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In this note, we explain the details of the formulation of the model and the derivation of the
analytical solutions given in the main text. This note is organized as follows. In Sec. I, we describe
a lattice model for the fixed-grip crack propagation in viscoelastic sheets with incorporating Kelvin-
Voigt elements for the interaction between the lattice points. In Sec. II, we construct a model for
which an analytical solution is available for a constant-velocity crack propagation, by simplifying
the ordinary lattice model introduced in Sec. 1. For the model consisting of Kelvin-Voigt elements,
we derive an analytical expression for the crack-propagation velocity as a function of the initially
applied energy density and show that the model does not exhibit the velocity jump. In Sec. III,
we replace the Kelvin-Voigt interaction with the Zener interaction in the model. For the model
consisting of Zener elements, we derive an analytical expression for the crack-propagation velocity
as a function of the initially applied energy density and reveal that the model exhibits the velocity
jump. In Sec. IV, from the analytical solution, we derive the existence condition of the velocity
jump, together with simple relations useful for controlling crack propagation in developing tough

materials.
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I. LATTICE MODEL CONSISTING OF KELVIN-VOIGT ELEMENTS

We construct a lattice model for crack propagation in a viscoelastic sheet, which satisfies the following conditions:

e The viscoelastic sheet is always on the z-y plane. Under zero strain, the height (in the y-direction) and thickness
(in the z-direction) of the sheet are L and h, respectively, whereas the width (in the z-direction) is much larger
than L.

e The fixed strain ¢ (= AL/L > 0) is applied in the y-direction.
e A line crack propagates in the positive z-direction.

We consider a two-dimensional model on an Nj x Ny rectangular lattice where Nj is (countably) infinite and
Ny is even. The lattice points are labeled by the index n = (nj,ns) where ny € Z = {...,—-1,0,1,...} and
ng € {1,2,...,Na}. At € = 0, the lattice constant in the z- and y-direction are a and b, respectively. In other words,
under zero strain, the height and width of the sheet are aN;(= oo) and bNa(= L), respectively. The position of
the lattice point labeled by the index n is given by ro(n) = (ani,bns — L/2). When the top and bottom edges of
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FIG. S1: Ordinary and minimal lattice models for the fixed-grip crack propagation. a, Lattice model with a
rectangular unit cell under zero strain. The lattice point is specified by two integers n = (ni,n2). The top and bottom
boundaries are located at no = 1 and na = N2, respectively, and the two surfaces of the line crack are located at na = N2/2 and
ne = N2/2 + 1. In the box, magnified views on a lattice point and its nearest neighbor points with and without deformation
are shown together with the indices of the points, the lattice constants a and b, and associated forces. b, Coarse-grained semi-

lattice model obtained by removing lattice points except for the ones located at no = N2/2 and na = N2/2+ 1. ¢, Elementary
deformation modes of a unit cell in the rectangular lattice with lattice spacings a and b.

the sheet are clamped and stretched in the y-direction (¢ > 0), we set the coordinate of the points on the edges to
r.(n1,1) = (any,—L(1 + £)/2) and r.(n1, N2) = (ani, L(1 + €)/2). The displacement of the lattice point n is given
by r.(n) — ro(n) = u(n) = (u1(n),uz2(n)). Note that, in the main text, we use u; to denote the y-coordinate.

In the model, every lattice point interacts with the nearest neighbor points (at most four points) by a minimal
coupling. The tensile and shear stresses are given as Fiensile/(ah) = EAb/b and Fypear/(bh) = GAb/a, respectively,
for the deformation characterized by Ab (See, Fig. S1 for the case in which the unit cell deforms in the y-direction).
Here, we have introduced Young’s modulus E and the shear modulus G. The elastic energy of the sheet with the
minimal coupling is then given by
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where Cy; = Cy = Ea/b and Ci3 = Co; = Gb/a. Here, 1=%= (1,0) and 2=yg = (0,1), 0, is the Kronecker
delta, and the summation extends over all the bonds on the sheet. We note that Poisson’s ratio of this system is zero,
i.e., G = E/2 because Eq. (I.1) does not contain the coupling between the displacements in the z- and y-directions.
Moreover, assuming that the displacements in the z-direction w;(n) for arbitrary n are zero at the initial time, forces
in the z-direction are always zero, and thus, every lattice point does not move in the x-direction. Then, in the
following, we consider the motions and forces only in the y-direction.

To construct the equation of motion for the system, we consider tensile and shear forces, together with viscous
forces. As illustrated in Fig. S1, the tensile and shear forces acting on the lattice point n in the y-direction are given,
respectively, as follows:
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Here, we have introduced the notations, AA—;f(n) = [f(n+2)—2f(n)+ f(n—2)] /a® and AA—;Qf(n) =

[f(n+9) —2f(n) + f(n—9)] /b which correspond to the second-order partial derivatives in the continuum lim-
its, @ — 0 and b — 0, respectively. When a Kelvin-Voigt element is employed for the interaction in the y-direction,
the following viscous term should be added:
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In this way, the equation of motion of the lattice point n in the y-direction is given by
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Assuming that the inertial term mg—;ug (n) is negligible (the overdamped limit), we obtain the equation of motion
per unit volume in the following form:
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0= GA—:Z:QUQ(II) + EA_QPM(H) + nA—yQEUQ(H). (1.6)

II. MINIMAL MODEL CONSISTING OF KELVIN-VOIGT ELEMENTS
A. Construction of a minimal model

In this section, we construct a minimal model for crack propagation in viscoelastic sheets as shown in Fig. S1b, by
ignoring all the lattice points except for the lattice points at ny = No/2 and ny = No/2+1. The original set of variables
{uz(n)} is now represented by a much smaller set, {us(é, No/2)} U {ua(i, No/2 +1)} fori € Z ={...,-1,0,1,...}.
For simplicity, we assume that the sheet is always symmetric about the x axis, and thus the lattice points on the
upper side, u; = ua(i, N2 + 1) for i € Z, completely describe the dynamics of the present model.

In the following discussion, it is important to distinguish three types of strain in the y-direction (see Fig. S2a; here
and hereafter, we set I = b and use [ instead of b):
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FIG. S2: Three types of strain (e, &(t), and Si(l)(t)) and forces acting on a lattice point. a, The proposed minimal
lattice model under zero strain. We call the springs of length (L — [)/2 and those of length [ the long and short springs,
respectively. b, The model under the finite strain €. ¢, Forces acting on a lattice point in the model.



(i) e: the initially applied strain;

(ii) &;(t): the strain of the i-th upper (or lower) “long spring,” i.e., the i-th spring of natural length (L —1)/2 directly
connected to the top (or bottom) boundary (the strains of the upper and lower long springs are the same so
that in the following we consider only the upper ones and “long springs” indicate the upper ones);

(iii) Ei(l)(t) = [ua(i, No+1) —ua(i, Na)]/l = 2u;/l: the strain of the i-th “short spring,” i.e., the i-th spring of natural
length [ located at the center in the y-direction (provided that the i-th short spring exists).
Here, ¢ is a constant, but &;(t) and 52-(”(15) depend on time ¢. We mainly use &;(t) to describe the dynamics of crack
propagation because 52»(”(15) is expressed by &;(t) by the following relation (see Fig. S2b):

Le = (L - D&(t) + £V 1). (IL.1)

Note that &;(¢) is much smaller than Ei(l)(t) provided that the i-th short spring exists because “the spring constant”
of long springs is much smaller than that of the short springs (the corresponding Young’s moduli are the same for the

short and long springs). To realize crack propagation, we remove the i-th short spring when Ei(l)(t) > .. At places
far from the crack tip, &;(t) approaches a constant value and the value depends on whether the i-th long spring is
located on the front (i.e., right) or rear (i.e., left) side of the tip of a crack propagating in the positive z-direction (see
Fig. S1b):

lim &(t) =0 rear side

e I1.2
lim &(t) = lim Si(l)(t) =e. front side (IL2)
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We construct the equation of motion in the y-direction for the i-th lattice point characterized by wu;(t) in the
minimal model. First, we consider tensile stresses on the basis of Eq. (I.6); as illustrated in Fig. S2¢, considering the
elongational deformation in the y-direction of the i-th long and short springs, we obtain the tensile stresses acting on
the i-th lattice point in the following form:

Elz,;L(t) _ Eogi(t) (H )
3
Fdown.i(t) (©)
Sdownilt) _ ey
ah ng ()a

from which, we have Fyp () — Faown,i(t) = Eo (€i(t) —€) ahL/l by virtue of Eq. (II.1). Here, we explicitly show the
subscript 0 for the Young’s modulus, Ej, whereas we have omitted the subscript in Sec. I, i.e., F = Ey. This is
because we should distinguish the two springs Ey and E; in a Zener element, which is a generalization of a Kelvin-
Voigt element and will be considered in Secs. III and IV. Second, we consider shear stresses; as illustrated in Fig. S2c,
considering the shear deformation in the y-direction, we obtain Fiighe,; — Fleft,i = alhuﬁ—;ui(t). Note that shear
modulus G for the ordinary lattice model (Fig. Sla, discussed in Sec. I) is replaced by the “effective” shear modulus p
for the minimal model (Fig. S1b). This is because the shear modulus for the minimal model is considered to effectively
represent all the forces acting on the decimated points from the nearest neighbor points located in the x-directions,
with a spirit similar to the one employed in renormalization [S1] in statistical physics. Third, combining the tensile
and shear stresses together with the viscous terms, we obtain the equations of motion in the y-direction for the i-th

lattice point of mass m, by noting that Fqown,:(t) and £ (t) are missing on the rear side of the crack tip:
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Since Eq. (II.1) can be expressed as &;(t) = [Le — 2u;(t)]/(L — 1), we can rewrite the above equations of motion in
terms of &;(t) by removing the dynamic variable u;(t). Finally, assuming that the inertial term is negligible (the
overdamped limit), we obtain the equations of motion for the field &;(t):
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We here make three comments on the equations of motion (I1.5). (i) When we neglect shear force (u = 0), the two
expressions on the front and rear sides reduce to the same equation of motion (except for the equilibrium position),

which describes the Kelvin-Voigt dynamics. (ii) The “second-derivative” term EOAA—;Ug(n) in Eq. (I.6) has been
replaced by the strain-field term, Eo&;(t) (rear side) or £Ey (€;(t) —€) (front side) in Eq. (IL.5) with proportional
constants. (iii) The net strains of long springs on the rear and front sides are different and given by &;(¢) and &;(t) —¢,
respectively, because lim &;(t) =0 and lim &;(t) = € on the rear and front sides, respectively (see Eq. (I1.2)).
71— — 00 1——00
To derive the equations to be solved analytically, we take the continuum limit of Eq. (IL.5) in the z-direction,

a — 0. In this limit, the finite difference X‘—; is replaced by the derivative 3‘9—; and the discrete strain field &;(t) by
the continuum strain field & = £(r, x) where we have introduced the dimensionless parameters, T = t/tg, x = x/xg
with

n l 1%
= _L = 11— =) L=, .
to = X and o = l < ) X (H 6)

In this way, the above discrete version of the equations motion (IL.5) is replaced by the following continuum equations:

0=E+4+&— NE rear side (aL7)
0=(E—e)+E-¢&". front side '
Here, we have introduced the notations, & = 6%5(7, X), &’ = 88—;5(7', X), and
N= % (IL8)

B. Derivation of an exact solution of crack propagation with a constant velocity

In this subsection, we solve Eq. (I.7) for the static case (V = 0) and for the dynamic case in which a crack
propagates with a constant velocity (0 < V' < 00), by seeking a solution of the form £(r,x) = f(x — v7). Here, we
have introduced the dimensionless velocity of crack propagation,

\%
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Substituting f(x — v7) into Eq. (I1.7), we have second-order linear ordinary differential equations:

{o = f0) = vf' (0 = Nf'(x) for x <0 (rear side) (IL11)

0=f(x)—e—vf'(x)— "% for 0 <y (front side).

Here, since the width (in the z-direction) of the sheet is large enough, no generality is lost by setting the position of
crack tip to x = 0 with 7 = 0: the crack exists in the region x < 0 and is absent in the region x > 0.

We give the boundary conditions for the differential equations (II.11) as follows: the conditions at remote edges,
(see Eq. (I1.2))

f(=00) =0 rear side (1112)
f(+o0) =¢ front side ’
and the matching conditions at the crack tip for the strain field &,
F(=0) = J(+0) = /(0) 1)
f(=0) = f'(+0). '



As previously mentioned, we remove the short spring (located in the center in the y-direction with natural length I,
see Fig. 82) when £ (t) > .. We rewrite this inequality as

Ne — e,
N-1~
by use of Eq. (II.1). Therefore, f(0) satisfies (i) f(0) > f. for v = 0 and (ii) f(0) = f. for 0 < v < 0.
We solve the ordinary differential equation (II.11) under the boundary conditions (I1.12) and (II.13). First, we solve

the differential equation for x < 0. Substituting the form f(x) = Ce~X/¢ into Eq. (IL.11), we obtain the characteristic
equation (quadratic equation for &),

E(rx)=fx—vr)< fe= (IL.14)

gn(§) = +vE—N =0, (I1.15)

and the solutions,

vt = (—z/ + V2 + 4N) /2. (I1.16)

From the boundary conditions (II.12) and (II.13), only the solution &y, is relevant: f(x) = f(0)exp(—x/ v —])-
Second, we solve the differential equation for xy > 0. Substituting the form f(x) — e = Ce™X/¢ into Eq. (I1.11), we
obtain the characteristic equation, g1(§) = &2+ v€ — 1 = 0, and the solutions, & 4+ = (fu +V? + 4) /2. From
the boundary conditions (I1.12) and (II.13), only the solution & 4 is relevant: f(x) = ¢ — [e — f(0)] exp(—x/&1,+)-
Finally, we rewrite the matching condition, f/(—0) = f'(4+0) as

0 — f(0
|En | €1+
In the following, we determine f(x) from Eq. (I1.17) in the cases of ¥ = 0 and 0 < v < 0.

In the static case (v = 0), we can rewrite Eq. (I1.17) as f(0) = %E, by using |¢x,_| = VN and & = 1 from

Eq. (I1.16). This gives the following solution:

vIN
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For v = 0, the inequality f(0) > f. yields
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Note that Eq. (I1.19) implies that & > 1/v/ N in the case of crack propagation, v > 0.
In the case of crack propagation with a constant velocity v (0 < v < 00), since f(0) = f., the exact relationship
between v and € is obtained from Eq. (II.17) as

v _ Ne&2 -1
Voo VEA—-8)(Neé-1)’

(11.20)
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or equivalently

s V2 +4AN +/12 +4 (L21)
VIZ+AN + NVI2+4— (N - 1) '

The expression (I1.20) does not exhibit the velocity jump in the physically relevant range of &, 1/v/N < £ < 1. By
using Eq. (I1.20), we obtain the dynamics of the strain distribution:

Ne — e, X — VT
N-1 p[|‘£N,|}
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X —UT
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for x —v7 <0 (rear side)

exp { for 0 < x —vr (front side).



Here, two healing lengths have been introduced (see Fig. S4c below):

Ns 1-¢
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Equation (I1.20) or (I1.21) gives the relation between the velocity V' and the initially applied energy density w = %Eosz,
by virtue of the relation
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IIT. MINIMAL MODEL CONSISTING OF ZENER ELEMENTS 1: THE BASIC EQUATIONS AND
EXACT SOLUTION

a Kelvin-Voigt element b Zener element
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FIG. S3: (a) Kelvin-Voigt and (b) Zener elements. The latter reduces to the former in the limit F; — oco.

A. Generalization of viscoelastic interaction: equations of motion in the y-direction

In this section, we generalize the present model by changing the interaction from the one based on Kelvin-Voigt
elements to the one on Zener elements (see Fig. S3). A Zener element is a parallel connection of the spring characterized
by Ey (strain £(t)) and a Maxwell element, which is a serial connection of the spring characterized by F; (strain
£1(t)) and the dashpot characterized by 7 (strain (¢)). The strains of the parallel components are identical:

E(t) = &1(t) + E(2). (I11.1)
For the serial components in the Maxwell element, the stresses on the spring and dashpot are identical:

n%é’z(t) = E1&i(t). (I11.2)

Note here that a Zener element reduces to a Kelvin-Voigt element in the limit Ey — oo, in which & (¢) = 0. The
generalization of the equations of motion in the y-direction is achieved by the following replacements:

Fop  FBY d 9
ah + ah = Eog + 7’]&8 — Eog + 7’]&52
(111.3)
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ah Fah T an  an R Emat g = GhE et gt
With this replacement, Eq. (II.5) in the continuum limit in the z-direction, a — 0, is given as
0=FE+ QE — —pl(L — ) o 7€ rear side
(111.4)
L L 0 1 0?
=—F ——pl(L—1)=— f si
0 ;o (E—-e)+ T Es 2ul( 1) 527 5E ront side



As in the case of the Kelvin-Voigt interaction, we use the dimensionless parameters, 7 = t/tg, x = /xo, and N = L/,
where to = 1/ Eo, and z¢ = I\/(L — l)u/(2LEp). Then, we rewrite the above equations of motion as

_ U " :
0=E+& Né' § rear 51(.ie (I1L.5)
0=(E—-e)+&-E front side,
where & = 2&(r,x) and £ = 68;25(7', X)-
We eliminate &£ in Eq. (II1.5) by using the following relation obtained by substituting Eq. (II1.2) into Eq. (IT1.1),
Ey -
E=E+ 28, (I1L.6)
Ey
to have the equations of motion for a single field £ in the following form:
0=E+ (14 5)E& — NEY — sNEY rear side (111.7)
0= (& —e)+ (1+5)E — & —sE) front side. '
Here, we have introduced the parameter
Ey
= —. II1.
5= 7 (11Lg)

Equation (III.7) with & replaced by £ also holds. This equation for £ can be obtained either (i) by multiplying the
operator 1+ s2 to Eq. (IIL.7) and use (1 + s,2)& = € or (ii) by directly eliminating & in Eq. (IIL5).
In the main text, we have used A defined as

A= =14, (11.9)
S

instead of s. Although the physical meaning of A is clearer than that of s, we mainly use s in this section for
mathematical simplicity. The parameters s and A vary in the ranges of 0 < s < oo and 1 < A < oo, respectively. Note
that the Kelvin-Voigt interaction (finite Ey and F; = 0o) corresponds to the limit s — 0 or equivalently A — co.

B. Derivation of the exact solution of crack propagation with a constant velocity

In this subsection, we solve Eq. (II.7) in the case of crack propagation with a constant velocity (0 < V' < c0). Note
that, in the case of V= 0, a Zener element reduces to a Kelvin-Voigt element, and we have already solved the model
consisting of Kelvin-Voigt elements in Sec. II.

We derive the equations of motion with relevant boundary conditions in the present case, following the manner
employed in the Kelvin-Voigt case in Sec. II. We substitute the form & (7, x) = f(x — v7) into Eq. (IIL.7) and derive
linear ordinary differential equations for f(x) for x < 0 and 0 < x, where we set the position of the crack tip to
x = 0 with 7 = 0. Here, V and v = V/V, are the dimensional and dimensionless velocities, respectively, with
Vo = xo/to = lEy/n as before (see Eq. (11.10)). The result is given by

0=/f(x) = @+ s)wf'(x) = Nf'(x) + svNf"(x) for x <0 (rear side) (111.10)
0=F()—e— (L+8)f/ () - f/0) +svf"(x)  for 0<y (front side). '

To determine the boundary conditions, we substitute & (7,x) = f(x — v7) into Eq. (I11.6) to have & = f — svf’.
For x — v — 400, we have £ = f, since f' = 0. For xy — v7 = 0 which corresponds to the crack tip, we assume
that the strain distributions £ and &; are continuous and differentiable at the crack tip. The values of the functions
and their derivatives match at the crack tip: £(—0) = £(+0), £'(—0) = £'(40), and E2(—0) = £2(+0) (we can derive
E4(—0) = &4(+0) from the others). In addition, as in the case of the Kelvin-Voigt interaction, we assume that the
short spring is absent when £(4) > ¢, which yields £(—0) = £(+0) = % In summary, we give the appropriate
boundary conditions as

Ne — c
F(=0) = svf (<0) = F(+0) = s f (+0) = ———=;
F(=0) = £/(+0); J"(=0) = f"(+0); (IL.11)
f(=00) = 0; fl#oo) =e.



We can then establish the exact analytical relation between the initially applied strain € and the normalized velocity
of crack propagation v = V/Vj as in the following theorem:

- Theorem 1 (Relation between initially applied strain and crack-propagation velocity). —

If Eqs. (II1.10) and (II1.11) hold, then
e v(1+s+g)+a+ey 2 (dh ) ratey —_—
€c 1/<1+5N+ ggJ +Na+é&n 2% (N+%+/\—1) + N& + &N
where
1 . 0
Env = G [22/3 ‘\3/3\/3\/71\7 (AN2 + N(4(5—2s)s + 1)v2 +4s(s + 1)3v*) + 9N (2s — L)v — 2(s + 1)303
2V2 (3N 1)%02
+ V2N + (s + D) —2(s+1)v|.
</3\/§\/—N (AN2 + N(4(5—2s)s+ 1)v2 +4s(s+ 1)3v%) + 9N (2s — 1)v — 2(s + 1)303
(ITL.13)
o J
We note that £y is the positive solution of the cubic equation
gN (&) =€+ (1 + s)ve? — NE — suN = 0. (I11.14)

In the limit s — 0, gn(£) = 0 reduces to the quadratic equation (I1.15), which appears in the case of the Kelvin-Voigt
interaction. In this limit, Eqs. (II1.12) and (ITI.13) reduce to Eq. (I1.21) and &y = (\/ vZ +4N — V) /2, respectively.
The uniqueness of {x is ensured by the following lemma.

Lemma 1. Let s, v, and N are positive real numbers. Then, gn(§) = 0 has one positive and two negative real
solutions for —oo < & < o0.

We prove Theorem 1 with the aid of Lemma 1 (we give the proof of Lemma 1 at the end of this subsection).

Proof of Theorem 1. First, we solve the differential equation for y < 0 (the first equation of Eqgs. (I11.10)). Substituting
the form f(x) = Ce X/¢ into the equation, we obtain the characteristic equation (III1.14). According to Lemma 1, we
can set the three solutions, {n 1, £n,2, and &y, of the cubic equation gn (&) = 0 to satisfy the relation {1 < En2 <
0 < &n. To satisfy the boundary conditions at £ — —oo, the solution of the differential equation for x < 0 has the
form f(x) = Z?Zl Cije~X/&n.iwhere C) and Cjy will be determined later by using the boundary conditions at the
crack tip, i.e., x = 0.

Second, we solve the differential equation for x > 0. Substituting the form f(x) —e¢ = CeX/¢ into the equation,
we obtain the characteristic equation,

G(E) =+ (1 +s)we? —¢—sv=0. (IIL.15)

Note that g;(&) is identical to gy (€) with N = 1. According to Lemma 1, g1(§) = 0 has one positive and two negative
real solutions, and we denote the positive solution as &;. To satisfy the boundary conditions at & — oo, the solution
of the differential equation for x > 0 has the form f(x) = ¢ — Coe X/&1 where we can determine Cj by using the
boundary condition at xy = 0:

Ne — e,
N -1

= f(40) — svf'(+0) = — Cy (1 + ‘2”) . (IT1.16)

1

Finally, we determine the relation between & and v, by eliminating Cy, C1, and Cs from the boundary conditions,
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TABLE I: The behaviors of gn(§) as a function of £ (left) and gn(a—) as a function of N (right).

I3 a— 0 at N s(s — 2)v/?
seon(©)]  + 0 - - - 0 + avgn(a-)| = 0 +
gn (§) S gn(a) N —syN NG gn(ey) S gn(a-) hY 20 /

f(=0) = f(+0), f'(—=0) = f'(40), and f”(—0) = f”(+0), which can be recast into the following forms:
e—Co=C1+Cq
§71Co = =631 C1 — 6550 (IIL.17)
_5;200 = 51:7’21611 + 51?[,2202

Introducing the parameters D; = C;/Cy and v; = |£1/En ] = —&1/&nN,i, Eq. (IIL17) is written as

€ svy\ N—-1

III.1
NnD1+72D2 =1 ( 8)
VD1 + 3Dz = —1.
From the second and third expressions of Eq. (II1.18), we obtain D; = —2*__ and Dy = —=2_ which leads
Y1(y2—"71) Y2 (v2—71)
1 1 1
Dy+Dy=—+—+—. (IIL.19)
Y1 Y2 M2

Here, we note that 73 < 2. According to Vieta’s Formulae (which is for a polynomial equation and relates the
coefficients of the polynomial with sums and products of the roots), the characteristic equation gy (£) = 0 gives

Envi+Eén2+Ev = —(1+s)v and En1€n26n = svN. These two relations are rewritten as
11 Enva Enz 1
—t —=— - =—[(14+s)v+
e it o (R
(I11.20)
L &nvalne _ svN
Y2 3 133
Substituting Eqgs. (I11.20) into Eq. (IT1.19), we have
1 syN
Di+Dy=—[1+s)v+&in]+ 55— (II1.21)
& §iéN
Combining this with the first relation in Eq. (II11.18), we have Eq. (II1.12). Thus, Theorem 1 is proved. O

Proof of Lemma 1. We express the equation a%gN(g) =0 as 362 + 2(1 + s)v¢ — N = 0 and denote its two solutions

as ay = [—(1 + s)v £ /21 + 5)? +3N} /3, where a— < 0 < ay. The behavior of gy(€) as a function of ¢ is

summarized in Tab. I; for a_ < & < ay, the function gn(€) is monotonically decreasing. Then, gny(ay) < gn(0) =
—svN < 0. If gy(a—) > 0, gn(§) = 0 has one positive and two negative real solutions. Thus, in the following, we
show gn(a_) > 0.

To show gn(a—) > 0, we calculate gy () and its derivative as follows:

2 N 2

gnla) = — [BN + (s + 1222 4+ ?’/ (1= 25) + o (s + 1), (IIL.22)
9 1

Srov(as) = 3 BN + (s + 1)) Y2y g (1-2s), (I11.23)
> 1 2 971-1/2

WgN(a,) =5 [BN + (s +1)*/7] : (I11.24)

Since s, v, and N are positive real numbers, aa—J\ZgN(oz_) > 0, which means that %gjv(a_) is a monotonically
increasing function. Now, 5% gn(a—) =0 at N = s(s —2)v?, at which gy(a_) takes the minimum value as a function
of N. Since gn(a_)|N=s(s—2)2 = 5213 is positive, gn(a_) > 0 for any N. Thus, Lemma 1 is proved. O
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IV. MINIMAL MODEL CONSISTING OF ZENER ELEMENTS 2: LOW- AND HIGH-VELOCITY
REGIMES AND VELOCITY JUMP

In this section, we use Eq. (I11.12) to investigate the dependences of the initially applied energy density w on the
velocity v = V/Vj in low- and high-velocity regimes, and derive the existence condition of the velocity jump. Note
that Eq. (IT1.12) gives the relation between the initially applied strain e and v and that ¢ is related to w simply as
w = &2Nwy (see Eq. (I1.24)). In the following, the present model will be analyzed for arbitrary positive real number
s=Eyg/E; >0, ie., for A\ = Eyx/Ey=1+1/s > 1. Note that the relations derived below are further simplified for
elastomers, for which the relation 1 < A < N is valid (typically A ~ 10?-10% and N ~ 105-10).

A. Low- and high-velocity regimes

To obtain the asymptotic forms of the initially applied energy w in the low- and high-velocity regimes, we evaluate
a solution of the characteristic equation (ITI.14). We rewrite this equation as

CE=Tmr =8 qF 270 v.1)

where Z = ¢/V/N and v = v/v/N. We denote the positive real solution of Eq. (IV.1) as 2, = &y /V/N, where &y is
the positive real solution of Eq. (II1.14). We note that = is independent of N and depends only on v (0 < v < 00)
and s, as seen from Eq. (IV.1). Then, we obtain the relation between &y and &1: 2, (v) = Ex(v/VN)/VN = & (v).
By evaluating the asymptomatic forms of =, in the low- and high-velocity regimes, we have the following lemma:

4 IR
Lemma 2. If 0 < v = u/\/N < oo and 1 < A < oo, then the positive real solution &N of the characteristic
equation (I11.14), gn(§) = 0, has the following asymptotic forms:

1-5+0(?) (v —0)
W) =E4(v)=9 1 = (A-1)2

St e 1O (U12> (v o0). 2

2

N
Note here that (i) if v = V/Vy < VN, then &y (v) ~ V/N; and (i) if v > VN(A — 1)2/X3/2, then &5 (v) ~ /N/.

Proof of Lemma 2. We evaluate the asymptomatic form of Z in the vicinity of v = 0 (i.e., in the low—velocity regime).
Because of the asymptotic behavior, gx (£)/N3/2 7 23 —Z, we can express Eq. (IV.1) as = = 0, which gives the
v—r

positive real solution, = = 1. To evaluate the next order, we introduce the perturbation parameter €;. Substituting
E =1+ ¢ into Eq. (IV.1), we have

2¢0 + v + O(€2, epv) = 0, (Iv.3)

whose solution is €g = —v/2 + O(v?). Therefore, we have the expression, =, =1 —v/2 + O(v?).
Similarly, we evaluate the asymptomatic form of Z; in the vicinity of 1/v = 0 (i.e., in the high-velocity regime,
v > 1). Because of the asymptotic behavior, gn(€) - (A — 1)/(vN3/?) —— X22 — 1, Eq. (IV.1) can be expressed
v— 00

as AZ2 — 1 = 0, which gives the positive real solution, = = 1/ VvA. Introducing the perturbation parameter €., and
substituting Z = 1/v/X + €5 into Eq. (IV.1), we have

2vV/A A-1 A-3 A 3
)\—IUEOC—W_TEOO_F)\i +7€oo oo_o (IV4)

Since 1 < X\ < 00, €] < 1, and v~! < 1, the first and second terms on the left-hand side of Eq. (IV.4) are the

leading-order terms. Thus, the solution of Eq. (IV.4) is €5, = 2% (%)2 +0 (’U_2). Therefore, we have the expression,

So= gt A O 007, :
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From Theorem 1, with the aid of Lemma 2, we can evaluate £(v) in the vicinity of ¥ = 0 and that of v = co. In
the vicinity of v = 0, éx(v) = VN — £ + O(v?) and §1( ) =1—%+0(v?). Then, together with Eq (IT1.12), we can

evaluate £(v). Similarly, in the vicinity of v = oo, {n(v) =/ 5 N N(Q)l‘/)\;) ( 12) and & (v) = \F + (QMQ +0 ( )
Then, together with Eq. (III.12) we can evaluate £(v). We summarize the result in the following theorem.

- Theorem 2 (Asymptotic forms in low- and high-velocity regimes). ~N
IfA\>1and N > 1, then

and

oy Qlf(¢NQ(VN+2)+O(1

VN+A-1 21/\5(\/JV+A—1)2
\ J

Equation (IV.5) enables us to evaluate the relation between the initially applied energy density w and the crack-
propagation velocity V in the low-velocity regime (by virtue of the relation w = &2Nwy, see Eq. (I11.24)). From
Eq. (IV.5), we have lim, 0 &(v) = 1/v/N, or equivalently

lim w(v) = wo. (Iv.7)

v—0

Comparing the first and second terms on the right-hand side of Eq. (IV.5), we can estimate the range of v in which

w(v) ~ wp holds: if 1/v/N > v(v/N —1)/N, i.e.,

v= v < ﬂ (IV.8)

Voo VN-1
is satisfied, then w(r) ~ wy (Here, we have omitted the factor 2 in the second term on the right-hand side of
Eq. (IV.5)). When v/N >> 1, the condition (IV.8) is simplified as

V< V. (IV.9)

Similarly, Eq. (IV.6) enables us to evaluate the w-V relation in the high-velocity regime. From the first term on
the right-hand side of Eq. (IV.6), we have lim,_,o £(v) = A/(V'N + XA — 1), or equivalently

2
lim umy)::g——fifyg@gggg. (IV.10)

We can estimate the range of v in which w(v) ~ A2Nwg/(v/N + A — 1)2 holds, following the manner we employed in
the low-velocity case. However, we should pay attention to the fact that Eq. (IV.6) is insufficient for the estimation
in the case of (unrealistic) large A. In fact, for example, in the Kelvin-Voigt limit (A — o0) the second term on
the right-hand side of Eq. (IV.6) goes to zero. Thus, in this discussion, we assume A < N, which includes the case
of typical viscoelastic materials (1 < A < N). Comparing the first and second terms on the right-hand side of

Eq. (IV.6), we have the range of v in which w(v) ~ A>Nwo/(vV/N 4+ A —1)? holds: if the crack propagation velocity is
sufficiently high, i.e.,

(VN +2) (VN =1) (r =1
(%N+A—QAW2

is satisfied, then w(v) ~ A2Nwp/(v/N + X —1)2. In the case of v/N > 1 and A >> 1, which includes the case of typical
viscoelastic materials, the above statement can be simplified, i.e., if

AY2ZN
V> —
VN + )\

V> (IV.11)

(IV.12)
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FIG. S4: Representative plots for typical elastomers (A = 103, N = 109). a, w vs. V; the velocity jump appears
because the condition A < N is satisfied. b, £&; and {n vs. V. ¢, Schematics of the healing lengths £; and {x, that is, distances
over which the disturbance of the stress and strain distributions recover to the remote values (see Eq. (I1.22)). As seen in (b),
these healing lengths play the roles of order parameters in the context of conventional phase transitions such as superconductors
and Bose-Einstein condensations [S2]. In other words, the four velocity scales in plot (a) correspond to crossover points for &;
and £n shown in (b).

is satisfied, then &(v) ~ ﬁ, or equivalently

w(v) ~ (1 + 1) - wo. (IV.13)

We summarize characteristic scales derived from Lemma 2 and Theorem 2 for 1 << A < N in Fig. S4, together with
the scales associated with the jump derived in the next subsection.

B. Existence condition of the velocity jump

As illustrated in Fig. S4a, Eq. (II1.12) guarantees the existence of the velocity jump under an appropriate condition.
In this subsection, we rigorously derive the existence condition of the velocity jump by analyzing Eq. (II11.12). Before
we give the rigorous derivation, we roughly derive the existence condition of the velocity jump from Theorem 1 with
the aid of Lemma 2.

We evaluate the positive solution of the characteristic equation (IT11.14) under the condition (A—1)/vX < v < V/N.
According to Lemma 2, the positive solution of the characteristic equation gxn(§) = 0 is expressed as £ ~ 51(\?) =N
for v < +/N. Similarly, the positive solution of g;(£) = 0 is expressed as £ ~ f%oo) = 1/VX for (A —1)2/X3/2 <
(A —1)/A'/? < v. Then, under the condition (A — 1)/vA < v < V/N, Eq. (II1.12) can be expressed as

v (00) (0)
H(WN&@“)*@ ey £ (A+VAN) + L+ VN

x o0 0 :L I .
>\—N1(1+M)+1/+N§1 )+£](V) 1 <N+m>+y+ﬁ+ﬁ

~

My
Il

(IV.14)

Qo

By noting the relation \%/\ +VN <VA+VN <« =1 ()\ + Vv )\N) for the numerator in Eq. (IV.14) and the relation

N vN A
ﬁ+¢JV<< ] <1+\/;> (IV.15)

for the denominator in Eq. (IV.14), we obtain

VAN VAN
AN +A AN+ by 1v.16)

N+ViN+A—-1 N+v/oON VN

g~
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Therefore, we obtain the following rough estimation for the velocity jump.

If 1 < A <ooand (A—1)/vA < VN, then the approximate expression £(v) = £(v)/e. ~ \/A/N is valid for v in
the range (A — 1)/VA < v < V/N.

Note that £(v) ~ /A/N corresponds to w(r) ~ Wjump = Awp, which is the position of the velocity jump shown in
Fig. S4a.
To complete the proof of the existence of the velocity jump, we clarify in Theorem 3 below the magnitude of the

correction for the expression £(v) ~ 1/% with using rigorous inequalities. For the preparation to prove Theorem 3,
we summarize necessary inequalities in the following lemma:

\
Lemma 3. If 0 < v < 00 and 1 < A < oo, then the positive real solution Z4(v,\) of the characteristic
equation (IV.1), G(Z) = =3 + %EQ —E— x%7 =0, satisfies the following inequalities:
1 -
1- g <= (v,\) for 0<v<2, (IV.18)
1 1 (A —1)2
— <= A —_—+ —— V.19
3 < +(U, ) < \/X + SV ( )
(A—1)2 1 (A —1)2 A—1
— A— f — . V.20
VA= < =00 VA o & S (IV.20)
N /

Proof of Lemma 3. We note that (i) G(2) < 0 for 0 < Z < Z4 and (ii) G(Z) > 0 for Z; < =. This is because
G(0) = —v/(A—1) < 0 and the equation G(Z) = 0 has a unique positive real solution Z as guaranteed by Lemma 1.
In the following, we prove the inequalities in Lemma 3, which means that G(a) < 0 or G(a) > 0 for positive real
numbers a. First, Eq. (IV.17) holds because

1 _ & v2 (v +2)
G<1+v)(v+1)3<A—1)<U+1)2<0 (Iv.21)

and G(1) =v >0 for 0 < v and 1 < A. Second, Eq. (IV.18) holds because

2

G(l—g):ﬁ[A(v—2)+v—6]<0 (IV.22)

for 0 < v <2 and 1 < A. Third, Eq. (IV.19) holds because G (\%)\) = /1\;/2 <0for 1< A< ooand

1 (A=1)? A=1(gm 5 13 , 32 , i
AT e )T e X207 4 A3 = D02 4+ 302 (A= 10+ (A= 1)°] >0 (IV.23)
for 0 < v and 1 < A. Finally, to prove Eq. (IV.20), we show the following inequalities for = :
A=D1 (A—1)2]""
a = - V.24
{\ﬂ ) <Ei(v,\) < |[VA ) (IV.24)

for 1 < X and (A — 1)/v/A < v. To obtain the above lower bound of =, we calculate

IO I W C R 0 0L/ ()
G ({ﬁ o } > D o ) (IV.25)

where
G(v) = 320302 — 4B A+ 3)A = DA 20+ (A =133+ 1)
5) . (IV.26)

2
=32 [W% - %(5)\ +3)(\ — 1)] +(A—1) <3)\3 —5A% g)\ +3
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Since 1 < A and (A — 1)/V/A < v, we have A%2v > A(A — 1) > £ (5A +3)(A — 1). Thus, G(v) is a monotonically
increasing function of v and we obtain

~ ~(A—1
G)>G (== )=0A-1>3151+1) > 0. Iv.27
©)> G (25) = 0= Pasa ) (1v.27)
Therefore, Eq. (IV.25) is negative. To obtain the above upper bound of Z, we calculate
A—1)2]7" A—1)20G
G [f—( )} - _Q-DWwG) (IV.28)
20\ [203/20 — (A — 1)2]
where G(v) = 2(A + 3)A%20 — (A — 1)2(A + 1). Since 1 < A and (A — 1)/v/A < v, we have
GW)>200—DAA+3) = (A =12+ 1) =(A—DA2+6A+1)>0 (IV.29)
and Eq. (IV.28) is positive. Therefore, Eq. (IV.20) is proved. O
~ Theorem 3 (Existence condition of the velocity jump). ~
Ifl<)A<o0,1 <N <o, and
—1
/\\/X <v< \/N7 (IV30)
then the initially applied strain € = (v, \, N) is bounded as follows:
A A-1 v\ ¢ B ( v )
— | 1- —— | <e=—<H/=|1+— . 1V.31
N ( WA N ) e VNUTUN (v.31)
Thus, the approximate expression
A
oy | 2 1v.32
€4/ N (Iv.32)
is valid in the range of v,
Al < VN (IV.33)
7 . .
N J

Here, to derive Eq. (IV.32), we use lim,,, /5,0 vv/A/N = 0 in Eq. (IV.31). This equality is derived as follows.
If1l<A<oo,1<N<oo,and (A—1)/vVA < v < VN, then 0 < \/A/N < (1++/5)/2. Thus, 0 < vV/A/N <
(1+V5)v/(2VN) — 0.

vV N
We have two remarks for Theorem 3: (i) the present model consisting of Kelvin-Voigt elements (which corresponds

to A — 00) never satisfies the existence condition of velocity jump in Eq. (IV.33) because N is finite; (ii) if A > 1,
then the existence condition (IV.33) reduces to

VA< v < VN. (IV.34)

Proof of Theorem 3. We evaluate the numerator £ and denominator £(4¢) of Eq. (II1.12) in the range of v given in
Eq. (IV.30), where

z(nu) — 1 + i + E (
B £1€N N vIN

1 A—1
515N+ N (V+Nfl+§1v), (IV36)

&1 +&n), (IV.35)

glde) =14
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with & = £ /&(de) | By using Eqs. (IV.17)~(IV.20) with 2, = &5 /v N and v = v/v/N, we have the following bounds:

\W—%<§N<\/N for 0<uv<2VN, (IV.37)
1 1 (A=1)2
A (A=1)2 1 A—1)2 A—1

where the condition in Eq. (TV.39) is satisfied because (A —1)2/A%/2 < (XA — 1)/A'/2. Here, we note that =, = &, and
v =v for N = 1. By evaluating Eqs. (IV.35) and (IV.36) with these bounds, we have

M1  A-1 A-1 AA WA a1 1 (A—1)2
—~ slow) _J 22 Z __—(VN+—= V.40
N N aN = VNN TN TN <f+\f+ 2 ) (IV.40)
M1 A-1 A-1 A vV N (/\—1)2N
z(de) 1 _ /2 -
< 1 < . Iv.41
/N T o T an <F N N+VN<+‘F Ao ) (IV.41)
Here, to give the lower bounds in Egs. (IV.40) and (IV.41), we use
_ _1)2 2 _
A=l (=12 N1 V.42
WN  20AVN  2uA/N
Equations (IV.40) and (IV.41) yield jower < € < Eypper, Where
/,\ A 221 A—1
~ _ N + ¥t 20NV N + uN\f T 2N
Elower = /X (1) 5 (IV43)
L+ /3 +52+ -1 (F+ 2p + 25 + &)
uf >\ 1 (=12
VRN SR+ VN + &=+ S5z
@ st ) . (IV.44)

Eupper = 1 AZ—1 A=1 | A—1L
VN Taave Tt

We evaluate the upper bound €upper as follows.
Eupper = \/7 wX | O % —aL /o
b \/7 + 21//\?‘\} \7% + 35
3
\/> S AZA;;V — (IV.45)
1+ 2 f
< \/5 LY J\\?

i)

A=1)* X—=1_ X—-1[(A—-1)
{ v2)\2

where we have used

N T W ¥ - 1] <0. (IV.46)
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We evaluate the lower bound &)ower as follows.

A2—1 A—1 A—1 /2 [vv/a 1 1 1 (A=1)?
g >\+2V>\\/N+UN\/X_W_ N|:N+()\_1)(N+V\/N+ﬁ+ V2>\2)i|
lower — T
N 1+\/%+VTA+(A—1)(%+ﬁ+ulﬁ+(ﬁ}22)
A—1a A
_ A A=l n wWN__ NJN
NowN gy Ja el (% + 725 + 25 + 558 (IV.47)
oA Azl vA
N wvW/N NvVN
— /i 1— A-l ﬂ
N vV N ’
where we have introduced a positive number a:
1 v A—1 (A—1)2 1 1 1 1 (A=1)2
=(=- — —F+ —+A=-1) (= . IvV.48
«=(375vw) " (rr - ) it vt O (T uw (A
Thus, Eq. (IV.31) is proved. O
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