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Abstract. – Fracture mechanical properties of hard cellular solids (porous materials) with the
Young modulus E larger than 3000MPa have been well understood; scaling relations between
fracture mechanical quantities and porosity are established, which can be explained by a theory
based on the geometrical parameters of a cellular solid. In this study, we obtain experimentally
the fracture energy of a very soft polyethylene foam with E around 1MPa. We find scaling laws
different from those for hard foams, which can be understood by considerations independent
of the structural parameters of foams.

Introduction. – Cellular solid structures are widely found in nature (cork, balsa, coral,
etc.) and in everyday life (bread, potato chips, industrial materials such as styrene foam, and
so on). Accordingly, the mechanical properties of cellular solids or porous materials have been
widely studied. It is now well accepted that the mechanical properties of cellular solids can
be understood as a function of the volume fraction of the solid (i.e. one minus porosity) [1,2].

For hard cellular solids with the Young modulus E larger than 3000MPa (e.g., PMA,
rigid PU, cellular glass), fracture mechanical properties (such as the critical energy release
rate Gc and the critical stress intensity factor Kc) have been well studied; scaling relations
between fracture mechanical quantities and porosity are established [1,3]. These relations can
be understood by a theory based on the geometrical parameters of cellular solids, such as cell
size or cell wall thickness, etc. Here, we examine a very soft polyethylene foam with E around
1MPa to show differences in fracture mechanical properties from hard porous materials.

Structure of the foam. – The materials we examined are sheets of non-crosslinked
polyethylene foam, Lightron S (Sekisuiplastics), commercially available as shock-absorbing
sheets for packing. Macroscopically, they are milk-white soft sheets with millimetric thickness,
suitable for wrapping fragile things such as porcelain. Microscopically, they possess a typical
closed-cell foam structure: submillimetric cells are enclosed by very thin films (see fig. 1).
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Fig. 1 – Microscopic view on Lightron S (#54), taken by a (video) camera (HC-1, Sony) with a macro
lense (MSN-505, raynox) on a stand (VM-3000, raynox).

Fig. 2 – Force-strain relation of polyethylene foam, #54A. All the samples show linear elasticity up
to breakage as shown here.

Fig. 3 – Griffith’s problem: the scaling law in eq. (1) holds when the sample size is large compared
with the half crack length a. The stress σ indicates a remote tensile stress.

In many cases, it has been assumed that the edges of a cell (i.e. the places where the film
walls meet) collect a lot of liquid before solidification; as a result, the volume of the edge is
often assumed to be larger than that of the walls (see, for example, fig. 5.12 of [1]). However,
in our foam, the edge volume is less than or comparable (at most) to the wall volume.

Fracture measurement system. – Our fracture measurement system can hold a sheet by
clamping it between two aluminum plates of 1m long. A sample is homogeneously stretched
in the direction perpendicular to the long plates through a wire connected to a driving unit.
The stretching speed is set to a fixed low rate (∼1 cm/min) via a stepping motor throughout
all measurements to reduce dynamical effects. The stretching force is monitored by a digital
force gauge (FCC-50B, NIDEC-SHIMPO CORP). This system has a merit over commercial
universal testing machines: it allows us to determine the critical energy release rate or the
fracture surface energy, directly (not via the conventional Kc test) as explained below.

Linear elasticity of the foam. – Lightron S offers a selection of thickness: we tested #41
(0.5mm thickness), #52 (1mm) and #54 (2mm). Samples labeled A in table I are fabricated
in winter 2005, while B are in summer 2006. Foam sheets are stretched when processed by
a manufacturing machine; as a result, when not stretched, sheets are slightly wavy in the
direction perpendicular to the machine direction. Experimental tensile force is always applied
in the direction perpendicular to the machine direction.

All the samples show a linear-elastic stress-strain relation up to breakage. This was con-
firmed by setting a 50 cm × 50 cm sheet (without any artificial cracks) to the measurement
system and stretching it until it fails (from the clamped region), with monitoring elongation
of the sheet and applied force. We repeated this three times for a given thickness of a sheet
(a broken sheet is replaced by a new one for the next measurement). A representative result
(#54A) is shown in fig. 2; a 50 cm × 50 cm sheet typically breaks at f � 100N (0.1MPa in
stress) when no artificial cracks are introduced and it behaves as a linear-elastic material up
to failure. We obtained similar results for the other samples. The Young moduli obtained
from these measurements are summarized in table I.
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Table I – The Young modulus E, fracture toughness Gc, critical stress intensity factor Kc, and
relative density φ of the sample sheets with different thickness t.

ID t (mm) φ E (MPa) Gc (N/m) Kc (MN/m3/2)

#41A 0.5 0.0414 1.357 452 0.025
#52A 1 0.0255 0.7495 268 0.014
#54A 2 0.0241 0.7861 326 0.016

#41B 0.5 0.0465 1.238 450 0.024
#52B 1 0.0284 0.7261 258 0.014
#54B 2 0.0248 0.7710 240 0.014

Griffith’s scaling relation for foam sheets. – When a remote stress σ is applied, an elastic
material without cracks accumulates an elastic energy of the order of σ2/E per unit volume,
where E is the Young modulus. When there is a crack (length ∼ a) as in the Griffith problem
illustrated in fig. 3, the uniformly distributed elastic energy is relaxed due to the crack; the
amount of the released energy can be estimated by the energy which would have been stored
around the crack in the volume of the order of a2 (the plate thickness we consider here is the
unit length), i.e., σ2a2/E. Griffith assumed that this energy is transformed into the work
for the creation of a new surface, of the order of γa; γ is the work of fracture per unit area.
Balancing these two energies immediately leads to Griffith’s scaling relation [4]:

σf =
(
2γE

πa

)1/2

∝ a−1/2, (1)

where a is the half crack length (the above numerical coefficient is exact under the plane-stress
condition).

Originally, Griffith considered brittle materials such as glass, where the fracture surface
energy corresponds predominantly to cutting of chemical bonds. This concept was extended
by Irwin [5] and Orowan [6] to metals and then further to other fractures where plastic work
is required in addition to bond rupturing energy to create a new surface (as shown below, the
fracture of our samples is dominated by the plastic work). This extension can be justified (for
materials with global linear elasticity) in the limit of small-scale zone: the zone where plastic
dissipation occurs is limited around the tip region of the crack, compared with the crack size.

In our experiment, even the smallest crack size is large (5mm) and thus the Irwin-Orowan
extension is expected to work well because of the global linear elasticity suggested in fig. 2.
We checked this expectation by the following experiments.

We introduced a short line crack in the machine direction by a sharp knife at the center of
each 50 cm × 50 cm sheet and performed a uniaxial tensile test with our measurement system
until the sheet starts failing (fig. 3). We determine a failure stress from a force read from
the gauge when the edge of a crack starts expanding. We repeat this three times for a given
crack size (a broken sheet is replaced by a new one for the next measurement). This set of
measurements are done for all the samples.

As a result, it is shown that Griffith’s scaling law holds for crack sizes changed well over
one order of magnitude (see fig. 4). This suggests that our experiments are in the regime of
the small-scale zone. This is because 1) the fracture is governed by plasticity (as mentioned
above) and 2) our material is certainly tested within the globally linear-elastic regime implied
in fig. 2: when we introduce an artificial crack, the sheet always starts failing (at the edge of
the crack) at a stress lower than the failure stress observed in the Young modulus experiment
(done without any artificial cracks).
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Fig. 4 – Griffith’s scaling law for foam sheets. The horizontal and vertical axes are the logarithms of
the half crack size (m) and the failure stress (Pa), respectively. The dotted lines, with the theoretical
slope, −1/2, predicted by Griffith, are those fitting each data set. The data of #52 are shifted by the
amount 0.5 downwards to avoid overlaps with those of #54.

We tested five sizes of cracks (2a) as indicated in fig. 4. The minimum size (5mm) is limited
to keep a good enough precision of the size of a crack. The maximum (10 cm) is restricted
due to finite-size effect; a crack size has to be small compared with the sheet dimension.

Fracture toughness Gc of the foam. – From the intercept onto the vertical line, ln(a) = 0,
of a straight line (with slope −1/2) fitting each series of data in fig. 4 to minimize the sum of
squared errors, we can directly estimate the fracture surface energy γ or the fracture toughness
Gc = 2γ of our foam, thanks to the exact Griffith’s relation in eq. (1) for the plane stress, i.e.,
for the present thin sheets. The results are given in table I.

Instead of what we did here, the fracture toughness Gc could be estimated from a standard
Kc test on small samples incorporating the finite-size effect, with the aid of an equation [7,8],

K2
c = GcE, (2)

where the numerical coefficient is exact (even under finite-size effect) for plane stress. However,
softness of the samples might cause some technical problems. In addition, eq. (2), which
contains an elastic constant E, requires a special care for fracture with plastic work (as in our
case); such a linear-elastic relation could be used only in the limit of the small-scale zone: the
constancy of Kc for changes in a should be checked carefully as in [9]. In other words, the
applicability of the Irwin-Orowan extension of Griffith theory should be carefully checked each
time the fracture is dominated by plastic work. In the present work, since Griffith’s scaling
law is confirmed well, we estimated Kc not from a standard Kc test, but from a directly
obtained Gc via eq. (2), as given in table I.

In general, direct determination of the energy of a non-liquid surface is very difficult. This
difficulty, for example, had long prevented a direct confirmation of the Young-Laplace relation
for wetting where a JKR test was the key (Chapt. 2 in [10]). Our present study provides
another unusual example where a direct determination of non-liquid surface energy is possible.

Relative density of the foam. – A dimensionless quantity φ ≡ ρ/ρs, i.e., density of the
foam ρ relative to the corresponding solid ρs, or the volume fraction of the solid in the foam, is
an important parameter to characterize properties of cellular solids [1,2]. Although the density
of a low-density polyethylene (LDPE) solid is distributed in the range 0.91–0.94 g/cm3, below
ρs is assumed to be 0.92 g/cm3; this choice would introduce only a few per cent error in φ or
ρs at most (judging from the measured Young modulus given below, the corresponding solid
is not the high-density polyethylene but LDPE). The relative density φ was obtained from a
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Fig. 5 – The Young modulus is plotted as a function of the relative density. The linear relation
indicated by the dashed line is in accord with a brief consideration given in the text.

Fig. 6 – The fracture toughness Gc is plotted as a function of φ. The clear linear relation in the right
is in accord with a brief consideration given in the text.

density measurement of the foam where the weight of a 10 cm × 10 cm sample is measured.
The results are also given in table I.

Young modulus and relative density. – The elastic potential energy per volume of a solid is
dimensionally given as fs � Esε

2/2−σε, where ε is the strain and Es is the Young modulus of
the solid. The minimization of this energy with respect to ε leads to Hooke’s law: σ � Esε. If
local deformation of the foam is affine to global continuum deformation ε, the potential energy
of the foam is simply given by f � φEsε

2/2− σε (note that Esε
2/2 is the elastic energy per

unit volume in the solid and φ is the solid density in the foam). This results in Hooke’s law,
σ � φEsε, predicting that the Young modulus of foam E is expressed in terms of Es as

E � φEs. (3)

This relation might be understood also from the classical interpretation that an elastic con-
stant corresponds to a cohesion energy per volume (see, for example, Chapt. 2 of ref. [11]).

Equation (3) holds well for our experimental data as shown in fig. 5. In this plot, the
Young modulus E is normalized by Es, which is obtained separately for samples A and B
(see table II) by extrapolating experimental linear E − φ relations up to φ = 1; these rough
estimates of Es correspond to assuming that the coefficient in eq. (3) is one and are comparable
with the Young modulus of LDPE solid (� 100MPa) as mentioned above [1].

The difference in Es of samples A and B thus obtained is not meaningless because the
coefficient in eq. (3) is expected to be the same for samples A and B even if it is not one. This
difference is possibly due to manufacturing or storage conditions (the room temperature is
well above the glass transition temperature of PE); note that such difference in ρs is negligible
because a possible error in ρs is less than a few per cent.

Equation (3) is consistent with a formula for closed-cell foam given in [1] because the
volume of cell edges is not too large compared with the volume of cell faces (or walls) in our
case (fig. 1); the formula includes a bending effect of the cell edge (proportional to φ2), in
addition to an extension effect of the cell face (proportional to φ), and the φ2-term can be
neglected when the volume of the edges is not too large compared with that of walls because
of the relation φ2 � φ. Note that the internal pressure (p0) term of the formula could be
neglected in our case (Es 	 p0).

Fracture parameters and relative density. – Now think a foam cube of volume L3 with
voids and consider to derive the volume fraction of the foam cube by slicing this volume into
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Table II – The Young modulus Es, fracture toughness (critical energy release rate) Gs, critical stress
intensity factor Ks of solid polyethylene corresponding to the sample foam. Es (and, thus, Ks) are
estimates with precision lower than estimates of Gs (see the text for details).

Es (MPa) Gs (kN/m) Ks (MN/m3/2)

A ∼= 32 11.3 ∼= 0.60
B ∼= 27 9.54 ∼= 0.51

many thin sheets of size L2 with thickness dz. Suppose the area fraction of each sheet is f , then
the net volume of each sliced sheet is just fL2dz. Summing up all the volume of these sheets,
we realize that the net volume of the L3 cube is just fL3, meaning the volume fraction is f : the
area fraction of the foam is simply given by the volume fraction φ (except for cases where the
fluctuation of the volume fraction is too large to find an appropriate dz for which fluctuation
of the area fraction of sheets is negligible). This general consideration leads a relation,

Gc = φGs, (4)

where Gs is the fracture toughness of the corresponding solid. We stress that the numerical
coefficient of the linear relation in eq. (4) is exactly one from our argument; a similar rela-
tion was indirectly suggested in [1,3] but without prediction on the numerical coefficient and
it was justified in specific cases; their argument requires assumptions on details of the cell
structure. On the contrary, our interpretation suggests that our relation with a coefficient,
eq. (4), is rather general and independent of cell structures. (Note, however, that our tacit
assumption of the plane crack surface on a crack-size scale might allow a slight correction for
the coefficient in eq. (4), due to the crack surface roughness on a cell-size scale.)

Equation (4) seems to work well in our experiment as in fig. 6. The normalization factors
Gs in this figure, given in table II, are also obtained by extrapolating experimental linear G−φ
relations up to φ = 1 separately for samples A and B, here with knowing the proportional
coefficient of the linear relation (4).

Since eqs. (3) and (4) hold well in our experiments, eq. (2) suggests that Kc scales as

Kc � φKs, (5)

where Ks is the critical stress intensity factor for the corresponding solids. From Gs and Es

given in table II , we obtain Ks from the relation K2
s = GsEs (i.e. eq. (2) for the solid) from

our experiment. These values given in table II are consistent with values of the polyethylene
solid suggested in the literature (Kc ∼ 1MN/m3/2) [1, 9]. Note that these estimates of Kc

may include errors associated with the above-mentioned errors in Es.

Discussion. – The values of Gc for foams and Gs for the solids given in tables I and II
are quite large compared with any kind of bond-breaking energy and dominated by plastic or
dissipative work to cause rupture (Gc ∼ a few mN/m for van der Waals (VW) “bonds,” while
Gc ∼ a few N/m for chemical bonds). They originate probably from the fracture surface energy
of semicrystalline polymers: typically Kc ∼ 1MN/m3/2 and E ∼ 100MPa for LDPE [1, 9],
which implies that the fracture toughness of LDPE is about 10 kN/m. This value almost
coincides with the obtained Gs in table II.

The physical understanding of the fracture energy of LDPE itself is a separate important
problem. While the fracture of glassy polymers with craze (as well as the fracture of weakly
cross-linked polymers) is discussed, for example, in [12, 13], we could not observe any craze
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along the fracture line through microscope observation for our semicrystalline polymer (our
experiment was done at room temperature well above the glass transition temperature).

The above good agreement of our Gs with the typical fracture toughness of LDPE might
be better appreciated with caution: 1) there is a possibility that the semi-crystalline structure
(and, thus, fracture energy) of the thin polyethylene film consisting of cell faces will be rather
different from that of solid LDPE. 2) The coefficient of eq. (2) could allow a slight modification
due to the non-plane character of crack surface on a cell-size scale.

Conclusion. – We experimentally confirmed Griffith’s scaling law without the effect of
finite size in a linear-elastic polyethylene foam, using large samples with changing fracture
size well over one order of magnitude. This allows us to estimate directly the fracture surface
energy of the considerably soft foam. The obtained fracture energy of the foam is too large to
be understood as bond breaking energy: it is governed by a certain dissipative process without
crazing, while the plastic zone around the tip is well localized compared with the crack size.
Scaling relations in the foam for Young modulus, fracture energy and critical stress intensity
factor are proposed in eqs. (3), (4) and (5), based upon our experiments and theoretical
considerations. These results for our soft foam are not the same as those for the well-studied
cases of rigid foam (Es > 3000MPa); softness and cell structure of our samples would be
in favour of our naive assumptions (such as the affine deformation) based on the continuum
views. Our reasoning for these relations is independent of the details of cell structure, with a
prediction of a numerical coefficient for eq. (4).
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