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Wicking within forests of micropillars
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Abstract – We describe how a wetting liquid brought into contact with a forest of micropillars
impregnates this forest. Both the driving and the viscous forces depend on the parameters of the
texture (radius b and height h of the pillars, pitch p of the network) and it is found that two
different limits characterize the dynamics of wicking. For small posts (h< p), the film progresses
all the faster since the posts are high, allowing a simple control of this dynamics. For tall pillars
(h> p), the speed of impregnation becomes independent of the pillar height, and becomes mainly
fixed by the radius of the posts.
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Wicking is one of the most important phenomena in
surface science, both from the practical and historical
points of view: the classical experiments on capillary rise
by Hauksbee, (Brook) Taylor, and Jurin around 1700
led Young and Laplace to establish the basic principles
of this science in 1805. As we all know today, a liquid
will penetrate a tube of constant diameter provided that
the surface energy of the wet tube is lower than that of
the dry one. Denoting γSL and γSV as the solid/liquid
and solid/vapour surface energies, this criterion is written
γSL <γSV . The quantity γSV − γSL can thus be viewed as
the force (per unit length) which draws the meniscus inside
the tube. Introducing the contact angle θ of the liquid on
the solid, we deduce from Young’s relation (γSV − γSL =
γ cos θ, with γ the liquid/vapour surface tension) that the
criterion of wicking can also be expressed as θ < 90◦.
If the liquid completely wets the tube walls, the wicking

process can be viewed as slightly different. Then, a film
of molecular thickness propagates along the walls of
the tube [1]. The advancing motion of the macroscopic
meniscus can then be understood as arising from the
suppression of the liquid/vapour interface present along
the tube, owing to this precursor film. Hence, the driving
force (per unit length) in this case is just γ. We deduce
from this consideration the final height of the rise (for
a vertical tube), for which this force is balanced by the
weight of the liquid column. It also gives access to the
dynamics of the liquid penetration: neglecting gravity

(which corresponds to horizontal tubes, or to scales much
smaller than the final height), we can balance the constant
driving force (of the order of γb, where b is the tube radius)
with the viscous friction (which scales as ηV z, denoting V
as the velocity of the meniscus, z as its position, and η as
the liquid viscosity). We thus find the famous Washburn
law, which stipulates that the position of the meniscus
increases as the square root of time: z ∼ (Dt)1/2, with D
a dynamic coefficient depending on both the nature of
the liquid and the tube radius (D∼ γb/η) [2]. This law
remarkably resists the complexity of “real” systems: it is
found that such dynamics are observed both for liquid
spreading on rough solids [3–5], and for wicking in most
porous media, such as paper, fabrics and sand.
Here we discuss the propagation of liquids along solids

decorated with a forest of micropillars. These pillars could
be silicon posts, carbon nanotubes, or even simple hairs [6].
These surfaces recently attracted a lot of attention, in
particular because of their remarkable wetting properties.
If hydrophobic and tall enough, the small-diameter posts
literally “repel” water: if the density of pillars is low
(area fraction typically between 1 and 10 percent), the
liquid mainly sits on air, which provides spectacular super-
hydrophobic properties [7]. Here we consider the opposite
limit where the liquid wets the material, so that it is likely
to propagate inside the forest as if it were some (nearly
two-dimensional) porous medium [5,8]. This kind of device
can be used for introducing obstacles in a flow, in the field
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Fig. 1: Silicon surface decorated with a forest of micropillars of
radius b = 1.3µm and height h= 26µm regularly displayed on
a square pattern of pitch p= 10µm. The bar indicates 50µm.

of polymer chromatography or DNA electrophoresis, for
example [9]. We shall characterize the force driving the
motion and show how the dynamics of the wicking can
be selected by the texture properties. As we shall see,
using such textures is a very convenient way to speed up
the spreading of a liquid at a large scale, and to tune the
thickness of the spreading film.
We present in fig. 1 a typical sample on which

experiments were done. Using techniques from microelec-
tronics (photolithography, deep reactive ion etching), we
performed selective etching on a silicon wafer, so that
the whole material is made of silicon. Our fabrication
techniques allowed us to choose independently the values
of the pillar radius b, height h and pitch p. In these
experiments, b and p are fixed (about 1 and 10 micro-
meters, respectively), but h is varied between 1 and 26
micrometers. This gives access to the regimes h< p (short
pillars) and h> p (tall pillars), which will be found to
generate different dynamics of wicking. Note also that
the typical sizes of the microstructures guarantee that
gravity can be neglected for our centimetric samples, even
if displayed vertically.
Our experiments consisted of bringing samples into

contact with a bath of silicone oil. A film was observed to
rise along the materials, and its progression was monitored
with a camera. The position z of the liquid front was
extracted from the movies, by taking advantage of the
darkening of the textured solid as oil fills its cavities.
Plotting z as a function of time t, we found that Wasburn’s
law was always obeyed (except at very short time): z
increases linearly with the square root of t, as seen in fig. 2,
where we show how the dynamic coefficient D is extracted
from the data.
We measured the value of the coefficient D on various

samples, and for each of them we tested oils of different
viscosities. A series of results such as displayed in fig. 3
was obtained. For each oil, D is observed to increase with
the pillar height, before saturating at large heights. For
a given substrate, this dynamical coefficient decreases as
the oil is more viscous, showing the viscous nature of the
friction. This observation can be made more precise by
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Fig. 2: If a sample decorated with micropillars is brought into
contact with a bath of silicone oil, a film progresses inside
the forest of pillars. Here we plot the square of the position
z of the front divided by the time t as a function of t. The
pillars height and pitch are 6µm and 10µm. Silicone oils
have a surface tension of 20mN/m and a viscosity of 19mPa s
(diamonds), 48mPa s (squares) and 97mPa s (circles). We call
D the average value of the quantity z2/t at long time.
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Fig. 3: Dynamical coefficient of wicking D as a function of the
height h of the pillars, expressed in micrometers. Oil viscosity is
4.6mPa s (triangles), 9.5mPa s (crosses), 19mPa s (diamonds),
48mPa s (squares) and 97mPa s (circles). The higher the pillars
or the less viscous the liquid, the quicker the wicking. However,
some saturation of the coefficient D seems to occur for large
pillar heights.

plotting D as a function of η, as done for two different
pillar heights in fig. 4. For all the samples we studied, it
is found that D is inversely proportional to the viscosity,
as in Washburn’s law. We now discuss the origin of these
different behaviours.
If brought into contact with a reservoir of liquid which

completely wets the material, a forest of micropillars will
suck the liquid (fig. 5). As discussed above for a tube,
a molecular layer propagates ahead of the impregnating
film, whose driving force thus derives from the energy
gained by filling all the cavities between the pillars (since
this suppresses all the liquid/vapor interfaces along the
pillars). The configuration of minimum energy is obtained
if the film thickness matches the post height, as sketched in
fig. 5. Thus, if the front of the film advances by a distance
dz, the lowering of the liquid/vapour surface energy per
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Fig. 4: Dynamical coefficient D as a function of the oil
viscosity (between 4.6 and 97mPa s). Wicking is observed on a
sample decorated with pillars of radius b= 1.3± 0.2µm, pitch
p= 10µm, and height h= 6µm (empty symbols) or h= 26µm
(full symbols). The dotted lines have a slope of −1.

dz

Fig. 5: Progression of a liquid film in a forest of pillars. In the
regime of complete wetting, a molecular liquid layer (in grey in
the sketch) coats the solid ahead of the impregnating film. As
it progresses by dz, the film removes the liquid/vapor interface
along the pillars, to which corresponds a lowering of the surface
energy by a quantity dE, as analyzed in the text.

unit length of the contact line is dE = (1− r)γdz, where
r is the roughness of the substrate (i.e., the ratio between
the actual and projected surface areas). Since r is larger
than unity, the progression of the film is always favourable
(dE < 0), in this situation of complete wetting. Hence
we deduce the force (per unit width of the film) which
provokes wicking. It can be written

F = γ(r− 1). (1)

This force logically only exists if the surface is rough
(r > 1); the rougher the solid, the larger F . The nature
and topography of the texture will thus impact the
force driving the liquid inside it. In the case of pillars,
we have r= 1+2πbh/p2, from which we deduce

F = 2πγ
bh

p2
. (2)

If wetting is only partial, the situation is slightly
different. Very generally, the solid will be dry ahead
of the film, and the film will be driven by a force
F =−dE/dz = (r−φs)(γSV − γSL)− (1−φs)γ, denoting
φs as the density of pillars (πb

2/p2 in our case). Contrast-
ing with the case of complete wetting, F is not necessarily
positive. A film will only progress if cos θ > (1−φs)/
(r−φs), that is, if the Young contact angle θ is smaller
than a quantity which depends on the characteristics of the
surface [5]. Note that the force F derived above reduces
to eq. (2) as θ vanishes (which will be the case in our
experiments).

We now discuss the nature of the friction associated
with the fluid motion. As seen in fig. 4, the friction arises
from the liquid viscosity, but several origins are possible.
i) The flow generates velocity gradients over a distance h,
corresponding to a friction between the moving liquid of
thickness h and the bottom solid surface. Integrating over
the wet surface area z (written per unit width of the film),
we thus find a force F1 which scales as

F1 ∼ ηV
h
z, (3)

where V =dz/dt is the velocity of the front.
ii) Liquid friction also takes place against the pillars.

Let us first consider an isolated pillar. For a Stokes flow,
velocity gradients exist over a distance of the order of b,
the pillar radius, and the friction takes place on a surface
area bh, from which we deduce a force scaling as ηV h.
More exactly, we know that the viscous force acting on a
cylinder can be expressed as ηV h/ln(λ/b), where λ is a
cut-off distance (beyond which we can neglect the influ-
ence of the pillar) [10]. If the pillar had an infinite length,
λ would be built on a Reynolds number (λ∼ 3.7η/ρV ).
More generally, λ is the characteristic distance on
which the single pillar perturbs the flow. In our case,
where multiple pillars are present, we expect λ to be of
the order of p, the pitch of the pillar network. Since
we have z/p2 pillars per unit width of the advancing film,
we thus expect a friction F2 arising from the presence of
the pillars scaling as

F2 ∼ ηV hz

p2 ln(p/b)
. (4)

Of course, both frictions F1 and F2 should be present,
and oppose the motion. But these two quantities might
be quite different. Treating the logarithm as a number (of
order one), we find

F1

F2
∼ p

2

h2
. (5)

Hence we can distinguish two different cases:
i) For short pillars (h< p), the dominant friction arises

from the bottom solid surface. Then, balancing the friction
F1 with the driving force F (eq. (2)) yields the law of
motion:

z2 =D1t (6)

with

D1 =
4π

3

γ

η

h2b

p2
(7)

taking into account the numerical coefficient 3 in the
Poiseuille law (eq. (3)).
ii) For long pillars (h> p), the driving force F is

balanced by the friction F2. It turns out that Hasimoto
calculated explicitly the numerical coefficient for the fric-
tion of a liquid progressing in a collection of cylindri-
cal pillars [11,12]. He found, per pillar: f2 = 4πηV h/
(ln(p/b)− 1.31) [12]. Taking into account the number of
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Fig. 6: Experimental dynamical coefficient D of a film moving
in a forest of micropillars, as a function of a dimensionless
quantity characterizing the topography of the network of
pillars. D is normalized by the quantity D2 given by eq. (9),
and of the order of γb/η. As for the abscissa, D1 is given by
eq. (7), and the calculated quantity D1/D2 is just a function
of the texture, of the order of h2/p2. The different symbols are
for different silicone oils, as in fig. 3.

pillars per unit area, we can finally express the dynamics
of the film in this limit. It is written

z2 =D2t (8)

with
D2 =

γb

η
(ln(p/b)− 1.31). (9)

In both cases, the impregnated length z increases as
the square root of time. However, the structure of the
dynamical coefficient is quite different according to the
pillar height: it first increases rapidly with h (the taller
the pillar, the thicker the film, and thus the quicker
the movement); then, it becomes independent of the
height, because the increase in driving force is exactly
compensated by the increase in viscous friction against
the pillars. The dynamical coefficient D becomes even
nearly independent of the pitch (apart from a logarithmic
correction), and turns out to be fixed only by the pillar
radius (for a given liquid). Surprisingly, this result is very
similar to Washburn’s law, replacing the tube radius by
the pillar one.
We now compare our experimental data to these models.

Increasing the height h of the pillars, we expect the
dynamical coefficient D to be successively given by D1
for short pillars, and by D2 for tall ones. In order to
compare all our results to these expectations, we plot the
measured dynamical coefficient D normalized by D2 as a
function of the quantity D1/D2 ∼ h2/p2. We first expect
a straight line for D1/D2� 1, till we reach D1/D2 = 1.
Then (D1/D2� 1), D/D2 should saturate at a value of
order one, whatever the liquid (provided that it wets the
material).
This representation is displayed in fig. 6. For each

experiment we carefully determined the radius b (using
electron microscope photographies such as fig. 1), since

Fig. 7: (Color online) An oil drop (here ethanol) deposited on
a microtextured surface in the wicking regime is surrounded
by a wetted zone, whose size increases as the square root of
time, betraying oil penetration within the pillars. Note that the
drop acts as a lens, which deforms the colours arising from the
presence of a regular texture.

this parameter enters in both the coefficients D1 and D2.
Figure 6 shows a good agreement between observations
and our models. First, all the data collapse in a single
curve. The dynamical coefficient D first increases as D1.
In this regime (short pillars, h< p), the dynamics of the
film can be finely tuned by the pillars height h. This
contrasts with the case of larger heights (h> p), for which
the coefficientD does not depend anymore on h. Then, the
coefficient characterizing the liquid progression is close to
D2 (eq. (9)), the value expected from the model, without
any adjustable parameter. This result can be regarded as
the first confirmation (to the best of our knowledge) of the
old calculation by Hasimoto, on the viscous force acting
on a liquid flowing in a forest of pillars. This agreement
is somehow surprising, if we note that the velocity field
in the Hasimoto model is uniform in the direction of the
posts, while we expect velocity gradients in this direction,
in our case. The threshold between the two regimes is
observed around D1 =D2, that is, h∼ p, as expected from
the model.
These findings concern the progression of a film from an

infinite reservoir, but they also characterize the spreading
of a drop deposited on a material textured with assemblies
of microposts. Then as observed in fig. 7, a visible spread-
ing zone forms around the drop, showing the progression
of a film in the texture (which will affect the spread-
ing dynamics of this drop [13]). Fixing the height of the
pillars does not only influence the film dynamics, it also
selects its thickness (since surface energy favours a film
thickness which matches the pillar height).
It is probably useful to stress how such textures enhance

the progression of liquid. A wetting drop which spreads at
a large scale is driven by gravity, and the film progression
results from a balance between the weight and viscosity.
Hence it is found that the radius of the spreading drop
increases as (ρgΩ3t/η)1/8, where Ω is the drop volume [14].
The time for reaching a given size dramatically depends
on this size. We find for example that 106 s (about 10
days) are needed to reach 2 cm, for a millimetric drop
of a liquid of viscosity as low as that of water. Taking
a solid decorated with micropillars in the regime h> p,
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we find using eq. (8) that the time needed by the film
for reaching the same size reduces to 10 s —and this
dramatic difference would still be larger if considering a
bigger wetted spot. This emphasizes how relevant it can
be to use such textured materials for speeding up thin film
propagation at “large” scales.
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[7] Quéré D., Rep. Prog. Phys., 68 (2005) 2495.
[8] Zhou J. J., Noca F. and Gharib M., Nanotechnology,
17 (2006) 4845.

[9] Minc N., Bokov P., Zeldovich K. B., Futterer C.,
Viovy J. L. and Dorfman K. D., Electrophoresis, 26
(2005) 362.

[10] Lamb H., Hydrodynamics (Cambridge University Press,
Cambridge) 1932.

[11] Happel J. and Brenner H., Low Reynolds Number
Hydrodynamics (Noordhoff International Publishing,
Leyden) 1973.

[12] Hasimoto H., J. Fluid Mech., 5 (1959) 317.
[13] McHale G., Shirtcliffe N. J., Aqil S., Perry

C. C. and Newton M. I., Phys. Rev. Lett., 93 (2004)
036102.

[14] Huppert H. E., J. Fluid Mech., 121 (1982) 43.

56005-p5


