Qxx − Qyy)2 term in the free energy, which is positive (� µe2xy ∼ (ε sin θ)2). A finite
Qxx −Qyy implies a biaxial nematic, and this costs energy.

The second mode, with u normal to both q and director vector, induces an amplitude of
Qxy (� qxuy = ε sin θ): again this induces biaxiality and requires a finite energy (� µe2xy ∼
(ε sin θ)2).
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Fig. 2 – (a) Habit plane separating nematic and isotropic regions. In two dimensions the “isotropic”
network is represented by a square array, while the nematic network is represented by parallelograms.
Along the habit plane the two networks match. (b) Detailed definitions of angles and axes.

Fig. 3 – Platelet nucleus in the nematic phase accompanied by a large strain around the periphery.

We conclude that both transverse modes are not soft for all nonzero angles (θ 	= 0) at
T = T ∗. The θ = 0 mode is soft at all temperatures, if F (Q) has full rotational invariance.
But this mode cannot cause a change in the magnitude of the order parameter and does not
catalyze the transition.

Nucleation of a high-temperature I phase. – We consider now a T -jump from a temper-
ature just below the thermodynamic transition point Tc towards a higher temperature T , in
the region where spinodal instabilities are ruled out.
A) Choice of a habit plane

We now investigate a possible plane boundary (habit plane) between I and N phase.
A.1) The two-dimensional case (plane strain)

This two-dimensional example (in the x-z plane) is shown in fig. 2, where we impose
compatibility between an I phase (represented symbolically by a square unit cell) and a
uniaxial N phase (represented by parallelograms). The squares have been rotated by an
angle φ from the x-axis. The N phase has an elongation ezz along the z-axis, which will be
determined below. Note here that the director is not parallel to the z-axis; the parallelograms
are sheared with a strain

exz =
1
2
(∂xuz + ∂zux) =

1
2
tanφ. (14)

Here and hereafter displacement fields are defined in the x-z frame shown in fig. 2b. There is
also a deformation exx = −ezz in the N phase (we assume incompressibility) and matching
imposes 1 + exx = cosφ. The two-dimensional deformation matrix is written as

ê ≡
(
exx exz

exz ezz

)
=

(
cosφ− 1 1

2 tanφ
1
2 tanφ 1− cosφ

)
. (15)

Thus from fig. 2b the angle θ between the director axis and the habit plane is given by

tan(θ + φ) =
1 + ezz + sinφ

cosφ
=

2− cosφ+ sinφ
cosφ

. (16)
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Note that, for small φ, the parallelogram is a lozenge, and the director is parallel to the long
axis of the lozenge —at π/4 from the habit plane (fig. 3 corresponds to this limit).

The magnitude of φ is fixed by the condition that the elastic energy of N state be equal to
the equilibrium value f(Ti) in the initial nematic phase. Under the incompressibility condition,
we have f(Ti) = µ(e2xx + e2zz + 2e2xz) = 2µ(e2xx + e2xz). Thus, φ is determined by

f(Ti)/(2µ) = (1− cosφ)2 +
1
4
(tanφ)2. (17)

For this two-dimensional case, we achieve a perfectly isotropic state I on one side and the
standard N state of the other side. However, as we shall see, this perfect matching is not
possible in 3D (exactly as in similar martensitic transformations [7]).
A.2) The three-dimensional case

We can try a similar construction for the three-dimensional case (see fig. 2 again). We take
the habit plane perpendicular to the x-z plane (the director axis stays in the x-z plane). In the
rectangular coordinate composed of the director axis (n), y-axis, and α-axis (perpendicular
to the others, see fig. 2), the nonzero strain components are en(Ti) ≡ ei 	= 0 (in the director
axis), and eαα = eyy = −ei/2. The elastic energy associated with this is given by fi = 3

2µe
2
i .

In the (x, y, z) coordinate the strain tensor is given as

ê ≡
exx exy exz

eyx eyy eyz

ezx ezy ezz

 =

cosφ− 1 0 1
2 tanφ

0 −ei/2 0
1
2 tanφ 0 1− cosφ+ ei/2

 (18)

and the elastic energy is given by fi/µ = e2xx+e
2
yy+e

2
zz+2e2zx. Thus, we can fix φ by requiring

that the energy is the same in the (n, y, α) and (x, y, z) coordinates:

5
4
e2i = (cosφ− 1)2 + (1− cosφ+ ei/2)2 +

1
2
(tanφ)2. (19)

In addition, we have

tan(θ + φ) =
2− cosφ+ ei/2 + sinφ

cosφ
. (20)

We note that eqs. (19) and (20) predict that the habit angle approaches π/4 again in the small
deformation limit (ei, φ→ 0).

In this three-dimensional case, the N phase has a third component of strain eyy = −ei/2
and this cannot be eliminated in the I phase. From the incompressibility condition in the
I phase, we must also have a strain eββ = −eyy; inside the nucleus, there must be nonzero
strain components (eyy, eββ) = (−ei/2, ei/2), which results in a residual elastic energy (per
unit volume)

EI = µe2i /2. (21)

Thus we reach a state which is not totally isotropic.
B) Homogeneous nucleation

Again, we think of a T -jump from an initial temperature Ti just below Tc (we take Ti = Tc

in practice for simplicity) up to a final temperature T lying about 10 degrees above Tc. Our
assumed shape for the nucleus is a platelet corresponding to the habit plane orientation, with
a thickness h and dimension L (fig. 3). From now on we construct only crude estimates,
ignoring all numerical coefficients: for instance, the platelet volume is taken to be L2h.

The platelet energy is of the form

f = −L2h ·∆+ EIL
2h+ γL2 + Ep. (22)
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Here ∆ is the gain in free energy (per unit volume) obtained by switching from N to I at the
temperature T . Thermodynamics imposes

∆ = (T − Tc)∆S, (23)

where ∆S � a0Q
2 is the entropy jump at the transition temperature Tc.

The second term EI in eq. (22) is due to the residual stress in the I phase (the principal
axes of the deformation here are the y and β axes and another axes normal to them, i.e. the
nonzero elements of the diagonalized deformation matrix are (eyy, eββ) = (−ei/2, ei/2)) and
is only a fraction of the initial elastic energy. The original elastic energy is 3

2µe
2
i , while we

have here µ(e2yy + e2ββ) =
1
2µe

2
i .

Thus we lump the elastic correction into ∆, writing

∆̃ = ∆− 1
2
µe2i ≡ (T − Tm)∆S, (24)

where we have introduced Tm in analogy with eq. (23). Tm is the minimal final temperature
for nucleation. From a scaling point of view, we should have

∆̃
µe2i

� T − Tm

∆Tc
, (25)

where ∆Tc corresponds to an increase in the N -I transition temperature due to the coupling
(see eq. (7)). This can be explicitly shown by using the relation µe2i � Λ2Q2/µ and ∆S �
a0Q

2. We assume from now on that ∆̃ is positive but small.
The third term in eq. (22) is a surface term, with a certain interfacial energy γ, which might

be estimated by a Ginzburg-Landau–type free energy (including the spatial dependence of the
order parameter) plus elastic tensors. Because of these latter terms γ is positive even when
T > T ∗ as indicated by the previous arguments on the absence of the spinodal instability.

The last term in eq. (22) is another elastic term, due to distortions at the periphery
of our platelet. Here, there is no matching at all (the matching was achieved only at the
habit plane boundary), we have large deformations taking place in a toroidal region near the
periphery (fig. 3). The length scale relevant for this extra peripheral deformation and the
size of deformation are both around h and, because the deformation fields always satisfy the
Laplace equation, this deformation dies out only at a distance � h from the torus: the strain
ep (at least of the order of ei) is stored around the periphery of the volume � Lh2 (fig. 3):

Ep � Lh2∆p (26)

with
∆p = µe2p. (27)

We now write eq. (22) in the following form:

F = −∆̃L2h+ γL2 + Lh2∆p. (28)

By minimizing the above energy with respect to h, we have

h0 =
∆̃
2∆p

L, (29)

F0 = − ∆̃
4∆p

∆̃L3 + γL2. (30)



82 EUROPHYSICS LETTERS

Thus, the assumption L 
 h corresponds to ∆̃ � ∆p: if the peripheral energy ∆p is large
compared with the bulk gain ∆̃, the platelet tends to become thin.

The energy expression in eq. (30) is in contrast with the classical case of a spherical nucleus
without any elastic contribution: F = −∆ · L3 + γL2. For ∆p > ∆̃, the bulk term for the
disk droplet is quite small compared with the surface term. If we look for the maximum of
eq. (30) with respect to L, we find an energy barrier U = F0(L∗) for the formation of a critical
droplet:

L∗ =
γ

∆̃
· 8∆p

3∆̃
, (31)

U =
2
3

(
8∆p∆

3∆̃2

)2

Uc, (32)

where Uc � γ3/∆2 is the standard barrier. In our regime, U 
 Uc, the nucleation rate can
be thus dramatically suppressed.

Conclusions. – 1) Equation (32) shows clearly that homogeneous nucleation is prohibited
in nematic rubbers —just as it is in martensites. Clearly, we need heterogeneities to nucleate,
and we do expect them in networks. 2) Even when dealing with heterogeneous nucleation, it
is reasonable to think that platelets (or needles) close to the habit angle will be preferentially
generated. This would possibly be observed by electron microscopy or by force microscopy on
the outer surface. 3) From a practical point of view, it should be beneficial to accelerate the
commutation process —we can think of at least two ways: a) adding colloidal platelets (clay?)
at the correct angle (possibly orienting them by fields during the synthesis); b) shearing the
sample with a shear plane near the habit angle.

∗ ∗ ∗

We have benefited from exchanges with Y. Quéré and E. Raphaël.
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